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Definition
An associahedron is a polytope whose graph is the flip graph
of triangulations of a convex polygon.
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Focus on graphs

Flip graph on the triangulations of the polygon:
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Flip graph on the triangulations of the polygon:
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PAA

n diagonals = the flip graph is n-regular.




Useful configuration (Loday's)
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Graph point of view

{diagonals of G,,3} <— {strict subpaths of the path [n+ 1]}
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1 7



Non-crossing diagonals

Two ways to be non-crossing in Loday's configuration:

0. . S 0. . S
1 7 1 7
2 6 2 6
3 1 5 3 A 5

nested subpaths non-adjacent subpaths




Pay attention to the second case:

The right condition is indeed non-adjacent, disjoint is not
enough!
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Now do it on graphs

G = (V,E) a (connected) graph.
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Now do it on graphs

G = (V, E) a (connected) graph.

@ A tube of G is a proper subset t C V inducing a
connected subgraph of G;

e t and t' are compatible if they are nested or
non-adjacent;

@ A tubing of G is a set of pairwise compatible tubes of G.
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6 3 6
A tube A maximal tubing

(generalizes a diagonal) (generalizes a triangulation)



Graph associahedra

The simplicial complex of tubings is spherical
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Graph associahedra

The simplicial complex of tubings is spherical = flip graph !
Theorem (Carr-Devadoss '06)

There exists a polytope called graph associahedron of G,
denoted Assog, whose graph is this flip graph.
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Classical polytopes...
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The associahedron The cyclohedron The permutahedron



...can be seen as graph associahedra
o

The associahedron The cyclohedron The permutahedron




Hamiltonicity of flip graphs

Theorem (Trotter '62, Johnson '63, Steinhaus '64)

The n-dimensional permutahedron is hamiltonian for n > 2.
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Hamiltonicity of flip graphs

Theorem (Trotter '62, Johnson '63, Steinhaus '64)

The n-dimensional permutahedron is hamiltonian for n > 2.

<(123) — (132) — (312) — (321) — (231) — (213)>

< P P )
(1234)-- (1324)-- (3124)- - (3214) - (2314)- - (2134)

(4123)-- (4132)-- (4312)-- (4321)-- (4231)-- (4213)

Theorem (Lucas 87, Hurtado-Noy '99)

The n-dimensional associahedron is hamiltonian for n > 2.
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Diameter of flip graphs

Lemma

The diameter of the n-dimensional permutahedron is (n —; 1) .



Diameter of flip graphs

Lemma

S
_l’_

The diameter of the n-dimensional permutahedron is ( 5 1).

Theorem (SIeator—Trajan—Thurston '88, Pournin '12)

The diameter of the n-dimensional associahedron is 2n — 4
for n > 10.



d(G) = diameter of the flip graph on tubings of G.
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Diameter

d(G) = diameter of the flip graph on tubings of G.
Theorem (M.-Pilaud '14™)

d is a non-decreasing function:
G partial subgraph of G' = 0(G) < 6(G").

Idea:
— If G C G, Assog is obtained by truncations of Assog.
— Truncating <= replacing vertices by complete graphs.

<

truncating an edge
of a 3-dimensional )
simple polytope A

<



Inequalities for the diameter

Corollary
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Inequalities for the diameter

Corollary

For any graph G, 0(G) < (’V(G)‘) .

2

G is included in the complete graph on its vertices... B

Theorem (M.-Pilaud 147)
For any graph G, 2|V(G)| — 18 < §(G).

Ingredients of the proof:
@ ¢ is non-decreasing;
@ Technical metric properties of flip graphs;

@ Pournin’s result for the classical associahedron.
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