q-Jacobi-Stirling numbers and *q*-differential equations for *q*-classical polynomials

Ana F. Loureiro (University of Kent) and Jiang Zeng (U. Lyon-I)

Outline

- ullet q-classical polynomials
- q-differential equations
- q-Jacobi-Stirling numbers
- q-Stirling numbers, signed partitions

AFL & J. Zeng, q-differential equations for q-classical polynomials and q-Jacobi-Stirling numbers, arXiv :1309.4968

A Monic Orthogonal Polynomial Sequence (MOPS) $\{P_n\}_{n\geqslant 0}$ is defined by

$$\langle u_0, P_n P_k \rangle = N_n \delta_{n,k}$$
, with $N_n \neq 0$.

where u_0 is the first element of the corresponding dual sequence.

▶ In this case u_0 is said to be regular.

▶ $\{P_n\}_{n\geq 0}$ the second order recurrence relation

$$P_{n+1}(x) = (x - \beta_n)P_n(x) - \gamma_n P_{n-1}(x)$$

with $P_0=1$ and $P_{-1}=0$ and

$$eta_n = rac{\langle u_0, x P_n^2 \rangle}{\langle u_0, P_n^2 \rangle}$$
 and $\gamma_{n+1} = rac{\langle u_0, P_{n+1}^2 \rangle}{\langle u_0, P_n^2 \rangle}
eq 0, \ n \in \mathbb{N}$

in this case...

the Hankel determinant

$$\Delta_n(u_0) = \det[(u_0)_{i+j}]_{0 \le i,j \le n} \ne 0$$
, $n \ge 0$, with $(u_0)_k = \langle u_0, x^k \rangle$,

and

$$P_n(x) = \frac{1}{\Delta_{n-1}(u_0)} \left| \begin{array}{ccccc} 1 & (u_0)_1 & \dots & (u_0)_{n-1} & (u_0)_n \\ (u_0)_1 & (u_0)_2 & \dots & (u_0)_n & (u_0)_{n+1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (u_0)_{n-1} & (u_0)_n & \dots & (u_0)_{2n-2} & (u_0)_{2n-1} \\ 1 & x & \dots & x^{n-1} & x^n \end{array} \right| , \ n \geqslant 0,$$

Classical polynomials

Theorem. For any MOPS $\{P_n\}_{n\geqslant 0}$ the following statements are equivalent.

- (a) $\{P_n\}_{n\geqslant 0}$ is classical , i.e., $\left\{P_n^{[1]}(x):=\frac{1}{n+1}DP_{n+1}(x)\right\}_{n\geqslant 0}$ is a MOPS. (Hahn, 1937)
- (b) There exists a pair of polynomials $(\Phi,\Psi),$ with Φ monic, deg $\Phi\leqslant 2,$ deg $\Psi=1,$ and such that

$$D(\Phi u_0) + \Psi u_0 = 0$$

(c) There exists a pair of polynomials (Φ,Ψ) such that $\{P_n\}_{n\geq 0}$ satisfies

$$\mathcal{L}[P_n](x) = \chi_n P_n(x) , n \ge 1, \text{ with } \mathcal{L} := \Phi(x)D^2 - \Psi(x)D,$$

with $\chi_n \neq 0$ given by

$$\chi_n = \begin{cases} -n\Psi'(0) & \text{if } \deg \Phi = 0, 1 \\ n(n-1-\Psi'(0)) & \text{if } \deg \Phi = 2 \end{cases}, n \ge 0.$$
 (1)

(Bochner, 1929)

(d) There is a monic polynomial Φ with deg $\Phi \leq 2$ and a sequence of nonzero numbers $\{\vartheta_n\}_{n\geq 0}$ such that

$$P_n u_0 = \vartheta_n D^n \left(\left(\Phi(x) \right)^n u_0 \right), \ n \geqslant 0.$$
 (2)

q-Classical Polynomials

Definition. A MOPS $\{P_n\}_{n\geqslant 0}$ is q-classical iff

$$\{P_n^{[1]}(x):=\frac{1}{[n+1]_q}D_qP_{n+1}(x)\}_{n\geqslant 0}$$

is also a MOPS.

(Hahn, 1949)

Here, $q \neq 0$ and $|q| \neq 1$,

$$(D_q f)(x) := \frac{f(qx) - f(x)}{(q-1)x}, \quad \text{if} \quad x \neq 0,$$

$$(D_q f)(0) := f'(0)$$

and

$$[a]_q := \frac{q^a - 1}{q - 1}$$

q-Classical polynomials

Theorem. For any MOPS $\{P_n\}_{n\geqslant 0}$ the following statements are equivalent.

- (a) $\{P_n\}_{n\geqslant 0}$ is *q*-classical
- (b) There exists a pair of polynomials $(\Phi,\Psi),$ with Φ monic, deg $\Phi\leqslant 2,$ deg $\Psi=1,$ and such that

$$D_q(\Phi u_0) + \Psi u_0 = 0$$

(c) There exists a pair of polynomials (Φ, Ψ) such that $\{P_n\}_{n\geq 0}$ satisfies $\mathcal{L}_q[P_n](x) = \chi_n P_n(x) \ , \ n\geq 1, \quad \text{with} \quad \mathcal{L}_q:=\Phi(x)D_q\circ D_{q^{-1}}-\Psi(x)D_{q^{-1}},$

with $\chi_n \neq 0$ given by

$$\chi_n = \begin{cases} -[n]_{q^{-1}} \Psi'(0) & \text{if } \deg \Phi = 0, 1 \\ [n]_{q^{-1}} ([n-1]_q - \Psi'(0)) & \text{if } \deg \Phi = 2 \end{cases}, n \ge 0.$$
 (3)

(d) There is a monic polynomial Φ with deg $\Phi \leq 2$ and a sequence of nonzero numbers $\{\vartheta_n\}_{n\geq 0}$ such that

$$P_n u_0 = \vartheta_n D_q^n \left(\left(\prod_{\sigma=0}^{n-1} q^{-\sigma \deg \Phi} \Phi(q^{\sigma} x) \right) u_0 \right), \ n \geqslant 0.$$
 (4)

Corollary. For each integer k>0, if $\{P_n\}_{n\geq 0}$ is q-classical, then so is $\{P_n^{[k]}(x):=\frac{1}{[n+1:q]_k}D_q^kP_{n+k}(x)\}_{n\geq 0}$ and we have

$$\Phi_{k}(x)D_{q} \circ D_{q-1}\left(P_{n}^{[k]}(x)\right) - \Psi_{k}(x)D_{q-1}\left(P_{n}^{[k]}(x)\right) = \chi_{n}^{[k]}P_{n}^{[k]}(x) , \ n \geq 0, \ (5)$$

where

$$\Phi_k(x) = q^{-k \deg \Phi} \Phi(q^k x), \quad \Psi_k(x) = q^{-k \deg \Phi} \left(\Psi(x) - [k]_q \left(D_{q^k} \Phi \right)(x) \right)$$

and

$$\chi_n^{[k]} = \begin{cases} -[n]_{q^{-1}} q^{-(\deg \Phi)k} \ \Psi'(0) & \text{if } \deg \Phi = 0, 1, \\ [n]_{q^{-1}} q^{-2k-1} \Big([n+2k]_q - (1+q\Psi'(0)) \Big) & \text{if } \deg \Phi = 2 \end{cases}, \ n \ge 0.$$

The corresponding q-classical form $u_0^{[k]}$ fulfills

$$D_q\left(\Phi_k u_0^{[k]}\right) + \Psi_k u_0^{[k]} = 0$$

and $u_0^{[k]}=\zeta_k\biggl(\prod_{\sigma=0}^{k-1}\Phi_\sigma(x)\biggr)u_0$, where $\zeta_k\neq 0$ is such that $\biggl(u_0^{[k]}\biggr)_0=1$, with the convention $\zeta_0=1$.

(Kheriji & Maroni, 2002), (M. Ismail, 2009), (Koekoek et al.)

Corollary. For each integer k > 0, if $\{P_n\}_{n \ge 0}$ is q-classical, then so is $\{P_n^{[k]}(x) := \frac{1}{[n+1]d!} D_q^k P_{n+k}(x)\}_{n \ge 0}$ and we have

$$\Phi_k(x)D_q \circ D_{q-1}\left(P_n^{[k]}(x)\right) - \Psi_k(x)D_{q-1}\left(P_n^{[k]}(x)\right) = \chi_n^{[k]}P_n^{[k]}(x) , \ n \ge 0, \ (5)$$

where

$$\Phi_k(x) = q^{-k \deg \Phi} \Phi(q^k x), \quad \Psi_k(x) = q^{-k \deg \Phi} \left(\Psi(x) - [k]_q \left(D_{q^k} \Phi \right)(x) \right)$$

and

$$\chi_n^{[k]} = \begin{cases} -[n]_{q^{-1}} q^{-(\deg \Phi)k} \ \Psi'(0) & \text{if } \deg \Phi = 0, 1, \\ [n]_{q^{-1}} q^{-2k-1} \Big([n+2k]_q - (1+q\Psi'(0)) \Big) & \text{if } \deg \Phi = 2 \end{cases}, n \ge 0.$$

The corresponding q-classical form $u_0^{[k]}$ fulfills

$$\textit{D}_{\textit{q}}\bigg(\Phi_{\textit{k}}\textit{u}_{0}^{[\textit{k}]}\bigg) + \Psi_{\textit{k}}\textit{u}_{0}^{[\textit{k}]} = 0$$

and $u_0^{[k]} = \zeta_k \left(\prod_{\sigma=0}^{k-1} \Phi_{\sigma}(x)\right) u_0$, where $\zeta_k \neq 0$ is such that $\left(u_0^{[k]}\right)_0 = 1$, with the convention $\zeta_0 = 1$.

(Kheriji & Maroni, 2002), (M. Ismail, 2009), (Koekoek *et al.*)

Theorem. (AFL & Zeng, 2013) Let k>0. If $\{P_n\}_{n\geq 0}$ is q-classical, then there exist Φ (monic) and Ψ with deg $\Phi\leq 2$ and deg $\Psi=1$, such that the elements of $\{P_n\}_{n\geq 0}$ are solutions of the following 2k-order q-differential equation

$$\mathcal{L}_{k;q}[y](x) := \sum_{\nu=0}^{k} \Lambda_{k,\nu}(x;q) \left(D_{q^{-1}}^{k-\nu} \circ D_{q}^{k} y \right) (q^{-\nu}x) = \Xi_{n}(k;q) y(x)$$
 (6)

with $y(x) = P_n(x)$ and where

$$\Lambda_{k,\nu}(x;q) = \begin{bmatrix} k \\ \nu \end{bmatrix}_{q^{-1}} q^{-(k-\nu)} \left(\prod_{\sigma=1}^{\nu} \chi_{\sigma}^{[k-\sigma]} \right) \left(\prod_{\sigma=0}^{k-\nu-1} \underbrace{q^{-\sigma \deg \Phi} \Phi(q^{\sigma} x)} \right) P_{\nu}^{[k-\nu]}(x)$$

for $\nu = 0, 1, \dots, k$, and

$$\Xi_n(k;q)=\prod_{\sigma=0}^{\kappa-1}\chi_{n-\sigma}^{[\sigma]},\ n\geq 0,$$

$$\text{with} \quad \chi_n^{[k]} = \left\{ \begin{array}{ll} -[n]_{q^{-1}} q^{-(\deg \Phi)k} \ \Psi'(0) & \text{if} \quad \deg \Phi = 0, 1, \\ \\ [n]_{q^{-1}} q^{-2k-1} \Big([n+2k]_q - (1+q\Psi'(0)) \, \Big) & \text{if} \quad \deg \Phi = 2 \end{array} \right.$$

Corollary. (AFL & Zeng, 2013) Let k>0. Any q-classical sequence $\{P_n\}_{n\geq 0}$, orthogonal with respect to the weight function $U_q(x)$, fulfills

$$\mathcal{L}_{k;q}[P_n](x) = \Xi_n(k;q) \ P_n(x), \ n \ge 0,$$
 (7)

where

$$\mathcal{L}_{k;q}[y](x) := q^{-k} \left(U_q(x) \right)^{-1} D_{q-1}^k \left(\left(\prod_{q=0}^{k-1} \Phi_{\sigma}(x) \right) U_q(x) \left(D_q^k y(x) \right) \right), \quad (8)$$

with

$$\Xi_n(k;q) = \prod_{\sigma=0}^{k-1} \chi_{n-\sigma}^{[\sigma]} \ , \ n \geq 0,$$

$$\text{and} \quad \chi_n^{[k]} = \left\{ \begin{array}{ll} -[n]_{q^{-1}} q^{-(\deg \Phi)k} \ \Psi'(0) & \text{if} \quad \deg \Phi = 0, 1, \\ \\ [n]_{q^{-1}} q^{-2k-1} \Big([n+2k]_q - (1+q\Psi'(0)) \Big) & \text{if} \quad \deg \Phi = 2 \end{array} \right.$$

For the cases where deg $\Phi=0,1\,...$

$$\mathcal{L}_{q}^{k}[y](x) = \left(-[n]_{q^{-1}}\Psi'(0)\right)^{k} y(x)$$

$$\mathcal{L}_{k;q}[y](x) = \left(-q^{\frac{(k-1)}{2}(1-\deg\Phi)} \Psi'(0)\right)^{k} \prod_{\sigma=0}^{k-1} \left([n]_{q^{-1}} - [\sigma]_{q^{-1}}\right) y(x)$$

whilst $deg \Phi = 2$ can be written as

$$\mathcal{L}_{q}^{k}[y](x) = \left([n]_{q^{-1}} \left([n-1]_{q} - \Psi'(0) \right) \right)^{k} y(x)$$

$$\mathcal{L}_{k;q}[y](x) = q^{-\frac{k(k+1)}{2}} \prod_{\sigma=0}^{k-1} \left([n]_{q^{-1}} (z + [n]_{q}) - [\sigma]_{q^{-1}} (z + [\sigma]_{q}) \right) y(x)$$

Theorem. The kth composite power of the operator $\mathcal{L}_q := \Phi(x)D_q \circ D_{q^{-1}} - \Psi(x)D_{q^{-1}}$ is given by

$$\mathcal{L}_{q}^{k}[f](x) = \begin{cases} \sum_{j=0}^{k} S_{q^{-1}}(k,j) \, q^{(\deg \Phi - 1) \frac{j(j-1)}{2}} \, (-\Psi'(0))^{k-j} \, \mathcal{L}_{j,q}[f](x) & \text{if} & \deg \Phi = 0, 1, \\ \sum_{j=0}^{k} J S_{k}^{j}(z; q^{-1}) \, q^{\frac{j(j+1)}{2} - k} \, \mathcal{L}_{j,q}[f](x) & \text{if} & \deg \Phi = 2, \end{cases}$$

which holds for any $f \in \mathcal{P}$, where $z = -(1 + q\Psi'(0))$.

and reciprocally

Corollary. For any polynomial $f \in \mathcal{P}$ we have

$$\mathcal{L}_{k;q}[f](x) = \begin{cases} q^{(1-\deg\Phi)\frac{k(k-1)}{2}} \sum_{j=0}^{k} c_{q^{-1}}(k,j) \left(-\Psi'(0)\right)^{k-j} \mathcal{L}_{q}^{j}[f](x) & \text{if} & \deg\Phi = 0, 1, \\ \\ \sum_{j=0}^{k} \operatorname{Jc}_{k}^{j}(z;q^{-1}) & q^{j-\frac{k(k+1)}{2}} \mathcal{L}_{q}^{j}[f](x) & \text{if} & \deg\Phi = 2. \end{cases}$$

Theorem. The *k*th composite power of the operator $\mathcal{L}_q := \Phi(x)D_q \circ D_{q^{-1}} - \Psi(x)D_{q^{-1}}$ is given by

$$\mathcal{L}_{q}^{k}[f](x) = \left\{ \begin{array}{ll} \sum_{j=0}^{k} S_{q^{-1}}(k,j) \, q^{(\deg \Phi - 1) \frac{j(j-1)}{2}} \, (-\Psi'(0))^{k-j} \, \mathcal{L}_{j;q}[f](x) & \text{if} & \deg \Phi = 0, 1, \\ \sum_{j=0}^{k} \left. \operatorname{JS}_{k}^{j}(z;q^{-1}) \, q^{\frac{j(j+1)}{2}-k} \, \mathcal{L}_{j;q}[f](x) & \text{if} & \deg \Phi = 2, \end{array} \right.$$

which holds for any $f \in \mathcal{P}$, where $z = -(1 + q\Psi'(0))$.

and reciprocally

Corollary. For any polynomial $f \in \mathcal{P}$ we have

$$\mathcal{L}_{k;q}[f](x) = \begin{cases} q^{(1-\deg\Phi)\frac{k(k-1)}{2}} \sum_{j=0}^k c_{q^{-1}}(k,j) \left(-\Psi'(0)\right)^{k-j} \mathcal{L}_q^j[f](x) & \text{if} & \deg\Phi = 0, 1, \\ \sum_{j=0}^k \left|\operatorname{Jc}_k^j(z;q^{-1})\right| q^{j-\frac{k(k+1)}{2}} \mathcal{L}_q^j[f](x) & \text{if} & \deg\Phi = 2. \end{cases}$$

The q-classical polynomials

deg Φ	q-classical MOPS			
0	Al-Salam Carlitz polynomials · Discrete q-Hermite polynomials			
1	Big q-Laguerre · q-Meixner · Wall q-polynomials q-Laguerre polynomials · Little q-Laguerre polynomials q-Charlier I polynomials			
2 (with double root)	Alternative q-Charlier polynomials · Stieltjes-Wigert q-polynomials			
2 (with 2 single roots)	Little q-Jacobi polynomials · q-Charlier II polynomials Generalized Stieltjes-Wigert q-polynomials · Big q-Jacobi Bi-generalized Stieltjes-Wigert q-polynomials			

Example 1. The monic Stieltjes-Wigert polynomials

$$P_n(x;q) = \sum_{k=0}^n \frac{(-1)^{n+k} q^{k(k+\frac{1}{2}) - n(n+\frac{1}{2})}}{(q;q)_{n-k}} x^k \quad \text{are eigenfunctions of}$$

$$\mathcal{L}_q := x^2 D_q \circ D_{q^{-1}} + (q-1)^{-1} \{x - q^{-3/2}\} D_{q^{-1}}.$$

Notice that $P_n^{[k]}(x;q) = q^{-2nk}P_n(q^{2k}x;q), n \in \mathbb{N}_0.$ When 0 < q < 1

$$\mathcal{L}_{k;q}[y](x) = q^{-k} \exp\left(\frac{\ln^2 x}{2 \ln q^{-1}}\right) D_{q^{-1}}^k \left(x^{2k} \exp\left(-\frac{\ln^2 x}{2 \ln q^{-1}}\right) \left(D_q^k y(x)\right)\right).$$

Alternatively,

$$\begin{split} \mathcal{L}_{k;q}[y](x) &= \sum_{\nu=0}^k \begin{bmatrix} k \\ \nu \end{bmatrix}_{q-1} \alpha_{k,\nu;q} x^{2k-2\nu} P_{\nu}^{[k-\nu]}(x) \bigg(D_{q-1}^{k-\nu} \circ D_q^k \ y \bigg) (q^{-\nu} x), \\ \mathcal{L}_q^k[f](x) &= \sum_{\nu=0}^k \mathrm{JS}_k^j((q-1)^{-1}; q^{-1}) \ q^{\frac{j(j+1)}{2}-k} \ \mathcal{L}_{j;q}[f](x) \ , \ \forall f \in \mathcal{P}. \end{split}$$

Example 1. The monic Stieltjes-Wigert polynomials

$$P_n(x;q) = \sum_{k=0}^n \frac{(-1)^{n+k} q^{k(k+\frac{1}{2}) - n(n+\frac{1}{2})}}{(q;q)_{n-k}} x^k \text{ are eigenfunctions of }$$

$$\mathcal{L}_q := x^2 D_q \circ D_{q-1} + (q-1)^{-1} \{x - q^{-3/2}\} D_{q-1}.$$

Notice that $P_n^{[k]}(x;q) = q^{-2nk}P_n(q^{2k}x;q), n \in \mathbb{N}_0.$ When 0 < q < 1

$$\mathcal{L}_{k;q}[y](x) = q^{-k} \exp\left(\frac{\ln^2 x}{2 \ln q^{-1}}\right) D_{q^{-1}}^k \left(x^{2k} \exp\left(-\frac{\ln^2 x}{2 \ln q^{-1}}\right) \left(D_q^k y(x)\right) \right).$$

Alternatively,

$$\mathcal{L}_{k;q}[y](x) = \sum_{\nu=0}^{k} {k \brack \nu}_{q-1} \alpha_{k,\nu;q} x^{2k-2\nu} P_{\nu}^{[k-\nu]}(x) \left(D_{q-1}^{k-\nu} \circ D_{q}^{k} \ y \right) (q^{-\nu} x),$$

$$\mathcal{L}_{q}^{k}[f](x) = \sum_{i=0}^{k} JS_{k}^{j}((q-1)^{-1}; q^{-1}) q^{\frac{j(j+1)}{2}-k} \mathcal{L}_{j;q}[f](x) , \ \forall f \in \mathcal{P}.$$

Example 2. The monic Little q-Jacobi polynomials

$$P_n(x; a, b|q) = \frac{(aq; q)_n}{(abq^{n+1}; q)_n} \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix}_q \frac{(-1)^{n-k} (abq^{n+1}; q)_k}{(aq; q)_k} q^{\binom{n-k}{2}} x^k, \ n \geqslant 0,$$

with $a,b,ab \neq q^{-(n+2)}$, for $n \geqslant 0$,

are eigenfunctions of

$$\mathcal{L}_q := x(x - b^{-1}q^{-1})D_q \circ D_{q^{-1}} - \left((abq^2(q-1))^{-1} \{ (1 - abq^2)x + aq - 1 \} \right) D_{q^{-1}}$$

as well as of

$$\mathcal{L}_{k;q}[y](x) = \sum_{\nu=0}^{k} {k \brack \nu}_{q-1} \alpha_{k,\nu;q} \left(\prod_{\sigma=0}^{k-1} x(x-b^{-1}q^{-(\sigma+1)}) \right) P_{\nu}^{[k-\nu]}(x) \left(D_{q-1}^{k-\nu} \circ D_{q}^{k} y \right) (q^{-\nu}x)$$

with

$$\alpha_{k,\nu:q} = q^{-(k-\nu)} \left(\prod_{j=1}^{\nu} [\sigma]_{q-1} q^{-2k+\sigma} \left([2k-\sigma]_q + \frac{1}{q-1} \left(1 - (abq)^{-1} \right) \right) \right).$$

Notice that $P_n^{[k]}(x; a, b|q) = P_n(x; aq^k, bq^k|q), \quad n \in \mathbb{N}_0.$

Example 2. Little *q*-Jacobi polynomials (cont.)

In particular, when 0 < q < 1, $b \in]-\infty, 1[-\{0\} \text{ and } a := q^{\alpha-1} \text{ with } \alpha > 0$,

$$\begin{split} &\mathcal{L}_{k;q}[y](x) \\ &= q^{-k} \big(x^{\alpha-1} \frac{(qx;q)_{\infty}}{(bqx;q)_{\infty}} \big)^{-1} D_{q^{-1}}^{k} \Big(\left(\prod_{\sigma=0}^{k-1} x(x-b^{-1}q^{-(\sigma+1)}) \right) \, x^{\alpha-1} \frac{(qx;q)_{\infty}}{(bqx;q)_{\infty}} \big(D_{q}^{k}y(x) \big) \Big) \; . \end{split}$$

In any case, we always have

$$\mathcal{L}_{q}^{k}[f](x) = \sum_{j=0}^{k} JS_{k}^{j}(z; q^{-1}) q^{\frac{j(j+1)}{2}-k} \mathcal{L}_{j;q}[f](x),$$

where $z = -(1 + q\Psi'(0)) = \frac{1}{q-1} (1 - (abq)^{-1})$.

Example 2. Little *q*-Jacobi polynomials (cont.)

In particular, when 0 < q < 1, $b \in]-\infty,1[-\{0\}]$ and $a := q^{\alpha-1}$ with $\alpha > 0$,

$$\begin{split} &\mathcal{L}_{k;q}[y](x) \\ &= q^{-k} \big(x^{\alpha-1} \frac{(qx;q)_{\infty}}{(bqx;q)_{\infty}} \big)^{-1} D_{q^{-1}}^{k} \Big(\left(\prod_{k=1}^{k-1} x(x-b^{-1}q^{-(\sigma+1)}) \right) x^{\alpha-1} \frac{(qx;q)_{\infty}}{(bqx;q)_{\infty}} (D_{q}^{k}y(x)) \Big) \; . \end{split}$$

In any case, we always have

$$\mathcal{L}_{q}^{k}[f](x) = \sum_{i=0}^{k} JS_{k}^{j}(z; q^{-1}) q^{\frac{j(j+1)}{2}-k} \mathcal{L}_{j;q}[f](x),$$

where
$$z = -(1 + q\Psi'(0)) = \frac{1}{q-1} (1 - (abq)^{-1}).$$

q-Jacobi Stirling numbers

$$\left\{ \prod_{i=0}^{n-1} \left(x - [i]_q \left(z + [i]_{q-1} \right) \right) \right\}_{n \ge 0} \qquad \{x^n\}_{n \ge 0}$$

Definition.

$$\prod_{i=0}^{n-1} (x - [i]_q (z + [i]_{q-1})) = \sum_{k=0}^n (-1)^{n-k} \operatorname{Jc}_n^k(z; q) \times^k, \ n \geqslant 0.$$

$$x^n = \sum_{k=0}^n \operatorname{JS}_n^k(z; q) \prod_{i=0}^{k-1} (x - [i]_q (z + [i]_{q-1})), \ n \geqslant 0.$$

They satisfy the triangular relations

$$\begin{split} & \operatorname{Jc}_{n+1}^{k+1}(z;q) = \operatorname{Jc}_{n}^{k}(z;q) + [n]_{q} \Big(z + [n]_{q^{-1}}\Big) \operatorname{Jc}_{n}^{k+1}(z;q), \ 0 \leq k \leq n, \\ & \operatorname{JS}_{n+1}^{k+1}(z;q) = \operatorname{JS}_{n}^{k}(z;q)) + [k+1]_{q} \Big(z + [k+1]_{q^{-1}}\Big) \operatorname{JS}_{n}^{k+1}(z;q), \ 0 \leq k \leq n, \\ & \text{with } \operatorname{Jc}_{n}^{k}(z;q) = \operatorname{JS}_{n}^{k}(z;q) = 0, \quad \text{if } k \notin \{1,\ldots,n\}, \text{ and } \\ & \operatorname{c}_{0}^{0}(z;q) = \operatorname{JS}_{0}^{0}(z;q) = 1, \ n \geq 0. \end{split}$$

q-Jacobi Stirling numbers

$$\left\{ \prod_{i=0}^{n-1} \left(x - [i]_q \left(z + [i]_{q-1} \right) \right) \right\}_{n \ge 0} \qquad \{ x^n \}_{n \ge 0}$$

Definition.

$$\prod_{i=0}^{n-1} (x - [i]_q (z + [i]_{q-1})) = \sum_{k=0}^n (-1)^{n-k} \operatorname{Jc}_n^k (z; q) x^k, \ n \ge 0,$$

$$x^n = \sum_{k=0}^n \operatorname{JS}_n^k (z; q) \prod_{i=0}^{k-1} (x - [i]_q (z + [i]_{q-1})), \ n \ge 0.$$

They satisfy the triangular relations

$$\begin{split} & \operatorname{Jc}_{n+1}^{k+1}(z;q) = \operatorname{Jc}_{n}^{k}(z;q) + [n]_{q} \Big(z + [n]_{q^{-1}}\Big) \operatorname{Jc}_{n}^{k+1}(z;q), \ 0 \leq k \leq n, \\ & \operatorname{JS}_{n+1}^{k+1}(z;q) = \operatorname{JS}_{n}^{k}(z;q)) + [k+1]_{q} \Big(z + [k+1]_{q^{-1}}\Big) \operatorname{JS}_{n}^{k+1}(z;q), \ 0 \leq k \leq n, \\ & \text{with } \operatorname{Jc}_{n}^{k}(z;q) = \operatorname{JS}_{n}^{k}(z;q) = 0, \quad \text{if } k \notin \{1,\ldots,n\}, \text{ and } \\ & \operatorname{c}_{0}^{0}(z;q) = \operatorname{JS}_{0}^{0}(z;q) = 1, \ n \geq 0. \end{split}$$

q-Jacobi Stirling numbers

$$\left\{ \prod_{i=0}^{n-1} \left(x - [i]_q \left(z + [i]_{q-1} \right) \right) \right\}_{n \ge 0} \qquad (x^n)_{n \ge 0}$$

Definition.

$$\prod_{i=0}^{n-1} (x - [i]_q (z + [i]_{q-1})) = \sum_{k=0}^n (-1)^{n-k} \frac{\operatorname{Jc}_n^k(z;q)}{\operatorname{Jc}_n^k(z;q)} x^k, \ n \ge 0,$$

$$x^n = \sum_{k=0}^n \frac{\operatorname{JS}_n^k(z;q)}{\operatorname{JS}_n^k(z;q)} \prod_{i=0}^{k-1} (x - [i]_q (z + [i]_{q-1})), \ n \ge 0.$$

They satisfy the triangular relations

$$\begin{split} &\mathsf{Jc}_{n+1}^{k+1}(z;q) = \mathsf{Jc}_{n}^{k}(z;q) + [n]_{q}\Big(z + [n]_{q^{-1}}\Big)\mathsf{Jc}_{n}^{k+1}(z;q), \ 0 \leq k \leq n, \\ &\mathsf{JS}_{n+1}^{k+1}(z;q) = \mathsf{JS}_{n}^{k}(z;q)) + [k+1]_{q}\Big(z + [k+1]_{q^{-1}}\Big)\mathsf{JS}_{n}^{k+1}(z;q), \ 0 \leq k \leq n, \\ &\mathsf{with} \ \mathsf{Jc}_{n}^{k}(z;q) = \mathsf{JS}_{n}^{k}(z;q) = 0, \ \ \mathsf{if} \ k \notin \{1,\dots,n\}, \ \mathsf{and} \\ &\mathsf{Jc}_{0}^{0}(z;q) = \mathsf{JS}_{0}^{0}(z;q) = 1, \ n \geq 0. \end{split}$$

First q-Jacobi-Stirling numbers

Some value of the q-Jacobi-Stirling numbers of first kind are as follows :

$$\operatorname{Jc}_{n}^{1}(z;q) = \prod_{k=1}^{n-1} [k]_{q}(z + [k]_{q^{-1}}), \quad \operatorname{Jc}_{n}^{(n)}(z,q) = 1,$$

$$\operatorname{Jc}_{3}^{2}(z;q) = (3 + q + q^{-1}) + (2 + q)z,$$

$$\operatorname{Jc}_{4}^{2}(z;q) = (q^{-3} + 5 q^{-2} + 11 q^{-1} + q^{3} + 11 q + 5 q^{2} + 15)$$

$$+ \left(2 q^{3} + 14 q + 8 q^{2} + 2 q^{-2} + 7 q^{-1} + 15\right) z + \left(4 q + q^{3} + 3 + 3 q^{2}\right) z^{2},$$

$$\operatorname{Jc}_{4}^{3}(z;q) = \left(3 q^{-1} + 6 + q^{2} + 3 q + q^{-2}\right) + \left(3 + 2 q + q^{2}\right) z.$$

Some values of the q-Jacobi-Stirling numbers of second kind are as follows:

$$JS_n^1(z;q) = (1+z)^{n-1}, \quad JS_n^{(n)}(z;q) = 1,$$

$$JS_3^2(z;q) = (3+q+q^{-1}) + (2+q)z,$$

$$JS_4^2(z;q) = (9+q^{-2}+q^2+5q+5q^{-1}) + (11+3q^{-1}+2q^2+8q)z + (3q+3+q^2)z$$

Other properties of the q-Jacobi-Stirling numbers

$$\mathsf{JS}_n^j(z;q) = \sum_{r=0}^j (-1)^{j-r} \frac{q^{-\binom{r}{2}-r(j-r)} \big([r]_q ([r]_{q^{-1}}+z) \big)^n}{[r]_q![j-r]_q! \prod\limits_{0 \leq k \leq j, \ k \neq r} (z+[k+r]_{q^{-1}})}.$$

and

$$\prod_{i=1}^{k} \frac{x}{1 - [i]_q([i]_{q^{-1}} + z)x} = \sum_{n \ge k} \mathsf{JS}_n^k(z; q) x^n.$$

Theorem. Let n, k be positive integers with $n \ge k$. The Jacobi-Stirling numbers $\mathrm{JS}_n^k(z,q)$ and $\mathrm{Jc}_n^k(z,q)$ are polynomials in z of degree n-k with coefficients in $\mathbb{N}[q,q^{-1}]$. Moreover, if

$$JS_{n}^{k}(z;q) = a_{n,k}^{(0)}(q) + a_{n,k}^{(1)}(q)z + \dots + a_{n,k}^{(n-k)}(q)z^{n-k},$$

$$Jc_{n}^{k}(z;q) = b_{n,k}^{(0)}(q) + b_{n,k}^{(1)}(q)z + \dots + b_{n,k}^{(n-k)}(q)z^{n-k},$$

then

$$a_{n,k}^{(n-k)} = S_q(n,k), \quad b_{n,k}^{(n-k)} = c_q(n,k).$$

Other properties of the q-Jacobi-Stirling numbers

$$\mathsf{JS}_n^j(z;q) = \sum_{r=0}^j (-1)^{j-r} \frac{q^{-\binom{r}{2}-r(j-r)} \big([r]_q ([r]_{q^{-1}}+z) \big)^n}{[r]_q! [j-r]_q!} \prod_{0 \le k \le j, \ k \ne r} (z+[k+r]_{q^{-1}}).$$

and

$$\prod_{i=1}^{k} \frac{x}{1 - [i]_q([i]_{q-1} + z)x} = \sum_{n \ge k} \mathsf{JS}_n^k(z; q) x^n.$$

Theorem. Let n, k be positive integers with $n \ge k$. The Jacobi-Stirling numbers $\mathrm{JS}_n^k(z,q)$ and $\mathrm{Jc}_n^k(z,q)$ are polynomials in z of degree n-k with coefficients in $\mathbb{N}[q,q^{-1}]$. Moreover, if

$$JS_{n}^{k}(z;q) = a_{n,k}^{(0)}(q) + a_{n,k}^{(1)}(q)z + \dots + a_{n,k}^{(n-k)}(q)z^{n-k},$$

$$Jc_{n}^{k}(z;q) = b_{n,k}^{(0)}(q) + b_{n,k}^{(1)}(q)z + \dots + b_{n,k}^{(n-k)}(q)z^{n-k},$$

then

$$a_{n,k}^{(n-k)} = S_q(n,k), \quad b_{n,k}^{(n-k)} = c_q(n,k).$$

Combinatorial interpretation of the *q*-Jacobi-Stirling numbers

Let
$$[n]_2 = \{1_1, 1_2, \dots, n_1, n_2\}.$$

Definition. A Jacobi-Stirling k-partition of $[n]_2$ is a partition of $[n]_2$ into k+1 subsets $B_0, B_1, \ldots B_k$ of $[n]_2$ satisfying the following conditions :

- 1. there is a zero block B_0 , which may be empty and cannot contain both copies of any $i \in [n]$,
- ∀j ∈ [k], each nonzero block B_j is not empty and contains the two copies of its smallest element and does not contain both copies of any other number.

Example.

- $\pi=\{\{2_2,5_1\}_0,\{1_1,1_2,2_1\},\{3_1,3_2,4_2\},\{4_1,5_2\}\} \text{ is$ **not** $a Jacobi-Stirling 3-partition of [5]}_2,$
- $\qquad \qquad \pi' = \{\{2_2,5_1\}_0,\{1_1,1_2,2_1\},\{3_1,3_2\},\{4_1,4_2,5_2\}\} \text{ is a Jacobi-Stirling 3-partition of } [5]_2.$

We order the blocks of a partition in increasing order of their minimal elements. By convention, the zero block is at the first position.

Combinatorial interpretation of the q-Jacobi-Stirling numbers (cont.)

Definition.

- An inversion of type 1 of π is a pair (b_1, B_j) , where $b_1 \in B_i$ for some i $(1 \le i < j)$ and $b_1 > c_1$ for some $c_1 \in B_j$.
- An inversion of type 2 of π is a pair (b_2, B_j) , where $b_2 \in B_i$ for some i $(0 \le i < j)$ and $b_2 > c_2$ for some $c_2 \in B_j$ and $b_1 \notin B_j$, where a_i means integer a with subscript i = 1, 2.
- Let $\operatorname{inv}_i(\pi)$ be the number of inversions of π of type i=1,2 and set $\operatorname{inv}(\pi)=\operatorname{inv}_2(\pi)-\operatorname{inv}_1(\pi)$.

Let $\Pi(n, k, i)$ denote the set of Jacobi-Stirling k-partitions of $[n]_2$ such that the zero-block contains i numbers with subscript 1.

Theorem. For any positive integers n and k and $0 \le i \le n - k$ we have

$$a_{n,k}^{(i)}(q) = \sum_{\pi \in \Pi(n,k,i)} q^{\operatorname{inv}(\pi)},$$

where

$$JS_n^k(z;q) = a_{n,k}^{(0)}(q) + a_{n,k}^{(1)}(q)z + \cdots + a_{n,k}^{(n-k)}(q)z^{n-k},$$

Combinatorial interpretation of the *q*-Jacobi-Stirling numbers (cont.)

Example.

JS 2-partitions of [3] ₂	inv_1	inv ₂	inv
$\{\}_0, \{1_1, 1_2, 3_2\}, \{2_1, 2_2, 3_1\}$	0	0	0
$\{\}_0, \{1_1, 1_2, 3_1\}, \{2_1, 2_2, 3_2\}$	1	0	-1
${3_2}_0, {1_1, 1_2, 3_1}, {2_1, 2_2}$	1	1	0
$\{3_2\}_0, \{1_1, 1_2\}, \{2_1, 2_2, 3_1\}$	0	1	1
$\{2_2\}_0, \{1_1, 1_2, 2_1\}, \{3_1, 3_2\}$	0	0	0
$\{2_1\}_0, \{1_1, 1_2, 2_2\}, \{3_1, 3_2\}$	0	0	0
$\{3_1\}_0, \{1_1, 1_2, 3_2\}, \{2_1, 2_2\}$	0	1	1
$\{3_1\}_0, \{1_1, 1_2\}, \{2_1, 2_2, 3_2\}$	0	0	0

Thus,
$$\sum_{\pi \in \Pi(3,2,0)} q^{\mathrm{inv}(\pi)} = 3 + q + q^{-1}$$
 and $\sum_{\pi \in \Pi(3,2,1)} q^{\mathrm{inv}(\pi)} = 2 + q$.

Combinatorial interpretation of the *q*-Jacobi-Stirling numbers (1st kind)

```
For a permutation \sigma of [n] and for j \in [n].
 Let \operatorname{Orb}_{\sigma}(j) := \{\sigma^{\ell}(j) : \ell \geq 1\} the orbit of j and
 Let \min(\sigma) = \{j \in [n] : j = \min(\operatorname{Orb}_{\sigma}(j) \cap [n])\} (set of its positive cyclic minima)
```

Definition. Given a word $w = w(1) \dots w(\ell)$ on the finite alphabet [n], a letter w(j) is a *record* of w if w(k) > w(j) for every $k \in \{1, \dots, j-1\}$. By $\operatorname{rec}(w)$ we mean the number of records of w and $\operatorname{rec}_0(w) = \operatorname{rec}(w) - 1$.

Example. If w = 574862319, then the records are 5, 4, 2, 1 and rec(w) = 4.

Definition. Let $\mathcal{P}(n,k,i)$ be the set of all pairs (σ,τ) such that σ is a permutation of $[n]_0$, τ is a permutation of [n], both having k cycles and such that

- i) 1 and 0 are in the same cycle in σ ;
- ii) among their nonzero entries, σ and τ have the same cycle minima;
- iii) $rec_0(w) = i$, where $w = \sigma(0)\sigma^2(0)...\sigma^l(0)$ with $\sigma^{l+1}(0) = 0$.

Combinatorial interpretation of the *q*-Jacobi-Stirling numbers (1st kind)

For a permutation $\sigma = \sigma(1)\sigma(2)\cdots\sigma(n)$ of [n] and each $i=1,2,\ldots,n$, let k:=k(i) be the smallest integer $k\geq 1$ such that $\sigma^{-k}(i)\leq i$.

Let B-code(
$$\sigma$$
) := (b_1, b_2, \dots, b_n) with $b_i := \sigma^{-k(i)}(i)$ $(1 \le i \le n)$..

$$Sor(\sigma) = \sum_{i=1}^{n} (i - b_i)$$
, : the sorting index for permutation σ of $[n]$

$$\mathsf{Sor}_0(\sigma) = \sum_{i=1}^n (i - b_i')$$
, : the modified sorting index for a permutation σ of $[n]_0$

Here,
$$b'_i = b_i$$
 if $\sigma^{-1}(i) \neq 0$ and $b'_i = i$ if $\sigma^{-1}(i) = 0$.

Finally, for any pair (σ, τ) in $\mathcal{P}(n, k, i)$ we define the statistic

$$Sor(\sigma, \tau) = Sor(\tau) - Sor_0(\sigma).$$

Theorem. We have $b_{n,k}^{(i)}(q) = \sum_{(\sigma,\tau) \in \mathcal{P}(n,k,i)} q^{\mathsf{Sor}(\sigma,\tau)}$. where

$$\operatorname{Jc}_{n}^{k}(z;q) = b_{n,k}^{(0)}(q) + b_{n,k}^{(1)}(q)z + \cdots + b_{n,k}^{(n-k)}(q)z^{n-k}$$

Combinatorial interpretation of the q-Jacobi-Stirling numbers 1st kind (cont.)

Example.

(σ, τ)	$rec_0(\sigma)$	B_0 -code σ	B-code $ au$	Sor(au)	$Sor_0(\sigma)$	$Sor(\sigma, au)$
(01)(23), (1)(23)	0	(1,2,2)	(1,2,2)	1	1	0
(01)(23), (13)(2)	0	(1,2,2)	(1,2,1)	2	1	1
(012)(3), (12)(3)	0	(1,1,3)	(1,1,3)	1	1	0
(013)(2), (13)(2)	0	(1,2,1)	(1,2,1)	2	2	0
(013))(2), (1)(23)	0	(1,2,1)	(1,2,2)	1	2	-1
(031)(2), (1)(23)	1	(0,2,3)	(1,2,2)	1	1	0
(0 3 1)(2), (1)(23)	1	(0,2,3)	(1,1,3)	1	1	0
(021)(3), (1)(23)	1	(0,2,3)	(1,2,1)	2	1	1

Thus,

$$\sum_{(\sigma,\tau)\in\mathcal{P}(3,2,0)}q^{\operatorname{Sor}(\sigma,\tau)}=3+q+q^{-1},\quad \sum_{(\sigma,\tau)\in\mathcal{P}(3,2,1)}q^{\operatorname{Sor}(\sigma,\tau)}=2+q.$$

Symmetric generalisation of Jacobi-Stirling numbers

Consider the pair of connection coefficients $\{(S_{z,w}(n,k), s_{z,w}(n,k))\}_{n\geq k\geq 0}$ satisfying

$$x^{n} = \sum_{k=0}^{n} S_{z,w}(n,k) \prod_{i=0}^{k-1} (x - (i+z)(i+w)),$$
 (9)

$$\prod_{i=0}^{n-1} (x - (i+z)(i+w)) = \sum_{k=0}^{n} s_{z,w}(n,k) x^{k}.$$
 (10)

It is readily seen that we have the following recurrence relation

$$S_{z,w}(n+1,k+1) = S_{z,w}(n,k) + (z+k+1)(w+k+1)S_{z,w}(n,k+1), (11)$$

$$s_{z,w}(n+1,k+1) = s_{z,w}(n,k) - (z+n)(w+n)s_{z,w}(n,k+1),$$
 (12)

with
$$S_{z,w}(n,k) = s_{z,w}(n,k) = 0$$
, if $k \notin \{1,\ldots,n\}$, and $S_{z,w}(0,0) = s_{z,w}(0,0) = 1$, $n \ge 0$.

Symmetric generalisation of Jacobi-Stirling numbers

Definition. A double signed k-partition of $[n]_2 = \{1_1, 1_2, \dots, n_1, n_2\}$ is a partition of $[n]_2$ into k + 2 subsets $(B_0, B'_0, B_1, \dots, B_k)$ such that

- 1. there are two distinguishable zero blocks B_0 and B_0' , any of which may be empty;
- 2. there are *k* indistinguishable nonzero blocks, all nonempty, each of which contains both copies of its smallest element and does not contain both copies of any other number;
- 3. each zero block does not contain both copies of any number and B_0' may contain only numbers with subscript 2.

 $\Pi(n,k)$: the set of double signed k-partitions of $[n]_2$ $s(\pi)$ with $\pi \in \Pi(n,k)$: the number of integers with subscript 1 in B_0 of π . $t(\pi)$ with $\pi \in \Pi(n,k)$: the number of integers with subscript 2 in B_0' of π .

Theorem. The polynomial $S_{z,w}(n,k)$ is the enumerative polynomial of $\Pi(n,k)$ with z enumerating the numbers with subscript 1 in B_0 and w enumerating the numbers with subscript 2 in B'_0 , i.e.,

$$S_{z,w}(n,k) = \sum_{\pi \in \Pi(n,k)} z^{s(\pi)} w^{t(\pi)}.$$