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A Monic Orthogonal Polynomial Sequence (MOPS) {P}n>0 is defined by
(U0, PaPi) = Nnbpx , with N, # 0.

where wg is the first element of the corresponding dual sequence.
» In this case up is said to be regular.

» {Pn}n>0 the second order recurrence relation

Pni1(x) = (x = Ba) Pa(x) — ¥nPn-1(x)
with Po =1and P_.; =0 and

<u07XP3> and <u07 P3+1>

br= (uo, P?) = (uo, P3)

#0,neN



in this case...

the Hankel determinant

An(up) = det [(”0)i+j]o<i,jg,, #0, n>0,

and

with (uo)k =< uo,xk >,

(UO)nfl (UO)n
(uo0)n (o) nt1
5 SN NE
(UOZZ_n;Q (Uo)infl



Classical polynomials
Theorem. For any MOPS {P,},>0 the following statements are equivalent.

(a) {Pn}n>o is classical , i.e., {P,[,l](x) = LDPHH(X)} . is a MOPS.
n=0

n+1
(Hahn, 1937)
(b) There exists a pair of polynomials (®, W), with ® monic, deg ® < 2,
deg W =1, and such that

Ed

D(‘DUo) + Wy =0
(c) There exists a pair of polynomials (®, W) such that {P,},>0 satisfies
L[P](x) = xnPa(x) , n>1, with L := ®(x)D> — W(x)D,
with x, # 0 given by
— W’ (0) if degd=0,1
Xn = , n>0. (l)
n(n—1—WV'(0)) if degd=2
(Bochner, 1929)

(d) There is a monic polynomial ® with deg ® < 2 and a sequence of nonzero
numbers {¥,}n>0 such that

Pouo = 19,,D”((¢(x))n uo) , n>0. (2)



g-Classical Polynomials

Definition. A MOPS {P,}n>0 is g-classical iff

My .— 1
{PRI(x) = fmgy DoPosa () oo
is also a MOPS. (Hahn, 1949)
Here, g # 0 and |q| # 1,
_ flex) —f(x) .
(qu)(x) = =X if x#0,

(Dqf)(0) := £'(0)

and

[8]q =



g-Classical polynomials
Theorem. For any MOPS {P,},>0 the following statements are equivalent.

(a) {Pn}nxo is g-classical
(b) There exists a pair of polynomials (®, W), with ® monic, deg ® < 2,
deg W =1, and such that

Dy(®Puo) + Vuo =0
(c) There exists a pair of polynomials (®, W) such that {P,},>0 satisfies
Lq[Pa](x) = XnPa(x) , n>1, with Lg:=®(x)Dgo D, 1 — W(x)Dy1,
with x, # 0 given by
—[nly1¥(0) it deg® = 0,1
oo { [n]g-1 ([n—1]g —W'(0)) if degd =2

(d) There is a monic polynomial ® with deg ® < 2 and a sequence of nonzero
numbers {¥,}n>0 such that

n—1

Pruo = ﬁan(<H q_gdew‘b(qu)) uo) , n>0. (4)
o=0



Corollary. For each integer k > 0, if {Pa}n>0 is g-classical, then so is
{P,[,k](x) = Dk Pyik(x)}n>0 and we have

["+1 qlk
@)Dy 0 Dy (PHI(x)) = Wil)D, - (PRI =PI L n =0, (5)

where
04 = a0 0(q ), i) = a5 (V1) - e (D))
and
—[n],-1q =)k w'(0) if deg®=0,1,

= ., n>0.
[ly-1q 2" ([n 2K — (14 qw’(O))) it deg® =2



Corollary. For each integer k > 0, if {Pa}n>0 is g-classical, then so is
{P,[,k](x) = Dk Pyik(x)}n>0 and we have

["+1 qlk
@)Dy 0 Dy (PHI(x)) = Wil)D, - (PRI =PI L n =0, (5)

where
04 = a0 0(q ), i) = a5 (V1) - e (D))
and
—[n],-1q =)k w'(0) if deg®=0,1,

= ., n>0.
[ly-1q 2" ([n 2K — (14 q\U’(O))) it deg® =2

The corresponding g-classical form u([)k] fulfills

Dy (¢kugkl) + W =0

k—1
and ol = ¢, (H ¢g(x)) w, where (¢ # 0 is such that ( [”)0 — 1, with
o=0

the convention (o =1.
(Kheriji & Maroni, 2002), (M. Ismail, 2009), (Koekoek et al.)



Theorem. (AFL & Zeng, 2013) Let k > 0. If {P,}n>0 is g-classical, then there
exist ® (monic) and W with deg® < 2 and deg W = 1, such that the elements
of {P,}n>0 are solutions of the following 2k-order g-differential equation

Loal10) = 3" Al (Do Dsy) (a0 = =kl vt (6)

v=0

with y(x) = Pa(x) and where

k—v—1
Meo(x; ) = M (H ) (T a7 e(a7x)) PE ()
q— o=0 —/_/
®5(x)
forv =0,1,...,k, and
Hx[n"]a , n>0,
—[n]g-1q~ =% W(0) if deg® =0,1,

with X[k] =

[]y-1q 2 ([n 2Kl — (1+ q\U’(O))) if deg® =2



Higher order g-differential equations

Corollary. (AFL & Zeng, 2013) Let k > 0. Any g-classical sequence {P,}s>0 ,
orthogonal with respect to the weight function Ug(x), fulfills

Li:q[Pn](x) = Za(k; q) Pa(x), n >0, (M

where

Lialy1(x) = a7 (Ug(x)) Dk-l((ch %)) Uax)(Dy(x))),  (8)

with
H X,
~[n]y-1g~ ek w'(0) if deg®=0,1,
and XLk] =
[n],-1q 2 ([n 2Kl — (1+ q\ll'(O))) if deg® =2



Higher order g-differential equations

For the cases where deg® =10,1 ...

k

L) = (1l V) v

bl = (~a 0= v @) ] (0, )0
whilst deg ® = 2 can be written as
O (Y (RS W'(O)))k y()

k(k+1) b=

Laly](x) g = ]I ([n]q—1 (z+[nlg) = [o]g-2(z + [U]q)> y(x)

o=0



Higher order g-differential equations

Theorem. The kth composite power of the operator
Lq:=®(x)Dg 0 Dy—1 — W(x)D,-1 is given by

k
qu 7(/(‘/) (deg ®— 1)
Jj=0

k
Z I (z:a7Y) ¢ Ll f](x) it deg® =2,

( W (0)) Ljg[fl(x) if degd=0,1,
LY[F(x) =

which holds for any f € P, where z = —(1 + q¥’(0)).



Higher order g-differential equations

Theorem. The kth composite power of the operator
Lq:=®(x)Dg 0 Dy—1 — W(x)D,-1 is given by

k
qu 7(/(‘/) (deg ®— 1)
Jj=0

k
Z I (z:a7Y) ¢ Ll f](x) it deg® =2,

( W (0)) Ljg[fl(x) if degd=0,1,
LY[F(x) =

which holds for any f € P, where z = —(1 + q¥’(0)).
and reciprocally

Corollary. For any polynomial f € P we have

Gt 9 Zc,‘ k) (~W(0) 7 Li[f](x) if deg® =0,1,

Ek;q[f](x) = k
L{,[f](x) if degd =2.

j=0



The g-classical polynomials

deg ® g-classical MOPS
0 Al-Salam Carlitz polynomials - Discrete g-Hermite polynomials
Big g-Laguerre - g-Meixner - Wall g-polynomials
1

2 (with double root)

2 (with 2 single roots)

g-Laguerre polynomials - Little g-Laguerre polynomials
g-Charlier | polynomials

Alternative g-Charlier polynomials - Stieltjes-Wigert g-
polynomials

Little g-Jacobi polynomials - g-Charlier Il polynomials
Generalized Stieltjes-Wigert g-polynomials - Big g-Jacobi
Bi-generalized Stieltjes-Wigert g-polynomials




Example 1. The monic Stieltjes-Wigert polynomials

(-1) ntk k(k+ —n(n+3) .
Z ( x" are eigenfunctions of
q; qQ)n—k

Lq:=x"DgoDy1+(q—1)"{x— g *?}D

Notice that P} (x; q) = g 2™ Pa(q%*x; q), n € No.
When 0 < g<1

Lralyl(x) = g *exp ( '“22) Dj (% exp (—'—X) (Dhy(x))) -

2Ing 2Ilng

Alternatively,

k
Lualy)(x Z[ } ﬂak,u:qx“*"PL”](x)(D::foDé y)(q*”x»

v=0



Example 1. The monic Stieltjes-Wigert polynomials

(-1) ntk k(k+ —n(n+3) .
Z ( x" are eigenfunctions of
q; qQ)n—k

Lq:=x"DgoDy1+(q—1)"{x— g *?}D

Notice that P} (x; q) = g 2™ Pa(q%*x; q), n € No.
When 0 < g<1

Lralyl(x) = g *exp ( '“22) Dj (% exp (—'—X) (Dhy(x))) -

2Ing 2Ilng

Alternatively,

k

Licqly)(x Z[ } Aak,u:qx“*z"PL“”l(x)(DS:foDs y)(q*”x»

v=0

1

LATF(x) = ZJS (=15 a ") g ™ Liglfi(x) , VFf € P.



Example 2. The monic Little g-Jacobi polynomials

Pn(X;a,b|q) — (aq q q) Z |: :| )" k(abqn+l q)k (n2k) k n> 0’

abqn+1 aq q)

with a, b,ab # q~ "2 for n > 0,
are eigenfunctions of
Lg:= X(X—b_lq_l)DqODq—l— ((aqu(q —1)) (1 — abg®’)x + aq — 1}) D,

as well as of

Liqly](x Xk: [ } B QK Vq<kl_[1x (x— b lg™ o+1)))p[k u]( )(D::f'oD: y) (")
with
Qg = qi(kﬂ/) (ﬁ[g]qfl ‘772”0 ([2k —olqg+ ﬁ (1 — (abq)fl) ))

o=1

Notice that PY(x; a, b|q) = Pa(x; aq", bg*|q), n € No.



Example 2. Little g-Jacobi polynomials (cont.)

In particular, when 0 < g < 1, b €] — 00, 1[—{0} and a := ¢*~* with a > 0,
Lialyl(x)

k(. a-1 (qx;q)oo -1~k — —1_—(o+1 a—1 (qX;Q)oo k
=q " (x m) qul( (L[OX(X—b q +))) x W(DqY(X)))-



Example 2. Little g-Jacobi polynomials (cont.)

In particular, when 0 < g < 1, b €] — 00, 1[—{0} and a := ¢*~* with a > 0,
Lialyl(x)

— q_k(xa*%)*lq’}l( (:I:I:X(X_ b—lq—(a+1))) Xa—l%wgy(x))) )

(bgx; q) oo

In any case, we always have

£1A0) = 3981z g ) a5 2yl

j=0
L

where z = —(1+ qV’'(0)) = -1 (1 — (abg) ™).



g-Jacobi Stirling numbers

i=0

{H (x = [ilq(z+ [i]q1))} {x"} om0



g-Jacobi Stirling numbers

i=0

{H (x = [ilq(z+ [i]q1))} {x"} om0

Definition.

n—1

1] (x=[la(z + [14-1) Z( 1)" % Jck(z;:q) x*, n>0,

i=0

x" —Z JSK(z; q) H (x = [1q(z +[i]g-1)), n>0.



g-Jacobi Stirling numbers

i=0

{H (x = [ilq(z+ [i]q1))} {x"} om0

Definition.

|
AN

n

(x = [1la(z + [1lg-1)) Z(l"k z:q) x*, n>0,

I
o

x":z JSK(z; q) I:I (x = [1q(z +[i]g-1)), n>0.
k=0 i=0

They satisfy the triangular relations

I (z; q) = JK(z: q) + [n]q(z + [n]qfl)Jcﬁ“(z; q), 0 < k <n,
ISETH(zi0) = ISK(z: @) + [k + g (2 + [k + 12 ) IS5 (z09), 0 < k<,

with Jck(z; q) = JSk(z;q) =0, if k¢ {1,...,n}, and
JS(z;9) = JS3(z;9) =1, n> 0.



First g-Jacobi-Stirling numbers

Some value of the g-Jacobi-Stirling numbers of first kind are as follows :

Jen(ziq) = [[Kla(z + [Klg-1),  Jei”(z,q) = 1,
k=1

J3(ziq) = 3+ q+q )+ (2+q)z,

Jei(z;9) = (g +5q > +11g '+ ¢°+119g+54° + 15)
+ (2q3+14q+8q2+2q*2+7q*1 + 15>z+ (4q+q3+3—|—3q2) 2

Jei(ziq)= (3¢ +6+¢ +3q+q °) +(3+29+q)z

Some values of the g-Jacobi-Stirling numbers of second kind are as follows :

ISHziq) =1+ 2)"", ISz q) =1,

JSi(z9) =3+ q+q )+ (2+9)z,

JSH(z,9) =94+ g °+q +59+5q )+ (11439 ' +29° +8q)z+ (3¢ + 3+ ¢°)z



Other properties of the g-Jacobi-Stirling numbers

, j - f(é)frufﬂ([r] ([g-1 +2))"
i _ e q q q
ISi(ziq) = ZOZ(—” Al — s 1t [kt rlg)
= 0<k<j, k#r



Other properties of the g-Jacobi-Stirling numbers

‘ i g O (s + 2))
; - B iy q q9 q
15z a) _rzo(_l) [a!li—rlet T (z+[k+rlg-1)
= 0<k<j, kstr

and

k

1_[1—[, (o + 2)x =2_ISi(zia)x

n>k

Theorem. Let n, k be positive integers with n > k. The Jacobi-Stirling
numbers JS(z, q) and Jck(z, q) are polynomials in z of degree n — k with
coefficients in N[g, g~']. Moreover, if

—k

ISK(ziq) = a4(q) + alk(@)z + - + & P (g)2"7F,
Jeh(ziq) = bW (q) + b U(g)z + -+ b (q)2" K,

then
3 = Sa(n k), B = co(n, k).



Combinatorial interpretation of the g-Jacobi-Stirling numbers

Let [n]2 = {11,12, ey nl,ng}‘

Definition. A Jacobi-Stirling k-partition of [n]; is a partition of [n], into k + 1
subsets By, By, ... B of [n]2 satisfying the following conditions :
1. there is a zero block By, which may be empty and cannot contain both
copies of any i € [n],
2. Vj € [k], each nonzero block B; is not empty and contains the two copies
of its smallest element and does not contain both copies of any other
number.

Example.
> = {{22,51}0,{11, 12,21}, {31, 32,42}, {41,52}} is not a Jacobi-Stirling
3-partition of [5],,
> ol — {{22,51}0, {11, 12,21}, {31, 32}, {41,42,52}} is a Jacobi-Stirling
3-partition of [5]2.

We order the blocks of a partition in increasing order of their minimal elements.
By convention, the zero block is at the first position.



Combinatorial interpretation of the g-Jacobi-Stirling numbers (cont.)

Definition.

> An inversion of type 1 of 7 is a pair (b1, Bj), where by € B; for some i
(1 <i<j)and by > ¢ for some ¢; € B;.

> An inversion of type 2 of 7 is a pair (b2, B;), where by € B; for some i
(0 <i<j)and b2 > ¢ for some c; € Bj and by ¢ B;j, where a; means
integer a with subscript i =1, 2.

> Let inv;(7) be the number of inversions of 7 of type i = 1,2 and set
inv(m) = inva(m) — invy (7).
Let M(n, k, /) denote the set of Jacobi-Stirling k-partitions of [n]» such that the
zero-block contains i numbers with subscript 1.

Theorem. For any positive integers n and k and 0 < i < n— k we have
as:y)k(q) _ Z qlnv(ﬂ')7
weN(n,k,i)

where
n—k n—
ISk(ziq) = aVh(q) + ah(q)z + - + a7 (q) 2",



Combinatorial interpretation of the g-Jacobi-Stirling numbers (cont.)

Example.

JS 2-partitions of [3]> invi | inva | inv
0, {11,12,32}, {21,22,31} 0 0 0
0, 111,12,31}, {21,22,32} 1 0 -1
32}0, {11,12,31}, {21,252} 1 1 0
32}0, {11,12}, {21,22,31} 0 1 1
22}0, {11,12,21}, {31,32} 0 0 0
{21}0, {11,12,22}, {31,32} 0 0 0
{31}0, {11,12,32}, {21,22} 0 1 1
{31}0, {11,152}, {21,22,37} 0 0 0

Thus, Z g™ =3+ q+q! and Z g™ =2 4 q.
7€N(3,2,0) reN(3,2,1)



Combinatorial interpretation of the g-Jacobi-Stirling numbers (1st kind)

For a permutation o of [n] and for j € [n].

Let Orb, (j) := {o*(j) : £ > 1} the orbit of j and

Let min(o) = {j € [n] : j = min(Orbs(j) N [n])} (set of its positive cyclic
minima)

Definition. Given a word w = w(1)...w(¥) on the finite alphabet [n],
a letter w(j) is a record of w if w(k) > w(j) for every k € {1,...,j — 1}
By rec(w) we mean the number of records of w and reco(w) = rec(w) — 1.

Example. If w = 574862319, then the records are 5,4,2,1 and rec(w) = 4.

Definition. Let P(n, k, i) be the set of all pairs (o, 7) such that o is a
permutation of [n]o, 7 is a permutation of [n], both having k cycles and such
that

i) 1 and O are in the same cycle in o ;
ii) among their nonzero entries, o and 7 have the same cycle minima;
iii) reco(w) = i, where w = 5(0)0?(0) ...o'(0) with o'7*(0) = 0.



Combinatorial interpretation of the g-Jacobi-Stirling numbers (1st kind)

For a permutation o = o(1)0(2) ---o(n) of [n] and each i =1,2,...,n, let
k := k(i) be the smallest integer k > 1 such that o= *(i) < i.

Let B-code(o) := (b1, ba, ..., by) with b; :=oc*O()) (1<i<n).
Sor(c) = >, (i — bj), : the sorting index for permutation o of [n]
Soro(o) = >-1 (i — b}), : the modified sorting index for a permutation o of [n]o
Here, b} = b; if 07 1(i) # 0 and b} = i if (i) = 0.
Finally, for any pair (o, 7) in P(n, k, i) we define the statistic
Sor(o, ) = Sor(7) — Sore(c).

Theorem. We have bii)k(q) = Z q>™) where
(o,7)EP(n,k;i)

Jek(zq) = bO)(q) + bU(@)z + - + b ()"

’



Combinatorial interpretation of the g-Jacobi-Stirling numbers 1st kind
(cont.)

Example.

(o, T) reco(c) | Bp-code 0 | B-code 7 [ Sor(r) | Soro(c) [ Sor(o, )
(01)(23), (1)(23) 0 (1.2.2) 1.2,2) 1 1 0
(01)(23), (13)(2) 0 (1.2.2) (1.2.1) 2 1 1
012) (3), (12)(3) 0 (1.1.3) (1.13) 1 1 0
(013) (2), (13)(2) 0 (1.2.1) (1.2.1) 2 2 0
(013))(2), (1)(23) 0 (1.2.1) (1.2.2) 1 2 1
(©31)(2), (1)(23) 1 (0.2.3) (1.2.2) T 1 0
(031)(2), (1)(23) 1 (0,2,3) (1,1,3) 1 1 0
(021)(3), (1)(23) 1 (0.2,3) 1.2,1) 2 1 1

Thus,
Z qSor(o,T) =34 q+ q717 Z qSor(o,T) =24 q.

(o,7)EP(3,2,0) (0,7)EP(3,2,1)



Symmetric generalisation of Jacobi-Stirling numbers

Consider the pair of connection coefficients {(Sz,w(n, k), sz,w(n, k))}n>k>0
satisfying

k—1

x" —ZSZW n, k)H(X—(I+Z)(I+W))

k=0
H(x—(l+z i+ w)) Zszwnk
i=0

It is readily seen that we have the following recurrence relation

S;win+1,k+1)=5Sw(nk)+(z+k+1)(w+k+1)S,w(n k+1), (11)

Ssw(n+1,k+1)=s,w(n k) — (z+ n)(w+ n)s;w(n, k+1),

with S; w(n, k) = s;.w(n, k) =0, if k¢ {1,...,n}, and
S20(0,0) = 5:.,(0,0) = 1, n > 0.



Symmetric generalisation of Jacobi-Stirling numbers

Definition. A double signed k-partition of [n]> = {11,12,...,n1,m} is a
partition of [n]> into k + 2 subsets (By, By, Bi, - - ., Bx) such that

1. there are two distinguishable zero blocks By and B}, any of which may be
empty ;

2. there are k indistinguishable nonzero blocks, all nonempty, each of which
contains both copies of its smallest element and does not contain both
copies of any other number;

3. each zero block does not contain both copies of any number and By may
contain only numbers with subscript 2.

M(n, k) : the set of double signed k-partitions of [n]2
s(m) with m € MN(n, k) : the number of integers with subscript 1 in By of .
t(w) with m € M(n, k) : the number of integers with subscript 2 in By of .

Theorem. The polynomial S; . (n, k) is the enumerative polynomial of M(n, k)
with z enumerating the numbers with subscript 1 in By and w enumerating the
numbers with subscript 2 in B, i.e.,

S:w(n, k) = Zz7r tr)

weN(n,k)



