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Lecture 1: Coxeter groups &
Reflection groups

- A bit of hiSTOI”y (cf. Bourbaki, Lie groups, Chap. IV-VI)
0 Symmetries.
0 Classificat® of regular polygons & polyhedral (cf. Euclid 300BC)

0 Study of regular tilings of the plane and the sphere (Byzantine
school, High Middle-age, Kepler ~ 1619)

© wikipedia
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Reflection
Groups and

Lecture 1: Coxeter groups &
Reflection groups

- A bit of hiS'|'Ol”y (cf. Bourbaki, Lie groups, Chap. IV-VI)
0 19 - century

0 Study of (discrete groups of) isometries, generated by
reflections or not (Mobius ~ 1852, Jordan ~ 1869)

0 Tilings and regular polytopes in high dimension (Schlafli ~ 1850)

0 beginning of 20™ - century \H’\
0 Classification of discrete subgroups generated by " -
wikipedia

reflections (Cartan, Coxeter, Vinberg, etc... ) -> words

0 Lie Theory via root systems (Killing, Cartan, Weyl, Witt, Coxeter, etc...)

Christophe Hohlweg, 2014



Finite Reflection Groups (FRG)

o (V,(:,:)) Euclidean space (dim V' = n)

i.e. V R—vector space, (:,-) scalar product,

|- || associated norm.

o O(V) {f:V =V, fisometry} Orthogonal group
UV = V@) = l=l], vz e V]

GL(V)

VAN

@ Reflection: s € O(V) with set of fixed points a hyperplan H.

Properties. A reflection s € O(V) is uniquely determined:
0D by a hyperplan H = Fix(s);
0 or by a nonzero vector @ € V and we write s, := 5. “root”

Observe that Ra = HL, a line.
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Finite Reflection Groups (FRG)

Properties. A reflection s € O(V) is uniquely determined:
0 by a hyperplan H = Fix(s);
o or by a nonzero vector @ € Vand we write s, := s. “root”
Indeed, for s with Ra = H we have:
@ s(Ra) = Ra and then s(a) = —a
(nontrivial isometry); |
@forv=zx+kacV =H®Ra \
Sa(v)rl f ; .U

(@, )
s(v)=v—2ka=v—2 Qo
|afl?

Ro = H+

Theorem (Cartan-Dieudonné). Any isometry in O(V) is the
product of at most n = dim V' reflections.
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Finite Reflection Groups (FRG)

o W < O(V) finite is a finite reflection group (FRG) if there
is AC V\{0}such that W = (s, |a € A).

Examples:

0 Dihedral groups: V is a plane (n = 2), P is a regular polygon
with m sides (centred at the origin) and

D, = isometry group of P

2, 2wy 3
D3 =555 5,7 T, T il

= (Sa,58,5y) is a FRG




Finite Reflection Groups (FRG)

o W < O(V) finite is a finite reflection group (FRG) if there
is AC V\{0}such that W = (s, |a € A).

Examples:

0 Dihedral groups: V is a plane (n = 2), P is a regular polygon
with m sides (centred at the origin) and

D, = isometry group of P

D3 :{30“3578,7,7“,7“2,7“3 :6} | ,
= (84,58,5,) is a FRG = i
N <Som SB>
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Finite Reflection Groups (FRG)

o W < O(V) finite is a finite reflection group (FRG) if there
is AC V\{0}such that W = (s, |a € A).

Examples:

0 Dihedral groups: V is a plane (n = 2), P is a regular polygon
with m sides (centred at the origin) and

D, = isometry group of P

2, 2wy 3
D3 =555 5,7 T, T il

= (5a, 58, 55) = - Ay R
&+ <3a735> ' X

= (80, 38 | 56— s (SR RN
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Finite Reflection Groups (FRG)

o W < O(V) finite is a finite reflection group (FRG) if there
is AC V\{0}such that W = (s, |a € A).

Examples:

0 Dihedral groups: V is a plane (n = 2), P is a regular polygon
with m sides (centred at the origin) and

D, = isometry group of P

— s e =17 — {1/ e

where s (resp. t) is the reflection
associated to the line passing
through a vertex of P (resp. the
middle of an adjacent edge).
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Finite Reflection Groups (FRG)

Examples:

0 Symmetric group: Spacts onV = R"™ by permutation of the
coordinates:” o “{x1,~. L0} = (EEG T )

—3 faithful action: S, < GL(n)

A transposition 7;; = (¢ j) is a reflection with hyperplane
H,;,={neR =7 or vectorgid= c; sedlieis, =5, )

—> S, =(T|1<i<j<n) <O(R") is a FRG

Christophe Hohlweg, 2014



Finite Reflection Groups (FRG)

Examples:
0 Symmetric group: S,acts onV = R"™ by permutation of the
coordinates: o : (21,...,%,) = (%(1), . a%(n))
—> faithful action: S, < GL(n)

A transposition 7;; = (¢ j) is a reflection with hyperplane
Hij Pkl {CE SR | Lg = CUj} or vector Qggi— € 75 .64 (26 T3 Saij)

—> S, =(T|1<i<j<n) <O(R") is a FRG

= ATV Se R s

2 3

where T; := T;i+1 satisfies 77 = (7;7541) :

= e |1 - 7| > 1

o Gad (dihedral sg) means TiTi+17; = Tit1TiTit1

o @ means 7iT; = 7;7; (they commute)
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Finite Reflection Groups (FRG)
@ W<O({V)isaFRGie W =(sq|aec A) where ACV \ {0}

(is constituted of same norm vectors for simplification)
Proposition. Vw € O(V), Va € V' \ {0}, wsqw™" = Sy(a)
@ Root system: ® = W (A) on which W acts by conjugation

Example:
In Dgi

Christophe Hohlweg, 2014



Finite Reflection Groups (FRG)
@ W<O({V)isaFRGie W =(sq|aec A) where ACV \ {0}

(is constituted of same norm vectors for simplification)

Proposition. Yw € O(V), Ya € V \ {0}, wsqw™ ' = )

@ Root system: ® = W (A) on which W acts by conjugation
—y=sf)=tle)=a+f

Example:
In Dgi
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(is constituted of same norm vectors for simplification)

Proposition. Yw € O(V), Ya € V \ {0}, wsqw™ ' = )
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Finite Reflection Groups (FRG)
@ W<O({V)isaFRGie W =(sq|aec A) where ACV \ {0}
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Finite Reflection Groups (FRG)
@ W<O({V)isaFRGie W =(sq|aec A) where ACV \ {0}

(is constituted of same norm vectors for simplification)

Proposition. Yw € O(V), Ya € V \ {0}, wsqw™ ' = )

@ Root system: ® = W (A) on which W acts by conjugation
—y=sf)=tle)=a+f

Conclusion: D3 -orbit is

b = {::Oz, ]

The positive part is
o7 =He, 0, % D)
The base of cone(®™)

gives the desired
generators s and T.

=0,

(o + B)}
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Finite Reflection Groups (FRG)
@ W<O({V)isaFRGie W =(sq|a€ A) where ACV \ {0}

(is constituted of same norm vectors for simplification)

Proposition. Yw € O(V), Ya € V \ {0}, wsqw™ ' = )

@ Root system: ® = W (A) on which W acts by conjugation

Conclusion: D5 -orbit is

b = {::Oz, ]

The positive part is
o7 =He, 0, % D)
The base of cone(®™)

gives the desired
generators s and T.

=0,

(o + B)}
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Finite Reflection Groups (FRG)

Example: Sn s (G oupen il | (7= cecrial

Root system: . [+(e; — &) |1 < i< j<n}

The cone of & = {¢; —¢;|1 < i < j < n} has as basis

A ={e;11 —e€;|1 <i<n} that corresponds fo the generators.

® Root system: & = I/ (A) verifies the following properties

(i) ® is finite, nonzero vectors;
(ii) Sa(q)) = ®, Vo € ;
(iii) O NRa = {::a}, Va € O .

and: pr — (5. | € @)

Christophe Hohlweg, 2014



Finite Reflection Groups (FRG)

In general:
W < O(V) FRG «—> & root system inV/

@ Separating ® by a (linear) hyperplane we have:

reflections T (—ll—-> dT positive roots
P D « | 15

simple reflections S C T «——> A basis of cone(P™)

Theorem. W is generated by S = {s, |a € A}

Theorem. W = (S| (st)™*t = e) where mgs = My
is the order of the rotation st (and m.. =1)

Christophe Hohlweg, 2014



Coxeter groups

(W,S) Coxeter system of finite rank |S| < ¢ i.e.
@ W = (S|(st)™t =¢) group
@ ms, = 1 (sinvolut®); ms; = mys € N>o U {00} for s # ¢

A Coxeter graph I is given by:
o vertices S (finite)

D0 edges wi’rh Mgt = O Or Mt o0

Examples. Symmetric group §,, is

@ Dihedral group: D, = (s,t|s* =t* = (st)™ = ¢) ;

@ Infinite dihedral group: D, = (s,t|s° =t* =¢);

@ Universal Coxeter group: U, = (ay,...,a,|a; = e)

Christophe Hohlweg, 2014



Coxeter groups

(W,S) Coxeter system of finite rank |S| < ¢ i.e.
@ W = (S|(st)™t =¢) group
® mys = 1 (sinvolut®); mst = ms € N>g U {00} for s £t

A Coxeter graph I is given by:
o vertices S (finite)

D0 edges wi’rh Mgt = O Or Mt o0

Examples. Symmetric group S, |s
@ Dihedral group: D, is - or m

@ Infinite dihedral group: D is —
@ Universal Coxeter group: U, = (ay,...,a,|a; = e) OOOO

Christophe Hohlweg, 2014




Coxeter groups

@ any w € W is a word in the alphabet S; W = (S| (st)"** = ¢)

@ Length function £: W — N with /(e) = 0 and
K(w) mm{k ‘ W — 151528 Sk, S; € S}

15152 .. 5k a reduced word for w (| e.lki— Z( )) ?

? How ’ro s’rudy words on S represen’rmg w? Is a ord

st ts sts =[Sl

£ S
Examples. Ds Is ; vl 0T b e

{(ststs) =1 since ststs = (sts)ts = (tst)ts =1t

Proposition. Let s € S and w € W then 4(ws) = £(w)

3

¥ 1.

Christophe Hohlweg, 2014



Coxeter groups

@ Subgraphs and standard parabolic subgroups

ICS5 «—> It ; (W, I)is a Coxeter system

@ W is irreducible iff I'g is connected
D D SRS
SQXDOOXD3 W[253><SQ

Proposition. IfI,..., I corresponds to the connected components of I't (I may
be S ), then

| 2 3 Sn n-1 g

Wi~ Wy, X --- x Wp,

To study Coxeter groups it is often just necessary to
study the irreducible ones. In the following we often
consider irreducible Coxeter systems.

Christophe Hohlweg, 2014



Coxeter groups and Reflection groups

How to find all Coxeter graphs that correspond tfo
Finite Reflection groups (FRG)? to Finite Coxeter groups?

world of roots world of words

[ Coxeter groups/graphs |

- J

Christophe Hohlweg, 2013



Coxeter groups and Reflection groups

How to find all Coxeter graphs that correspond tfo
Finite Reflection groups (FRG)? to Finite Coxeter groups?

world of roots world of words

p 3 words

“Reflection groups”? | ' | Coxeter groups/graphs

roots?

Christophe Hohlweg, 2013



Root systems for Coxeter groups ?

An observation

If (W,S)is a Finite Reflection Group with A C &1 C & .

@ Dihedral (standard) parabolic subgroups: | = {s,¢t} C S
o Wi = (I) < W corresponds to the subgraphs:

e - D

S = Squ t:SB S = Squ t:SB

o Wy =7D,,., acts on V; = span(a, 3):
Sa(ﬁ) E 6 .0 2<O‘75>O‘

0 We have: <a,6>:—cos( 4 )

m st
@ the scalar product is given on the basis A by

({2 B)) 0 pen = <_ e (T:;t>>s,t65

Christophe Hohlweg, 2013



Geometric representations
Tits classical geometric representation of (W, 5)

0 (V,B) real quadratic space: |
e basis A'—{a ST 57 T =
o symmeftric bilinear form defined by: |

D5

ol ), (=T . — e i, 00 )

B(as,ay) = — cos (

M st

o W <O0g(V) “B-isometry”:
s(v)=v—-2B(v,a)a, s€S

Root system: & = IW(A), & = cone(A)NdP = —d~

Proposition. Let s € § and w € W, then:
((ws) = Lw) = 1= "o ="

Christophe Hohlweg, 2014



Infinite
dihedral

group

O——0

Geometric representations
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Geometric representations

Restriction fo Reflection subgroups

The isotropic cone of B:

Root of a B-reflectionon V: for a ¢ Q and v €V
Sa(v) =v —2B(v,a)a with B(a,a) = 1.

@ A reflection subgroup of (W,S) is a subgroup
W4 = (54| € A) where A C &7 is finite

Theorem (Dyer, Deodhar). Let A C &%, A" = W4(A)N®* and
A 4 the basis of cone(A’). Then (Wa,S4)is a Coxeter
system, where S4 = {s, |a € A4}

| The restriction of Tits geometric representation to W, |
{is not necessarily the one for (W, S4) :

Christophe Hohlweg, 2014



Geometric representations

Infinite
dihedral

group II
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Geometric representations

Vinberg geometric representations of (W,5)

o (V,B) real quadratic space and A C Vs.t.
o cone(A)Ncone(—A) ={0};
o A={as|s€ S} s.t

B(Ozs,ozt){ —COS( ) 11 7= OO

o W < Og(V) “B-isometry”:
s(v)=v—-2B(v,a)a, s€S

Root system: & = IW(A), & = cone(A)NdP = —d~

| 11417 — OO

Proposition. Let s € § and w € W, then:
((ws) = Lw) = 1= "o ="

Christophe Hohlweg, 2013



Classification of Finite Reflection Groups

world of roots el world of words
B-Reflection groups m*:,rs Coxeter groups/graphs

Theorem. The following assertions are equivalent:
(i) (W,S)is a finite Coxeter system;
(i) B is a scalar product and W < Op(V);
(iii) W is a finite reflection group.

Christophe Hohlweg, 2013



Coxeter groups

Theorem. The irreducible FRG are precisely the finite
irreducible Coxeter groups. Their graphs are:

Christophe Hohlweg, 2013



Conclusion

world of roots ey world of words
B-Reflection groups m*;s Coxeter groups/graphs

signature (p,q,7) of B Gttty ["{;; allowing oo(a < —1)

Reﬂec_’rion""'
Groups

\_ J -

Question: Are all B-reflection groups Coxeter groups?

Christophe Hohlweg, 2013



Conclusion

(moc

- I
4, pi:{

@P“GUd-S’fump, Sage, Wikipedia, Casselman
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: Conclusion :
In The spherical, euclidean and hyperbolic case, |
they are all Coxeter groups (models for these geometry exist in V

or its dual; ‘cut’ these models by the hyperplanes of reflections)

EEe
LiSReae

Finite case i.e. Bis a scalar product
sgn(B) = (n,0,0)

\/\/\ NA“M

Affine case i.e. B is positive degenerate. Its radical is a

line: Rad(B) ={v eV |Bw,a)=0, Va € A} =Rz

The model is an affine hyperplane in the dual 1/
H=1pcVi|p(r) =1}

N.B: reflection hyperplanes leave in the dual here.
N , J

@Pilaud-S’rump, Sage, Wikipedia, Casselman
Christophe Hohlweg, 2013



: Conclusion :
In The spherical, euclidean and hyperbolic case, |
they are all Coxeter groups (models for these geometry exist in V

or its dual; ‘cut’ these models by the hyperplanes of reflections)

/\ “Vﬂ \

\/\/
K

VA
NN/
XA
VAVAVAVY “ﬂ{
LN‘WN VA
A/

, AYAVAYAY, |
AVAYATAVAYATA
| VAVAVAVAVAVAY)

i positive degenerate.
; (n £ 17 07 1)

Hyperbolic case i.e. sgn(B) = (n —1,1,0) (7 = V/*). Many
models exists: projective (non conformal), hyperboloid or the ball

model B = e WV | Ble,g) = =1}

N\ : J

@Pilaud-S’rump, Sage, Wikipedia, Casselman
Christophe Hohlweg, 2013



Conclusion

world of roots

-

\_

B-Reflection groups

signature (p,q,7) of B Gttty ["{;; allowing oo(a < —1)

Flnl’re
R eﬂ e C 1. ' O I"l

',-
.....

-----

~N

J

words
to
roots

world of words

Coxeter groups/graphs ¢

Problem: Let p,q,r € N, classify all the Coxeter graphs
with signature (p,q,r). Count them?

N.B.: Known for(n,0,0)- FRG -; (n — 1
partially for (n — 1,1,0) -

,0,1) - affine type - and

“weakly hyperbolic” type

Christophe Hohlweg, 2013



Donald Coxeter Selected biblio OlC Part 1 ...

(London 1907, Toronto 2003)
Professor at University of Toronto

Bdge sudes i ddvanced mathemanes 19

Reflection

(1936-2003) Groups and
Coxeter Groups

Anders Bjorner
Francesco Brenti

Combinatorics of

Coxeter Groups

‘_ Springer

The Geometry and Topology
Mirrors and B, 0! Coreter Groups Peter Abramenko
Reflections ¥ D) v Keaneth S Brown

The Geometry of Finite % B I\"
Reflaction Groups

Buildings

@ Springer

Mandatory photo credit. Mathematics genius Donald Coxeter is the subject of a public talk by journalist

Slobhan Roberts, The Man Who Saved Geometry, on Sunday, July 31, Photo courtesy of The Banff Centre,

Christophe Hohlweg, 2013



Lecture 2: Weak order and roots

In the last episode

world of roots

-

B-Reflection groups

signature (p,q,r) of B €ty FW allowing oo(a < —1)

¢ Flnl’re
Reﬂechon

.....

~N

words
to
roots

world of words

Coxeter groups/graphs

W oiio]) " = e)

Christophe Hohlweg, 2014



Weak order and reduced words
(W,S) Coxeter system of finite rank |S| < o

@ any w € W is a word in the alphabet S; W = (S| (st)"** = ¢)
@ Length function ¢ : W — N with ¢(e) = 0 and
K(w) mm{k l W — 151528 Sk, S; € S}

? How ’ro s’rudy words on S represen’rlng w? Is ord
15152 .. 5k a reduced word for w (| e. k= K( )) ?

€ FsEETy st ts sts—tst
Examples. Ds Is ; R e 3

{(ststs) =1 since ststs = (sts)ts = (tst)ts =1t

Proposition. Let s € S and w € W then f(ws) = ¢(w) £ 1.

Christophe Hohlweg, 2014



Weak order and reduced words
Cayley graph of W = (5) i.e.

0 vertices W
0 edges TR g s o)

IS naturally oriented by the
(right) weak order:
w < ws if f(w) < l(ws)
write: W —2 ws

Fact: (a) v < w iff a reduced word
of u is a prefix of a red. word of w.

(b) reduced words of w corresp. to
maximal chains in the interval [e, w].

(c) Chain property: if u < w with
l(u) + 1 < £(w) then:

Ju. € W, “u = SUE S

Christophe Hohlweg, 2014



Weak order and reduced words

Theorem (Bjorner). The weak order is a complete meet-
semilattice. In particular u A v = inf(u,v), Yu,v € W, exists.

Proposition. Assume W is

finite, then:

(i) there is a unique w, € W
such that: © < w,, Vu € W,

\
| S1S2§3_S2_ -

(ii) the map w — wow is a P
poset antiautomorphism. oi\\

cee 4 "0 $352951
(iii) the weak order is a 516253251 @

complete lattice. In part.,
u Vv = sup(u,v) exists.
(iv) u A v = we(wou V wov)

"0 5251

N
N
N
N\
\
N
N
\
\
sss‘o
15251
/V\
/7
4 ~
7/ ~
4
d
4

U
O 51525351

528352 O ,
1
1

O 525351

515753518
OV}2312

~O 52535152

)

Christophe Hohlweg, 2014
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Weak order & Generalized Associahedra

(W, S) finite Coxeter system, so W < O(V)

Permutahedra
0 A simple system;
DS:{SQ‘QEA};
0 Choose a generic |I.e.
(@, ) > 0, Va € A
Perm® (W) = conv{w(a) |w € W}

Proposition. Perm®(1/) is a simple polytope whose oriented
1-skeleton is the graph of the (right) weak order.

Christophe Hohlweg, 2013



Building Generalized Associahedra

Associahedra (lattices/complexes):

@ Lattice (Tamari, 1951)

@ Cell complex (Stasheff, 1963)

@ Cluster complex (Fomin-Zelevinsky, 2003)

® Cambrian lattices (Reading 2007,
2007 )and more ...

wanrt Muler Moissen

—_—

Associahedra,

e —
Tamari’s associahedron Tamari Lattices / \I\\ \
and Related

Structures

Associahedra (Convex polytopes):
® Type A (Haiman 1984, Lee, Loday, ... ) = -
® Type B - cyclohedra (Bott-Taubes 1994, ...)

® Weyl| groups (Chapoton-Fomin-Zelevinsky,
2003)

® from permutahedra of finite Coxeter groups
(CH-Lange-Thomas 2011, ...)

llllllll

Christophe Hohlweg, 2013



Building Generalized Associahedra

Hohlweg, C. Lange, H. Thomas (2009)

/N '
a0y
0 Data: Perm®(W) and an orientation of 'y <0 <)
—— . /I\é\}
=2l e«—eo—>e

0 ¢ Coxeter element associated to this orientation i.e

product without repetition of all the simple reflections;
C=—% 3L

D c(rysubword with letters 1 C §
E= {7‘1,7’2} € Di— C(I) — T

o ¢ - word of we: We(C) = ¢(k,)C(Ky) - - - C(K,) Teduced

expressions.t. SO K; DKy D---D K, #)
Wo(T1T273) = T1T2T3.T1T2-T1 = C(8)C({ry, 1) C({r1})
Wo (T2T3T1) = T2T3T1.T2T3T1 = C(5)C(S)-

Christophe Hohlweg, 2013



Building Generalized Associahedra

Hohlweg, C. Lange, H. Thomas (2009)
o ¢ - word of wo: We(C) = ¢(K,)C(K,) - - C(K,) Meduced
expressions.t. SO K; DKy D ---D K, #)

wo(TlTQTg) — T17273.7T17T2.7T1 = C(S)C({leTQ})C({Tl})
’wo(7'27'37'1) 2 T3 T1%T 077 3 TIEERC (S YC (S8

828183828183

0 ¢ - singletons are the prefixes 221835283

5281838281

of wo(c)up to commutations

82818382

€, ToER 5 T2T3T1T273,
T2 T2T371, ToT3T1ToT1, and
T2T1 RS T s o YT TS TN

Proposition. ¢ - singletons form a

distributive sublattice of the weak order.

C = 5925153

Christophe Hohlweg, 2013



Building Generalized Associahedra

Hohlweg, C. Lange, H. Thomas (2009)

T

T (@]
D i o . ./ \‘\\\\.
C - generalized associahedron S
A a ”,’Tlf?‘\‘ \
is the polyfope Asso,. (1) : / -
. . r.'.rlhn" @;311'31'3 rar,rn\‘ [\ :
obtained from Perm® (1) by NG e
" . / 2]
1 \\ . \'Q"tznrzr; b
keeping only the facets -\\o ol m_,,z.;/f'”\'/
containing a ¢ - singleton N
r;“\"lrf_@'___,-o\tgrmrzr;
. o\\*\ ‘,_;.l‘o D77

Theorem. The 1-skeleton of s e

Assor (W) =T
is N. Readings c- Cambrian lattice;
its normal fan is the corresponding
Cambrian fan studied in detailed by
N. Reading & D. Speyer. The facets

¢ /
\ - -0V /

are labelled by almost positive roots T\ ae%unan

Christophe Hohlweg, 2013
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Type H s |

Wo = 515253515535 52515 52535525,

-~ 0..>0
g ’ -
‘-s ’%’
- »

K\ W = 51525351525351525351525351 5253
.\ - .
-
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Selected developements on the subject

@ Convex hull of the vertices: brick polytopes. Barycenter
identical to the permutahedron:

V. Pilaud and C. Stump: © Pilaud-Stump

1. Brick polytopes of spherical subword
complexes: A new approach fo
generalized associahedra (2012)

2. Vertex barycenter of generalized
associahedra (2012)

@ Classification of isometry classes in term of the lattices
of c—single’rons (N. Bergeron, Hohlweg, C. Lange, H. Thomas, 2009)

@ Recovering the corresponding cluster algebra:

S. Stella, Polyhedral models for generalized associahedra via Coxeter elements (2013)

Christophe Hohlweg, 2013



Weak order: a combinatorial model

Cambrian (semi)lattices/fans in finite case &
Generalized associahedra in finite case

Initial section of reflection orders and KL-polynomials (M. Dyer):
combinatorial formulas for KL-polynomials (F. Brenti, M. Dyer).

A combinatorial model for cambrian lattices/generalized
associahedra in infinite case, or twisted Bruhat order and KL-
polynomials (M. Dyer)? Is it possible to «enlarge» Coxeter
groups fo have a weak order that is a complete lattice?

Christophe Hohlweg, 2014



Weak order and root system

Geometric representations of (W,5)

0 (V,B) real quadratic space and A C Vs.t.
o cone(A) Ncone(—A) ={0};

o A ={as;|se S} s.t
{ —COS(

7T =1
& ) IL Mgy < OO

oy o€ =l T s — OO

n W<0g(V): s(v)=v—2B(v,a)a, s€ S
Root system: & = W(A), & = cone(A) NP = -~

STE=S5 L — Sp| ST ML S TR S1S = TSt

20 CG, SRR
20 o RUECOIRE

Christophe Hohlweg, 2013



Weak order and root system

Geometric representations of (W,5)

0 (V,B) real quadratic space and A C Vs.t.
o cone(A) Ncone(—A) ={0};

o A ={as;|se S} s.t
{ —COS(

7T =1
s ) IL Mgy < OO

oy o€ =l T s — OO

n W<0g(V): s(v)=v—2B(v,a)a, s€ S
Root system: & = W(A), & = cone(A) NP = -~

€ ST S5 U =55 ST ST STS — 1St
¢ |0 I 1 % 2 3
a'l oy i=o v | 2
Vol o D S

Christophe Hohlweg, 2013



Weak order and root system

Geometric representations of (W,5)

0 (V,B) real quadratic space and A C Vs.t.
o cone(A)Ncone(—A) = {0};
° AZ{O‘S‘SES} S.T.

EltaAiehe — COS ( “t) if mq < 00
’ a < —1 T s — OO
n W<0g(V): s(v)=v—2B(v,a)a, s€ S
Root system: @ = WW(A), & = cone(A)NP= —d~
€ ST S5 U =55 ST ST STS — 1St
4 1 1 2 2 3
ala -a v | B —v P
DD Sk | oak s & O
Y dl oy AR RS o

Christophe Hohlweg, 2013



Weak order and root system
Geometric representations of (W,5)

0 (V,B) real quadratic space and A C Vs.t.
o cone(A)Ncone(—A) = {0};
o AZ{O‘S‘SES} S.T.

— COS 77) 1t Moy < 00
B(as’at) — { (mst st

oy o€ =l T s — OO

n W<0g(V): s(v)=v—2B(v,a)a, s€ S
Root system: & = W(A), & = cone(A) NP = -~

CT D T =5 st ts sts = tst
c#40 1 1 3
B0 & ‘

THO T a

TE P SRR D (D) = |

Christophe Hohlweg, 2013



Weak order and root system

€ 8 = Sq U =—1Sp [HST TS STS =Sl
4 B0 1 1 2 2 3
a | o @ 15 5
R @
Y 3l4) il Q

Definition. The inversion set of w € W is
inv(w) =T Nw (@) ={vedt |wl) e d}

o If W = S,, then those “are” the natural inversion.

iIlV(O‘) = {ej - (% | I8 Sk < Sk €o(§) — €o(i) © (I)_}

Christophe Hohlweg, 2014



Weak order and root system

€ 8 = Sq U =—1Sp [HST TS STS =Sl
4 B0 1 1 2 2 3
a | o @ 15 5
R @
Y 3l4) il Q

Definition. The inversion set of w € W is
inv(w) =T Nw (@) ={vedt |wl) e d}

o If W = S,, then those “are” the natural inversion.

Inv(0) = cy c vt Sy & D O

Christophe Hohlweg, 2014



Weak order and root system

€ 8 = Sq U =—1Sp [HST TS STS =Sl
4 B0 1 1 2 2 3
a | o @ 15 5
R @
Y 3l4) il Q

Definition. The inversion set of w € W is
inv(w) =T Nw (@) ={vedt |wl) e d}

o If W = S,, then those “are” the natural inversion.

inv(6) = H{(7,9)] |0 <SG 01 01 T e
45132
N

Christophe Hohlweg, 2014



Weak order and root system

€ 8 = Sq U =—1Sp [HST TS STS =Sl
4 B0 1 1 2 2 3
a | o @ 15 5
R @
Y 3l4) il Q

Definition. The inversion set of w € Wis
inv(w) =T Nw (@) ={vedt |wl) e d}

Proposition. Let w = s1s2...s;be a reduced word, then:

N{w) = inv(w™ ) =T, 51 (Q), = GBS (o)}

In particular: |N(w)| = |inv(w)| = {(w)

Christophe Hohlweg, 2014



Weak order and root system

S = 8o L—1Sp TSl TS SIS =Sl
3

1 1 ) e )
L B R
T o8 &

Definition. The inversion set of w € W is
inv(w) =T Nw (@) ={vedt |wl) e d}

R OO (RMECSS
=% o SRFCO T

Proposition. Let w = s1s2...s;be a reduced word, then:
N o= inv(w_l) = a1, s1(az), - , 8 ... 85 1 (ag)}

In particular: |N(w)| = |inv(w)| = {(w)

Christophe Hohlweg, 2014



Weak order and root system

= Sq L=Spg |t st tls Sts=1ist
3

2 2
5@ 5
.

Definition. The inversion set of w € W is
inv(w) =T Nw (@) ={vedt |wl) e d}

=2 ®» L[>
=% Cor RFCOO R
VA
QQ@»—\CD
(&

Proposition. Let w = s153... 5, be a reduced word, then:

Nitw ) =nvi( e — {041,31 as), Sk (ag }
In particular: |N(w)| = |inv(w)| = £(w 2Wha’r is Im ]
Proposition. The map N : (W, <) — ) is an

injective morphism of posets.

Christophe Hohlweg, 2014



Weak order and biclosed sets

nA C ®" is closed if for all a,3 € A, cone(a,B)N® C A;
n AC ®T'is biclosed if A, A := ®" \ A are closed.
n B(W') = {biclosed sets}; By(W) = {A C B(W)||A| < oo}

Proposition. N : (W, <) — (Bo(W),C) is a poset isomorphism
and N(w,) = " if Wis finite.

tst = sts = we

(I)—I—

Christophe Hohlweg, 2014



Weak order and biclosed sets

nA C ®" is closed if for all a,3 € A, cone(a,B)N® C A;
n AC ®T'is biclosed if A, A := ®" \ A are closed.
n B(W') = {biclosed sets}; By(W) = {A C B(W)||A| < oo}

Proposition. N : (W, <) — (Bo(W),C) is a poset isomorphism
and N(w,) = " if Wis finite.

tst = sts = we

(I)—I—
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Weak order and biclosed sets

nA C ®" is closed if for all a,3 € A, cone(a,B)N® C A;
n AC ®T'is biclosed if A, A := ®" \ A are closed.
n B(W') = {biclosed sets}; By(W) = {A C B(W)||A| < oo}

Proposition. N : (W, <) — (Bo(W),C) is a poset isomorphism
and N(w,) = " if Wis finite.

Y=o+ B closed not
bicolsed

tst = sts = we

(I)—I—

Christophe Hohlweg, 2014



Weak order and biclosed sets

nA C ®" is closed if for all a,3 € A, cone(a,B)N® C A;
n AC ®T'is biclosed if A, A := ®" \ A are closed.
n B(W') = {biclosed sets}; By(W) = {A C B(W)||A| < oo}

Proposition. N : (W, <) — (Bo(W),C) is a poset isomorphism
and N(w,) = " if Wis finite.

1St — SUS — We

(I)-I-

Christophe Hohlweg, 2014



Weak order and biclosed sefts

nA C ®* is closed if for all o, 3 € A, cone( ',ﬁ)ﬂq) QA; |

0 A C &7 is biclosed if A, A°:=®" \ A are closed. |
n B(W) = {biclosed sets}; By(W) = {A C B(W) |4l < oo}

Proposition. N : (W, <) — (Bo(W),C) is a pose1L isomorphism
and N(w,) = ®% if Wis finite.

Inverse map (recursive construction)

s finite biclosed and

Christophe Hohlweg, 2014



O The biclosed are:

O the finite ones;

D their complements;
0 and two infinite
ones: the left and
right side of Q!

Christophe Hohlweg, 2014



Weak order and biclosed sets

world of words

Chain property: if u <w
with /(u) +1 < ¢(w) then:
v & WS ussiiies o

If Wis finite, then:

(i) a unique w, € W s.t
TSN =

(i) w — wow is a poset

antiautomorphism.

(iii) the weak order is a

complete lattice.

(iv) U AV = Wo(Wott V Wo)

~N

J

-

world of roots

Chain property: if AC B
finite biclosed with

1B\ A| > 1 then:

1O e By, A ¢ ¢ B

If Wis finite, then:

(i) N(w,)=®" and
qu)—l_, Vs — 5,
(ii) A— A° is a poset
antiautomorphism.

(iii) the weak order is a
complete lattice.

(ivIAA B = (A°V B¢

J

Christophe Hohlweg, 2014



Weak order and biclosed sets

4 n
Conjectures (M. Dyer, 2011). world of roots
(a) chain property: if A C B are Chain property: if AC B
biclosed and |5\ A| > 1 then finite biclosed with
fhereisCEBs.f.AQCgB. \B\A\>1fhen:
(b) (B,C) is a complete lattice e e By iMer ¢ B
(with minimal element () and
maximal element CID*). If Wis finite, then:

(i) N(w,)=®" and

(6 VLU AZnsohowto | | AC®", VAeB=5
understand them geome’mcally? 1 | (i) A— A° is a poset
0 |F Vv ex1sfs fhen e e “’>an’riau’romorphism.

A AB = (A°V BC) | | (iii) the weak order is a
& -. = A_ ~J | complete lattice.

(ivIAA B = (A°V B¢
. 4




Weak order and Bruhat order

Set of reflections: 1" = U wSw ' ={ss|B8 € Dt}
weW

Bruhat order: transitive closure of w <p wt if {(w) < {(wt)

Bruhat graph of W = (S)

0 vertices W

0 edges w-s wsg

Weak order implies
Bruhat order.

tst = sts = w,

(I)+

Christophe Hohlweg, 2014



Weak order and Bruhat order

A - path: path starting with e Exemple. A = {a,v}:
in the Bruhat graph and E o Wo= 9y
indexed by elements in AU B. € =S oS

B-closure of AC ®t: A={8€ P |sgisina A— path}

Conjecture (M. Dyer).
Let A, B be biclosed sets, then

AVB=AUBRB

This conjecture is open even In
finite cases!

tst = sts = w,

(I)+

Christophe Hohlweg, 2014



Weak order and Bruhat order

Another example: (W, S) is

A= N(nm)={a,1(az)} ={a1,a1 + as}; Soitas = 717271

b= N(Tg) — {()43}

AUB = {041,043,041 —|-042}
T172737T2T1 7_27_37_27_1
= Soz1+oz2+oz3
a1 + Q2

]+« 7'27'17'3
7'37'17'27'1 043

7'17'27173 &1+&2 I

Conjecture (M. Dyer).
Let A, B be biclosed sets, then

AVB=AUBRB

7‘2’7'1

a1 + Qo

7'1 7271

\V

Graph of AU B paths

Christophe Hohlweg, 2014

This conjecture is open even In
finite cases!




Weak order and Bruhat order

Another example: (W, S) is

il Tedsaaiha
Al N(TlTQ) — {&1,7'1(&2)} — {C¥1,CY1 S 042}5
B = N(m3) ={a3}
AUB ={aj,a3,a1 + as}

Sa14as — T172T1

T17T92 \/7'3 == 3 2T 3

Conjecture (M. Dyer).
Let A, B be biclosed sets, then

AVB=AUBRB

This conjecture is open even In
finite cases!

AUB = {ay, 03,01 + s, a1 +ag + a3 = N(11737273)

Christophe Hohlweg, 2014



Another way to interpret the join?

e U5 T

Conjecture (M. Dyer).
Let A, B be biclosed sets, then

AVB=AUB

This conjecture is open even In
finite cases!

AUB = {ay,a3,01 + ag,01 + ag + az} = N(71737273)

Christophe Hohlweg, 2014



e U5 T

Another way fo interpref the join?

— Saq+as+tas

END of Part 2
- to be continued in Part 3 -

= M@ s

Christophe Hohlweg, 2014

4 1= 041,043,041—|—042,041—|—042—|—043



Lecture 3: Words & infinite root systems

Christophe Hohlweg, 2013



In the last episode

world of roots

-

\_

B-Reflection groups

~N

words
to
roots

world of words

Coxeter groups/graphs ¢

signature (p,¢,7) of B Cmmmmmm—tmeeeteoouyq T3, allowing oo(a < —1)

Flnl’re
Reﬂechon

1“

G I'"O u P s ﬁﬁ»“ S 4

J

The Cayley graph of (W, S) is naturally oriented by the (right)
weak order: w < ws if f(w) < f(ws) -

The weak order is a complete meef-semilattice and

U = w—— N @ N

N(u) =0T Nu(d)

Christophe Hohlweg, 2013




In the last episode

Finite and infinite biclosed sets  Conjectures (M. Dyer, 2011).

(a) chain property: if A C B are
biclosed and |B \ A| > 1 then
thereis C e Bst. AC C C B,

(b) (B,C) is a complete lattice
(with minimal element () and
maximal element ).

e

[D?'\/ ?’é U, /\74 N So;‘how to .\
understand them geometrically?
tsti= sts = w, 0 if V exists then
- S NB (VB

Christophe Hohlweg, 2014



A Projective view of root systems

Geomeftric representations of (W,5)

o (V,B) real quadratic space and A C Vs.t.
o cone(A)Ncone(—A) ={0};
GA:{QS‘SES} S. 1. &
B(asaat) 3 { _COS<mSt) AE g SO

(T 18/ 5 — OO

n W<O0g({V): s(v)=v—2B(v,a)a, s€ S

Root system: & = W(A), & = cone(A)NP = —~

Christophe Hohlweg, 2014



A Projective view of root systems
‘Cut’ cone(A) by an affine hyperplane: Vi ={v e V| » v, =1}

aEA
Normalized roots: p := p/ E Pa in D U RpnNVy
aEA ped

AN
VoS

Action of Won ®: w-p = w(p)

@ Rank 2 root systems

Christophe Hohlweg, 2014



A Projective view of root systems
‘Cut’ cone(A) by an affine hyperplane: Vi ={v e V| » v, =1}

e =YAN

Normalized roots: p := p/ Z P in @ = U INIaR%
aEA ped
Action of Won ®: w-jp=w(p) r
p=w(p) e

@ Rank 2 root systems

=)

=)

m

o0

oo(—1,01)
o—0

Christophe Hohlweg, 2014




A Projective view of root systems

@ Rank 3 root systems

Christophe Hohlweg, 2014
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A Projective view of root systems

@ Rank 4 root systems

affine
finite

(weakly) hyperbolic

Christophe Hohlweg, 2014



Join in finite Coxeter groups

Example: (HAS)IE

T e T3

A= N(Tng) — {()41,7'1(042)} — {Oél,()él = 042} 4 155~ N(Tg) — {043}

T1T2 V T3 = T17T3T27T3  ; N(T17T3T97T3) = {1, a3, a1 + @z, a1 + as + ag}

AUB:{(Xl,ag,(X1+(X2} - ”

L ———

a1 + 02 + O3
()

Q (Vo

Christophe Hohlweg, 2014



Join in finite Coxeter groups

Example: (HAS)IE

T e T3

A= N(Tng) — {()41,7'1(042)} — {Oél,()él = 042} 4 155~ N(Tg) — {043}

T1T2 V T3 = T17T3T27T3  ; N(T17T3T97T3) = {1, a3, a1 + @z, a1 + as + ag}

AV Bi= {041,043,041 —|—042}

(3'2
Christophe Hohlweg, 2014




Join in finite Coxeter groups

Example: (HAS)IE

T1 T2 T3

A= N(TlTQ) — {()41,7'1(042)} — {041,041 = 042} 4 155~ N(Tg) — {()43}

T1T2 V T3 = T17T3T27T3  ; N(T17T3T97T3) = {1, a3, a1 + @z, a1 + as + ag}

AUB = {041,043,041 —|—042}

Proposition (CH, Labbé).
Let A, B be biclosed sets in a
finite Coxeter group, then

A

AVB=conv(AUB)N®

(A)'Q
Christophe Hohlweg, 2014




Exl No true in general: the convex hull of the
union of biclosed is not biclosed in general

(counterexample in rank 4).

Proposition (CH, Labbé).
Let A, B be biclosed sets in a
finite Coxeter group, then

A

AV B =conv(AUB)N®

(Al’-z
Christophe Hohlweg, 2014




Limit roots

Limit roots (CH, Labbe, Ripoll): the set of limit roots is:
E(®) = Acc(®) C Q Nconv(A)

@ Action of Won & LU E: given on Eby QN L(a,z) = {z,5, - x}

A

Remark. £ = () is a singleton in the case of affine root system.

DY =S T =8y
/e '




Limit roots

Dihedral reflection subgroups: W' = (s,,s.), p,y € ®*

Associated root system: &' = W'({p,v})

Observation: E(®') = Q N L(p,7)

Limits of roots of dihedral reflection subgroups:
® Fy =W - ES Where
Es =] "o, p) "Q

peEDT

Theorem (cH, Labbé, Ripoll 2012)
The sets £, and E5 are dense in
E(®).




Limit roots

Theorem (pyer, cH, Ripoll 2013)
The closure of W - z is dense in E(®) for = € E(P)

Theorem (Dyer, CH, Ripoll, 2013) COI"OIICII"Y (Dyer, CH, Ripoll, 2013)
E=Q < @ C conv(A) A first fractal Phenomenon.

Morever, in this case,
sgn(B) = (n, 1,0)




Limit roots

Theorem (pyer, cH, Ripoll 2013) For irreducible root of
signature (n,1,0) we have: £ = conv(E)NQ

Problem (second fractal phenomenon): is it
true for other indefinite types?




Limit roots

Limit roots (CH, Labbe, Ripoll): the set of limit roots is:
E(®) = Acc(®) C Q Nconv(A)

@ Action of Won & LI E: given on Eby QN L(a,z) = {x, 5, - 7}

Theorem (Dyer, CH, Ripoll)
Action on E faithful if
irreducible not affine nor
finite of rank > 2.

Proof. Difficult. Main
ingredient: one can
approximate £ with
arbitrary precision with the
sets of limit roots of
universal Coxeter subgroups

Christophe Hohlweg, 2014



Limit roots

@ Acti

Theorem (
Action on
irreducibl
finite of r

Proof. Diffi¢

ingredient:

approximat

arbitrary p

sets of limit roots of
universal Coxeter subgroups

Christophe Hohlweg, 2014



Limit roots

Limit roots (CH, Labbe, Ripoll): the set of limit roots is:
E(®) = Acc(®) C Q Nconv(A)

@ Action of Won & LI E: given on Eby QN L(a,z) = {x, 5, - 7}

Theorem (Dyer, CH, Ripoll)
Action on E faithful if
irreducible not affine nor
finite of rank > 2.

Proof. Difficult. Main
ingredient: one can
approximate £ with
arbitrary precision with the
sets of limit roots of
universal Coxeter subgroups

Christophe Hohlweg, 2014



Limit roots and imaginary cone
Tiling of conv(FE)

Assume the root system to be not finite nor affine

@ Imaginary convex set 7 is the W —orbit of the polytope
K ={v € conv(A) | B(v,a) <0,Va € A}

Proposition (Dyer, cH, Ripoll 2013). The action of Won E extfends
to an action of W on conv(F). So W acts on @ | | ConV(E)

Christophe Hohlweg, 2013



Limit roots and i
Tiling of

| y vrvvul INJ UV \IJ]CI, wi i, I\II-JUl.l o\JLJ o The

to an action of W on conv(E) . S¢

B stophe Hohlweg, 2013



Limit roots and imaginary cone
Tiling of conv(FE)

Here a rank 5 Coxeter group is
represented in dim 3 A is not a

basis but is positively independent.

(bridge with hyperbolic geometry, work
with JP Preaux & V. Ripoll)

g

Ball model

Roots and imaginary
convex body model

@ Lam & Thomas

Christophe Hohlweg, 2013



Biconvex sets and biclosed sets (cH & 7P Labbé)

Biconvex sets. Let A C & .
o A is convex if conv(A)N® = A;
@ A is biconvex if A and A are convex;
@ A is separable if conv(A) Nconv(A°) = ()
Proposition. Let A C &7

i) Ais closed iff [&, 8N ® C A, Vo, € A;

ii) separable = (bi)convex = (bi)closed

iii) Ais finite biclosed iff finite separable iff A = N(w), w € W

Christophe Hohlweg, 2014



Biconvex sets and biclosed sets (cH & 7P Labbé)

Biconvex sets. Let A C & .

o A is convex if conv(A)Nd = A;

@ A is biconvex if A and A° are convex;

@ A is separable if conv(A) Nconv(A°) = ()

Proposition. Let A C &7

i) Ais closed iff [&, 8N ® C A, Vo, € A;
ii) separable = (bi)convex = (bi)closed
iii) Ais finite biclosed iff finite separable iff A = N(w), w € W

Theorem (cH & JP Labbé). In rank 3, Biconvex sets with inclusion is
a lattice: AV B=conv(AUB)N®

Remarks.

@ The theorem and the converse of Prop (ii) is false in generadl,
counterexample in rank 4 not affine nor finite;

@ In rank 3 or affine type, does biconvex = biclosed?

Christophe Hohlweg, 2014



Inversion sets of infinite words

Infinite reduced words on S. For an infinite
word w = S S0 83. ies e S, write:
@ W; — S§15283 -+ Sy,

o 5() 2 Oésldnd 5@ — wi(asiﬂ) c P,
& wis reduced if the w; s are.

@ Inversion set: N(w) = {B;|i € N}.

Remark. P. Cellini & P. Papi, K. Ito studied biclosed sets for Kac-
Moody root systems (imaginaty root). They form a subclass:

AorA¢ verify conv(4)NQ = 0.

Christophe Hohlweg, 2014



Inversion sets of infinite words

Theorem (Cellini & Papi, 1998). Let the root sys’rem be affine,
i.e., Qis a singleton. Let A C ®T s.t. conv(A) N Q = (. Then:

A biclosed iff A separable iff A = N(w), wfinite or infinite.

Remark. The class of A C &7 s.t.
AorA¢ verify conv(A)NQ =0
IS not satisfying (negative answer to

a question asked by Lam & Pylyavskyy;
Baumann, Kamnitzer & Tingley)

N(21321) V N(214) =e Vv e
= conv(eUe )N &

does not arise as an inversion
set of a word (finite or infinite)

Christophe Hohlweg, 2014



Inversion sets of infinite words (cH & JP Labbé)

Let AC &, we say that:
o Aavoids /' if [¢,8]NQ =0, Va,B € A

A

o A strictly avoids E if conv(A)NE =0,

Proposition. Let A C &' be finite.
i) ifAis closed thenA avoids F ;
ii) if A is convex thenA strictly avoids E.

Christophe Hohlweg, 2014



Inversion sets of infinite words (cH & JP Labbé)

Corollary. If A = N(w)withw reduced infinite or finite word,
then A strictly avoids E and is biconvex.

Questions:

i) the converse is true? (true for affine by Cellini & Papi);

i) |Acc(IN(w)| < 1 2; obviously true for finite and affine; true for
weakly hyperbolic (H. Chen & JP Labbe, 2014)




Inversion sets of infinite words (cH & JP Labbé)
and conv(FE)

Assume the root system to be not finite nor affine

For a reduced w = s15953..., s; € S, recall that:
@ W; = 81528538, reduced; 50 — Ogy and 5@ — wi(OéSiJrl) = (I)+.
@ Inversion set: N(w) = {5; |t € N}.

Representation in conv(FE):
z € relint(K) and {w; - z, i € N}

Conjecture.
Ace(N(w) = Acc({w; - z, i € N})

Questions. Link with Lam &
Thomas, 2013? Geometric
realization of the Davis complex?

Christophe Hohlweg, 2013



Selected bibliography and other readings

Alexandre V. Barovik []JL @@@@. BIA }Z]

Anna Borovik FLEMENTS DE MATHEMATIOU |
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And articles already cited + from

0 Brigitte Brink, Bill Casselman, Fokko du Cloux, Bob
Howlett, Xiang Fu (regarding automaton and comb.)

0 Matthew Dyer (imaginary cones, weak order(s))

0 CH & coauthors (Matthew Dyer, Jean-Philippe Labbe,

Jean-Philippe Preaux, Vivien Ripoll). A good start for limit
of roots and imaginary convex bodies is the survey of the case of
Lorentzian spaces (CH, Ripoll, Préaux)

o P Papi and Ken Ito (limit weak order)
0 Hao Chen and Jean-Philippe Labbe (Sphere packing)

D...

Reflection
Groups and
Coxeter Groups

Associahedra,
Tamari Lattices
and Related
Structures

Christophe Hohlweg, 2013



