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|. Introduction: structure coefficients of an algebra

o Problem: Let A be an algebra over a field F with basis
b1, by, -, b,y. For two basis elements, say b; and b;, write:

bibj = > cfibx,
k

where c . € F. The elements c ;; are called the structure coefficients
of A and there is no explicit formula for them, even in the particular
algebras we will consider.
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|. Introduction: structure coefficients of an algebra

e Problem: Let A be an algebra over a field F with basis
by, by, -, b,. For two basis elements, say b; and b;, write:

_ k
j =, clibr,
k

where c . € F. The elements c . are called the structure coefficients
of A and there is no explicit formula for them, even in the particular
algebras we will consider.
@ Our work:
1- A framework in which one can obtain the form of the structure

coefficients of the double-class algebra.!
2- A polynomiality property of these coefficients in some specific cases.

!These coefficients "contain" structure coefficients of centres of groups algebras.
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Il. Partitions

@ A partition X is a list of integers (A1, Az, ...) where
Al = A= ... =1 The )\; are called the parts of A. The size of a
partition A (noted |\|) is the sum of all its parts.
Example: A =(3,2,1), |]\|=3+2+1=6
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Il. Partitions

@ A partition X is a list of integers (A1, Az, ...) where
A1 = A = ... 2= 1. The \; are called the parts of \. The size of a
partition A (noted |\|) is the sum of all its parts.
Example: A =(3,2,1), |]\|=3+2+1=6

@ A proper partition is a partition without parts equal to one.
Example: § = (3,2,2), is a proper partition of size 7.

o Let \ be a proper partition and n > |\|. The partition A U (1" 1) is
the partition of n obtained by adding n — |\| parts equal 1 to A.

@ Partitions of n are in bijection with the proper partitions with size at
most n.
The proper partitions will be used to index bases of the algebras
considered in this talk.
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I1l. Two polynomiality results 1. Center of the symmetric group algebra

@ The symmetric Group Algebra C[S,] is the algebra over C with basis
the elements of S, (the permutations of n).
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I1l. Two polynomiality results 1. Center of the symmetric group algebra

@ The symmetric Group Algebra C[S,] is the algebra over C with basis
the elements of S, (the permutations of n).

@ Every element of S, can be written (in a unique way) as a product of
disjoint cycles.

e For a permutation w € S,, we define the cycle-type of w, ct(w), to be
the partition of n with parts equal to the lengths of the cycles that
appear in its decomposition.

Example: w=2 6 5 4 3 1=(1 2 6)(5 3)(4).
ct(w) = (3,2,1).
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@ Every element of S, can be written (in a unique way) as a product of
disjoint cycles.

e For a permutation w € S,, we define the cycle-type of w, ct(w), to be
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I1l. Two polynomiality results 1. Center of the symmetric group algebra

@ The symmetric Group Algebra C[S,] is the algebra over C with basis
the elements of S, (the permutations of n).

@ Every element of S, can be written (in a unique way) as a product of
disjoint cycles.

e For a permutation w € S,, we define the cycle-type of w, ct(w), to be
the partition of n with parts equal to the lengths of the cycles that
appear in its decomposition.

Example: w=2 6 5 4 3 1=(1 2 6)(5 3)(4).
ct(w) = (3,2,1).
@ The center of the symmetric group algebra, Z(C[S,]), is:

Z(C[Sh]) = {x € C[Si] | x-y = y - x ¥y € CSA]}.

© The family (Sx(n))|xj<n indexed by proper partitions of size at most n
forms a basis for Z(C[S,]), where,

Sx(n) = 2 w

w€Sn,
ct(w)=ru(11=I1Al
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I1l. Two polynomiality results 1. Center of the symmetric group algebra

@ For X\ and ¢ two proper partitions with size at most n,

Sxa(n) - Ss(n) = Z Cf,(s(”)sp(”)y

p proper partition
lp|<n

the numbers cf s(n) are the structure coefficients of the center of the
symmetric group algebra Z(C[S,]).
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I1l. Two polynomiality results 1. Center of the symmetric group algebra

@ For X\ and ¢ two proper partitions with size at most n,

Sxa(n) - Ss(n) = Z Cf,(s(”)sp(”)y

p proper partition
lp|<n

the numbers cf s(n) are the structure coefficients of the center of the
symmetric group algebra Z(C[S,]).

e Motivation (Cori [1975]:) The structure coefficients of the center of
the symmetric group algebra count the number of embedded graphs
into orientable surfaces with some conditions.
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I1l. Two polynomiality results 1. Center of the symmetric group algebra

@ For X\ and ¢ two proper partitions with size at most n,

Sxa(n) - Ss(n) = Z Cf,(s(”)sp(”)y

p proper partition
lp|<n

the numbers cf 5( n) are the structure coefficients of the center of the
symmetric group algebra Z(C[S,]).

@ Theorem (Farahat and Higman [1958]): Let A, 6 and p be three
proper partitions, the function:

n— cf 5(n)

defined for n = |\, |9}, |p| is a polynomial in n.
Example: One can compute explicitly:
5(2)(n) . 5(2)(n) = (n) + 35(3)(/7) + 25(22)(n).
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([ R WIS S 2. Hecke algebra of (Sa,, Bn)

@ The Hyperoctahedral group B, is the subgoup of S, consisting of all
permutations of Sy, which takes every pair of the form {2k — 1,2k} of
[2n] to another pair with the same form.

Example: 3 =43875621 € By
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@ To each permutation w of 2n we associate a graph '(w).
Example: Take w =24931105867 € Sip.
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([ R WIS S 2. Hecke algebra of (Sa,, Bn)

@ The Hyperoctahedral group B, is the subgoup of S, consisting of all
permutations of Sy, which takes every pair of the form {2k — 1,2k} of
[2n] to another pair with the same form.

Example: 3 =43875621 € By

@ To each permutation w of 2n we associate a graph '(w).
Example: Take w =24931105867 € Sip.

@ The coset-type of a permutation x of Sy, is a partition of n with parts
equal to half of lengths of the cycles of I'(x).
Example: coset-type(w) = (3,2).
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([ R WIS S 2. Hecke algebra of (Sa,, Bn)

@ Proposition: Let x € S»,, we have:

{bxb' | b, b € Bo}

B.xB, =
{y € San | coset — type(y) = coset — type(x)}.

Lyon, 2014-03 12 / 20

O. Tout (LaBRI, Bordeaux)



([ R WIS S 2. Hecke algebra of (Sa,, Bn)

@ Proposition: Let x € S»,, we have:

{bxb' | b, b € Bo}

B.xB, =
{y € San | coset — type(y) = coset — type(x)}.

o The Hecke algebra of (S, B,) denoted by C[B,\Sz2n/Bn] is the
algebra over C with basis the elements (S} (n)) <, indexed by proper

partitions with size at most n, where

Si(n) = Z w.

weSs,
cosetftype(w)=>\u(1”7‘)“ )

Lyon, 2014-03 12 / 20
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([ R WIS S 2. Hecke algebra of (Sa,, Bn)

@ For X\ and ¢ two proper partitions with size at most n,

Si(n)-Simy = > Ls(mSyn),

p proper partition
lpl<n

the numbers ¢’f <(n) are the structure coefficients of the Hecke
algebra of (Sap, Bp).
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([ R WIS S 2. Hecke algebra of (Sa,, Bn)

@ For X\ and ¢ two proper partitions with size at most n,

Si(n) - Si(n) = 2 % 5(n)S)(n),

p proper partition
lpl<n

the numbers c’f\ﬁ(n) are the structure coefficients of the Hecke
algebra of (Sap, Bp).

e Motivation (Goulden and Jackson [1996]): These coefficients count
the number of embedded graphs into non-orientable surfaces with
some conditions.
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([ R WIS S 2. Hecke algebra of (Sa,, Bn)

@ For X\ and ¢ two proper partitions with size at most n,

Si(n)-Simy = > Ls(mSyn),

p proper partition
lpl<n

the numbers ¢’f <(n) are the structure coefficients of the Hecke
algebra of (Sap, Bp).

@ Theorem (Dotega and Féray [2012], T. [2013]): Let A, 6 and p be
three proper partitions, we have:

2"nlf5(n) if n=|pl,
cRs(n) =
0 if n<|p|,

where f{5(n) is a polynomial in n.
Example: For every n > 4, we have:

S(2)(n):S((n) = 2"n! (n(n — 1)5'@(n)+15('2)(n)+3Sé3)(n)+25('22)(n)).
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IV. Structure coefficients of the double-class algebra

o Let (Gp, Kn)n be a sequence where G, is a group and K, is a
sub-group of G, for each n.

O. Tout (LaBRI, Bordeaux) Lyon, 2014-03 15 / 20



IV. Structure coefficients of the double-class algebra

o Let (Gp, Kn)n be a sequence where G, is a group and K, is a
sub-group of G, for each n.
@ A double-class of K, in G, is a set g" := K,gK,, for a g € G,,

KngKn = {kgk'; k, k' € Kp}.
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IV. Structure coefficients of the double-class algebra

o Let (Gp, Kn)n be a sequence where G, is a group and K, is a
sub-group of G, for each n.

@ A double-class of K, in G, is a set g" := K,gK,, for a g € G,,

KngKn = {kgk'; k, k' € Kp}.

o Let %, = {x1",- -+ ,X(n)"} be the set of representative elements of the
set of double-classes K\ Gn/Kn.

@ Let X;" be the sum of the elements in X;”. The double-class algebra of
Ky in Gp, denoted C[K,\G,/K,], is the algebra with basis the
elements X;".

Example: The Hecke algebra of (San, Bp), C[B,\S2n/Bx], is a
double-class algebra.
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IV. Structure coefficients of the double-class algebra

@ The product X;" - X;" can be written as follows:
n o-n __ r ~n
X -X" = Z ci j(mx".
1<r<i(n)

The coefficients ¢/ ;(n) are the structure coefficients of the double
class algebra C[Kp\Gn/Ka].
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IV. Structure coefficients of the double-class algebra

@ The product X;" - X;" can be written as follows:

X" X" = Z cf (%",
1<r<i(n)
The coefficients ¢/ ;(n) are the structure coefficients of the double
class algebra C[Kp\Gn/Ka].
@ There is no explicit formula for these coefficients.

o Goals:
1. The form of these structure coefficients under some conditions.
2. Applications to the two specific cases: Z(C[S,]) and the Hecke algebra
Of (82,7, Bn)
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IV. Structure coefficients of the double-class algebra

Define
k(X) := mkin k

XAG#D

Under some conditions, we have:
Theorem (T.): For ky = k(X;"), ko = k(X;") and k3 = k(x,") there exists
rational numbers af ;(k) all independent of n such that:

C_r_(n) _ |)?l.n||)?jn||Kn*k1||ank2| Z alr,_[(k)

! | Kl %" | Kn—k]

k3<k<min(k1+k2,n)
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IV. Structure coefficients of the double-class algebra

Define
k(X) := mkin k

XAG#D

Under some conditions, we have:
Theorem (T.): For ky = k(X;"), ko = k(X;") and k3 = k(x,") there exists

rational numbers af ;(k) all independent of n such that:

L(n) = 157|157 | Kn—ky [ Kk | Z alf,j(k)
U |Kn||)?rn| |Kn—k|

k3<k<min(k1+k2,n)

Remark: We have a similar theorem for the structure coefficients of the
centres of groups algebras.

O. Tout (LaBRI, Bordeaux) Lyon, 2014-03 17 / 20



IV. Structure coefficients of the double-class algebra

Application to the Hecke algebra of (S»,, B,): Let A\ be a proper partition
of size at most n. The size of its associated double class S} (n) is:

nn_2
Si(m)| = —— 2

222 Rl(n — A
where, zy = [];2; im ) mi (M)
Let § and p be two proper partitions with size at most n, we have:

— |
c'f 5(n) =2"n! 22p E aﬁé(k)Qk*\P\ ((’7|Z|))l Polynomial!
’ n— k)l
2220 )< k<A + o
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Application to the Hecke algebra of (S»,, B,): Let A\ be a proper partition
of size at most n. The size of its associated double class S} (n) is:

nn_2
Si(m)| = —— 2

222 Rl(n — A
where, zy = [];2; im ) mi (M)
Let § and p be two proper partitions with size at most n, we have:

— |
c'f 5(n) =2"n! 22p E aié(k)Qk*\P\ ((’7|Z|))l Polynomial!
’ n— k)l
2220 )< k<A + o

Application to Z(C[S,]): Let A be a proper partition of size at most n.
The size of its associated conjugacy class S\(n) is:

n!
S\ = =
Let § and p be two proper partitions with size at most n, we have:
Z (n —|p])! )
cf,a(n) = Z}\':(S Z aia(k)m- Polynomial!

|pl<k<]Al+]d]



V. Conclusions and further applications

V. Conclusions and further applications

O. Tout (LaBRI, Bordeaux) Lyon, 2014-03 19 / 20



V. Conclusions and further applications

Conclusions:
Under technical conditions,
1. Form of the structure coefficients of double-class algebras.
2. Form of the structure coefficients of centers of groups algebras.

3. We re-obtain the polynomiality property for Z(C[S,]) and the Hecke
algebra of (Sap, Bp).
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V. Conclusions and further applications

Conclusions:
Under technical conditions,

1. Form of the structure coefficients of double-class algebras.
2. Form of the structure coefficients of centers of groups algebras.
3. We re-obtain the polynomiality property for Z(C[S,]) and the Hecke
algebra of (Sap, Bp).
Work in progress:

1. Z(C|GLy(Fq)]), where GL,(FFy) is the group of invertible n x n
matrices.

2. Superclasses of unitriangular groups...
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