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Plan:

e Greatest common divisor of S)\(lk) with A = n.
e Existence of generalized parking spaces.

e Greatest common divisor of sy(1,q, - - ,qk_l) with A\ - n.



Greatest Common Divisors of sy (1F)



Schur Functions

A partition of a positive integer n is a weakly decreasing sequence
)\:()\17)\27)\37”')7 )\IZAQZ)\Z%Z

of non-negative integers with > . A\; = n. Then we write A - n. The
length [(\) of a partition X is defined by

I\ = #{i: ) > 0},

Let k& be a positive integer and let A be a partition with length < k.

The Schur function s)(zy, -+ ,x}) corresponding to A is defined by
\ith—j
det (:1:-“7 ])
' 1<i,j<k
S)\($1,°-- 7Ik) — k—j y
det (:1: )
Lo 1<ig<k
The Schur functions are symmetric polynomials in z1,-- - , x;. with non-

negative integer coefficients.



Specialized Schur Functions

We are interested in the greatest common divisors of the special values
k 2 k—1

s (1Y) =sy(1,---,1 and s, (1 e .

A1) = s)(L - ) ML, q% g )

The special values SA(lk) can be interpreted as follows:

s)\(lk) = the number of semistandard tableaux of shape A
with entries in {1,2,--- , k}
= the dimension of the irreducible representation
of GL;. with highest weight A

B k+ c(x)
- 1l hxz)
reD(N)

where D()) is the Young diagram of ), and c(x) and h(x) denote the
content and the hook length of x respectively.




Theorem 1 Let k£ and n be positive integers. Then we have

k
ngZ {S)\Ok) A n} —

gcd(n, k)
Example If n =4, then we have

ko s(17) s (1F) 52y (1%) | 509.12)(1%) | s44)(1%) | GCD
1 1 0 0 0 0 1
2 D 3 1 0 0 1
3 15 15 6 3 0 3
4 30 45 20 15 | 1
D 70 105 50 45 D D
§ 126 210 105 105 15 3
7 210 378 196 210 30 7
8 330 630 336 378 70 2
9 495 990 540 630 126 9
10} 715 1485 825 990 210 D




Theorem 1 Let £ and n be positive integers. Then we have

k
d { 1By - }: |
gC Z S)\( ) n ng(ﬂ,k‘)

Proof follows from the following two claims.

Claim 1  For any partition \ of n, the integer s)(1%) is divisible by
k/gcd(n, k).

Claim 2 The integer k/gcd(n, k) is an element of the ideal of Z
generated by s)(1%)'s (A F n).



Proof of Theorem 1 (1/4)
Claim 1 For any partition A of n, the integer 3)\(1]“) is divisible by
k/ged(n, k).
Proof of Claim 1
Let d = ged(n, k). It follows from the Frobenius formula that

s\(1%) A L i(type(o)
%k/dX(U)_k/dk (06671)7

where X)\ is the irreducible character of the symmetric group G, corre-
sponding to A, and type(o) is the cycle type of 0. Hence it is enough to
show that there exists a representation of G,, whose character 6 is given

by
0(c) = ki/d HOPel0)) (5 e @,).



Proof of Theorem 1 (2/4)

Consider the permutation representation of &, on X = (Z/kZ)", and
put

Xp=A{(x;) € (Z/KZ)" : 21+ +xp—pd € {0,1,--- ,d—1}}
forp=0,1,---,k/d—1, where we identify Z /kZ with {0, 1,--- , k—1}.
If we denote by 1) and 1), the permutation character of X and X, then
we have

(o) = K OPUODand =g+ g+ g

Since ged(k/d,n/d) = 1, we can find an equivariant bijection between
X( and X, so we have

Yo =11 =" =Vpiq_1-
Hence we conclude that 6 is the permutation character 1)y of X, and

k
that %/tl) IS an integer.



Proof of Theorem 1 (3/4)

Claim 2 The integer k/gcd(n, k) is an element of the ideal of Z
generated by s,(1%)'s (A F n).

Proof of Claim 2
We have the following relation among ideals of Z:

<3)\(1k) A n> = <m)\(1k) A n> D <m<fn/f>(1k) ] d>,

where my(x1, -+ ,x;) is the monomial symmetric polynomial corre-
sponding to A, and d = ged(k,n). Since we have

b k
m(fn/f)(l ) = (f)’

it is enough to show that

() 19)



Proof of Theorem 1 (4/4)
Lemma If e divides k, then

()0

This lemma can be shown by using the induction on e and the relation
A A
(pa> —p—aEOmodpl,
p p
where p is a prime.



Generalized Parking Spaces



Parking Functions

A parking function of length n is a sequence (aj, a9, - - - , ay) of positive
integers satisfying

ea; €{1,2,--- ,n}, and
o #{i:a;<k}>kfork=1,2--- n.
Imagine that there are n cars C'1,C9,--- , () and n parking spaces

1,2,--- ,mn in a one-way street. Car C; prefers the parking space a; and
approaches its preferred parking space.

o |f it is free, then C; parks there.
e |f it is occupied, then C); parks in the next available space if possible.

Then the sequence (ay,--- ,ay) is a parking function if and only if all
cars can park.



Parking Functions

A parking function of length n is a sequence (aj, a9, - - - , ay) of positive
integers satisfying

ea; €{1,2,--- ,n}, and
o #{i:a;<k}>kfork=1,2--- n.
We put
PF,, = the set of parking functions of length n.
Example
PFy = {11, 12, 21 },

PR, — 111, 112, 121, 211, 113, 131, 311, 122
S 212, 221, 123, 132, 213, 231, 312, 321



The symmetric group G,, acts on the set PF,, by permuting entries:

o - (alv T 7an) — (aa(l)v C 7aa(n)> (J = Gn)

It is known that the corresponding permutation character is given by
o(0) = (n+ D)IP)=1 (5 e &,).
More generally, given a positive integer k, we consider the class function
on G,, defined by
op(o) = Evela) =15 e &,).
Question  When is ¢;. the character of some representation of G,,7

It is not hard to show that, if k is relatively prime to n, then ;. is the
permutation character on

{v € (Z/KZ)" - x1+ - -+ xy =0}



By using Theorem 1, we can prove
Corollary

1. is the character of a representation of G,
<= k is relatively prime to n.

Proof It follows from the Frobenius formula that

k
8)\1
or = 5{ I

AFn

Hence we have

©1. 1s the character of a representation of G,

k
<:>SA$ ) ¢ Ztorall A

<= k is relatively prime to n,
since ged{sy(1%) : A+ n} = k/ ged(n, k).




Generalization to Coxeter groups

Let (W, .9) be a finite Coxeter system and V' its geometric representa-
tion.

Example (Type A,_1)
W = 67?,7
S={s;=(0,1+1):1<i<n-—1}
V=4{x=(r, - ,2p) €R" 121+ -+ 2, =0}
In this setting, we have
[(type(o)) — 1 =dimV? (o€ &,),
where V7 = {v € V : ov = v}.



Generalization to Coxeter groups
Let (W, .9) be a finite Coxeter system and V' its geometric representa-
tion. Let k£ be a positive integer and consider the class function gpg/ on
W given by
QOK/(UJ) _ kdim V' (w c W),
where V% is the fixed-point subspace of w.
Question When is gpg/ is the character of a representation of W7

A W-module U is called a generalized parking space if its character is
given by gpg/ for some positive integer k. For example, the vector space
C PF,, with basis PF, is a parking space for G,,.



Theorem 2 Let W be an irreducible Coxeter group. Then gp?/ IS
a character of some representation of W if and only if the following
condition is satisfied:

type condition on k
A, k is relatively prime to n
By, Dy, k is odd
Eg, B, Fy k is not divisible by 2 and 3
Eig k is not divisible by 2, 3, and 5
Hs k=1,59mod 10
Hy k=1,11,19,29 mod 30
Io(m) (m is even) |k =1 or "k > m — 1 and k* = 1 mod 2m”
Ir(m) (misodd) k=1or “k>m—1and k* =1 mod m"




Theorem 2 Let W be an irreducible Coxeter group. Then gp?/ IS
a character of some representation of W if and only if the following
condition is satisfied:

type condition on k
A, k is relatively prime to n
By, Dy, k is odd
FEg, E7, F)y k is not divisible by 2 and 3
Eig k is not divisible by 2, 3, and 5
Hs k=1,59mod 10
Hy k=1,11,19,29 mod 30
Io(m) (m is even) |k =1 or "k > m — 1 and k* = 1 mod 2m”
Ir(m) (misodd) k=1or “k>m—1and k* =1 mod m"

Remark E. Sommers proved that, if W is a Weyl group and £ satisfies
the above condition, then the permutation representation on () /k() has
the character gp?/, where () is the root lattice.



If W is not of type I3(m) with m = 5 or m > 7, then the condition
in Theorem 2 can be stated in terms of “generalized ¢-Catalan number”
Y (q)

r

k+ e
V() =T Bt il
" H 1 +eilq
where ey, - - - , e, are the exponents of W and m], = (1—¢"")/(1 —q).
Example (Type A,,_1) f W = &,,, then the exponentsare 1,2,--- . n—
1, and
S 1 [E+n—1
g [n]q k q

where [ZJ] is the g-binomial coefficient. If £ = n+1 (Coxeter number),
q

then C’Sﬁl(q) is a g-analogue of the Catalan number C,.



If W is not of type I3(m) with m = 5 or m > 7, then the condition
in Theorem 2 can be stated in terms of “generalized ¢-Catalan number”
Y (q)

r

W, 1T kel
Ck (Q) — 21:[1 [1‘|‘€i]q7

where ey, - - - , e, are the exponents of W and m], = (1—¢"")/(1 —q).

Corollary Suppose that W is not of type I5(m) withm =5orm > 7.
Then

QOE/ is a character of some representation of W/

= CZV(Q) is a polynomial in g.



Greatest Common Divisors of s)(1,q,--- ,qk_l)



Theorem 1 Let £ and n be positive integers. Then we have

k
d { 1By - }: |
gedz 9 50 (17) n sed(n k)

Theorem 3 Let £ and n be positive integers. Then we have

k
ged g {Sx(l,q,q% g T AR n} _ g

[ng(na kﬂq,
where [r]g = (1 —¢")/(1 —q).
Remark Theorem 3 does not imply Theorem 1 by letting ¢ = 1. For
example,

lim ged{(¢* + 1)(g+ 1)%, (¢ +1)°} = lim (¢ + 1)* = 4,
qg—1 q—1

ged{ lim (¢* +1)(q + 1), lim (g + 1)3} = gcd(8,8) = 8.
g—1 g—1




Theorem 3 Let £ and n be positive integers. Then we have

k
ged gl {SA(LC]»C]Q, g A n} = Mg

ged(n, k)lg”
where [r]g = (1 —¢")/(1 —q).
Proof follows from
1.

{z € C: zis acommon root of h)(1,q,... ,qk_l) (AFn)}
= {z € C: z is a primitive d-th root of 1}.
dlk, dn

2.If z is a common root of hy(1,q,... ,qk_l) (A F n), then z is a
simple root of h(1,q,... ,qk_l) for some p - n.



Conjectures
Theorem 3 implies that
SA<1JQ7°"7qk_J) _ SA<17Q7°°°7q
Ko/ldly  L+qi+o g
where A = n and d = ged(k, n).

Conjecture 1 If X is a partition of n and d = gcd(k, n), then
k—1>

k—l)

€ Zlq,

SA(17Q7'°°7Q
1_|_qd_|_..._|_qk_d
l.e., it is a polynomial with non-negative integer coefficients.

€ Nlq],

This conjecture is true if
e 1 is a multiple of k (i.e., d = k) (well-known), or

e /:/d is relatively prime to n.

Conjecture 1 is now proved.



A finite sequence (aq,aq, - ,ay) is called unimodal if there is an
index p satisfying
CLOSal < - gﬁp—l Sapzap+1 > e 2 U] = Gy

Conjecture 2 Let A\ be a partition of n and d = ged(k,n). If we

write -
SA(17Q7°°°7Q _->

(
= > aid,
1_|_qd_|_..._|_qk_d ¢

120

then the sequences
(a07a27a47°">7 and (&1,@3,@5,"')
are both unimodal.
This conjecture is true if

e 1 is a multiple of k (i.e., d = k) (well-known), or

e £ is relatively prime to n.



