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Presentation

X Introduction
The commutative partial multivariate Bell polynomials have been
defined by E.T. Bell in 1934.
given by :

Bn,k (a1,a2, . . . ) =
∑ n!

k1!k2! . . . kn!

(a1

1!

)k1 (a2

2!

)k2

. . .
(an

n!

)kn

where k1 + k2 + · · · kn = k and k1 + 2k2 + 3k3 + · · · nkn = n

Applications :
• Combinatorics : set partitions
• Analysis, Algebra : Lagrange inversion theorem, Faà di Bruno’s

formula
• Probabilities : Gibbs distributions.
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Presentation

Some of the simplest formulæ are related to the enumeration of
combinatorial objects

• Stirling numbers of the first kind sn,k =
[n

k

]
(A008275)

• count the number of permutations according to their number of
cycles. [

n
k

]
= Bn,k (0!,1!,2!, . . . )

Example

• s(4,2) = 11 : the symmetric group on 4 objects has
3 permutations of the form (∗∗)(∗∗) : 2 orbits, each of size 2
8 permutations of the form (∗ ∗ ∗)(∗) : 1 orbit of size 3 and 1 orbit of
size 3.
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Présentation

• Stirling numbers of the second kind Sn,k =
{n

k

}
(A106800)

count the number of ways to partition a set of n objects into k
non-empty subsets. {

n
k

}
= Bn,k (1,1, . . . ,1)

Example

S(4, 2) = 7

• Lah numbers, : L(n, k) =
(n−1

k−1

) n!
k! (Sloane: A008297)

count the number of ways a set of n elements can be partitioned
into k nonempty linearly ordered subsets.

L(n, k) = Bn,k (1!,2!, . . . , (n − k + 1)!)
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Motivation

Find the main identities from symmetric functions

Give analogues of these formulæ in some Hopf algebras :

• The algebra of symmetric functions Sym
([33211] is a partition of the integer 10)

• The algebra of word symmetric functions WSym
({{1, 3}, {4} {2, 5}} is a set partition of {1, 2, 3, 4, 5})

• The bi-indexed word algebra BWSym
whose bases are indexed by set partitions into lists which can be
constructed from a set partition by ordering each block.

{[3, 1], [2]} ∼
(

321
{{1, 3}, {2}}

)
set partitions into lists of {1, 2, 3}
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Presentation

The PhD thesis of M. Mihoubi present some applications of
these polynomials and several examples

Dominique Manchon et al. (Noncommutative Bell polynomials,
quasideterminants and incidence Hopf algebras - 2014)
• various descriptions, commutative and noncommutative Bell

polynomials
• construct commutative and noncommutative Bell polynomials and

explain how they give rise to Faà di Bruno’s Hopf algebras.
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Outline

1 Combinatorial Hopf algebras

2 Bell polynomials

3 Bell polynomials in combinatorial Hopf algebras

4 Conclusion
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Combinatorial Hopf algebras

X combinatorial objects :
words : C < A >

permutations : FQSym

integer partitions : Sym

compositions : QSym

binary trees : PBT

set compositions : WQSym

set partitions : WSym

set partitions in lists : BWSym
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How do we define a combinatorial Hopf algebra ?

Minimum requirements

bases indexed by a combinatorial object
has a product and a coproduct
graded
dimension of space of degree 0 is 1

Additional conditions
can be realized as subalgebras of a polynomial algebra with an
infinite number of variables
has distinguished basis which has positive product and
coproduct structure coefficients
related to representation theory
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The algebra of symmetric functions : Sym

The algebra of symmetric functions

The algebra of symmetric functions, Sym(X), is the space of the
polynomials that are invariant under permutations of the variables
bases indexed by partitions λ = (λ1 ≥ λ2 ≥ · · · ≥ λr > 0).

Sym is generated by the monomials as a vector space
Sym is generated as an algebra by :

1 The power sum symmetric functions ; pn(X) is defined by :

pn(X) =
∑
i>1

xn
i

2 The nth complete symmetric functions ; hn(X) the sum of all the
monomials of degree n

10/42
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The algebra of symmetric functions : Sym

Example

for an alphabet X = {x1, x2, x3}
m21 = x2

1 x2 + x2
1 x3 + x2

2 x1 + x2
2 x3 + x2

3 x1 + x2
3 x2

h3 = m3 + m21 + m111

= x3
1 + x3

2 + x3
3 + m21 + x1x2x3.

p21 = p2p1

= (x2
1 + x2

2 + x2
3 )(x1 + x2 + x3)

= m3 + m21.
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Newton formula

The generating function of the hn(X) is given by the Cauchy
function :

σt (X) =
∑
n>0

hn(X)tn =
∏
i>1

(1− xi t)−1

Newton formula
These two free families of generators of Sym are linked by the
Newton formula :

σt (X) = exp{
∑
n>1

pn(X)
tn

n
}

where X = {x1, x2, . . .} is an infinite set of commuting variables
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Transformations of alphabets

let X, Y be two alphabets and α ∈ C
the sum of two alphabets X + Y is defined by :

pn(X + Y) = pn(X) + pn(Y)

or equivalently
σt (X + Y) = σt (X)σt (Y)

the product of two alphabets :

pn(XY) = pn(X)pn(Y)

and
σt (αX) = [σt (X)]α

eq
pn(αX) = αpn(X)
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The algebra of word symmetric functions

Definition of WSym

Let A be an alphabet.
X C < A > ={ linear combinations of words with the concatenation
product}
X The algebra of word symmetric functions is a way to construct a
noncommutative analogue of Sym.

• its bases are indexed by set partitions
power sum symmetric functions : Φ := {Φπ}π :
Φπ(A) =

∑
w a1a2 . . . an where i , j ∈ πk ⇒ ai = aj

word monomial functions defined by Φπ =
∑

π≤π′ Mπ′

Example

Φ{1,3}{2}Φ{1,4}{2,5,6}{3,7}{8} = Φ{1,3}{2}{4,7}{5,8,9}{6,10}{11}.

Φ{1,4}{2,5,6}{3,7} = M{1,4}{2,5,6}{3,7} + M{1,2,4,5,6}{3,7} + M{1,3,4,7}{2,5,6}
+ M{1,4}{2,3,5,6,7} + M{1,2,3,4,5,6,7}.
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Outline

1 Combinatorial Hopf algebras

2 Bell polynomials

3 Bell polynomials in combinatorial Hopf algebras
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Notations and background

X The Bell polynomials
The (complete) Bell polynomials are usually defined on an
infinite set of commuting variables {a1,a2, . . .} by the following
generating function∑

n>0

An(a1,a2, . . . ,ap, . . . )
tn

n!
= exp

∑
m>1

am
tm

m!


where An is the number of partitions of a set of size n.

The partial Bell polynomials are defined by∑
n>0

Bn,k (a1,a2, . . . ,ap, . . . )
tn

n!
=

1
k !

(
∑
m>0

am
tm

m!
)k

where Bn,k counts the number of partitions of a n-set into k blocks.
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examples

Example

Stirling number of :

the first kind : Bn,k (0!,1!,2!, . . . ) =

[
n
k

]
(A008275)

the second kind : Bn,k (1,1, . . . ) =

{
n
k

}
(A106800)

B6,2(x1, x2, x3, x4, x5) = 6x5x1 + 15x4x2 + 10x2
3

6 set partitions of 6 elements of the form 5 + 1
15 set partitions of 6 elements of the form 4 + 2
10 set partitions of 6 elements of the form 3 + 3
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Notations and background

remark

An(a1,a2, . . . ,an−k ,an−k+1) =
n∑

k=1

Bn,k (a1,a2, . . . ,an−k ,an−k+1)

is called the nth complete Bell polynomial

•Without loss of generality, we can assume a1 = 1
if a1 6= 0,

Bn,k (a1,a2, . . . ,ap, . . . ) = ak
1Bn,k (1,

a2

a1
, . . . ,

ap

a1
, . . . )

if a1 = 0 and k 6 n,

Bn,k (0,a2, . . . ,ap, . . . ) =
n!

(n − k)!
Bn,k (a2, . . . ,ap, . . . )

if a1 = 0 and n < k , Bn,k (0,a2, . . . ,ap, . . . ) = 0
18/42
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Observation

These polynomials are related to several combinatorial
sequences which involve set partitions.

Observation
it seems natural to investigate analogous formulæ on Bell
polynomials which involve combinatorial objects :

partitions
permutations
set partitions in lists etc

in some combinatorial Hopf algebra with bases indexed by these
objects.
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Outline

1 Combinatorial Hopf algebras

2 Bell polynomials

3 Bell polynomials in combinatorial Hopf algebras
Bell polynomials in Sym (sum and product)
Bell polynomials in the Faà di Bruno algebras
Bell polynomials in WSym algebras

4 Conclusion
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Cauchy function

σt (X) is the generating function of the hn(X)

σt (X) =
∑
n>0

hn(X)tn

remark
several equalities on Bell polynomials can be proved by
manipulating generating functions.
they are easily proved using symmetric functions and virtual
alphabets.
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Bell polynomials and Cauchy function

Consider X a virtual alphabet satisfying ai = i!hi−1(X) for any
i ≥ 1 and for simplicity, let h̃n(X) := n!hn(X).

One has :

∑
n>0

Bn,k (a1,a2, . . . )
tn

n!
=

tk

k !

∑
i>1

ai

i!
t i−1

k

=
tk

k !

∑
i>0

hi (X)t i

k

=
tk

k !
(σt (X))k

=
tk

k !
σt (kX).
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Bell polynomials in terms of Cauchy function

for each i , ai = i!hi−1(X)

Bn,k (1,2!h1, . . . , (m + 1)!hm(X), . . . ) =
n!

k !
hn−k (kX)

=

(
n
k

)
h̃n−k (kX)

where h̃n−k (kX) := (n − k)!hn−k (X)

remark
In the sequel for any alphabet X, we will denote by Bn,k the symmetric
function defined by :

Bn,k (X) :=

(
n
k

)
h̃n−k (kX).

23/42
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Examples

Lah numbers (number of ways a set of n elements can be
partitioned into k nonempty linearly ordered subsets) :

Specialization ai = i!, ∀i
It implies hi (X) = 1, ∀i
The generating function is given by :

σt (kX) = (
∑
n>0

hn(X)tn)k

= (
∑
n>0

tn)k = (
1

1− x
)k .

with this specialization (ai = i!),

Bn,k (1!,2!, . . . ,m!, . . . ) =

(
n − 1
k − 1

)
n!

k !
= Ln,k
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Sums of alphabets

As a consequence of

hn(X + Y) =
n∑

i=0

hi (X)hn−i (Y)

we have

h̃n((k1 + k2)X) =
n∑

i=0

(
n
i

)
h̃i (k1X)h̃n−i (k2X)

So that

Bn,k1+k2 (X) =

(
n

k1 + k2

)
h̃n−k1−k2 ((k1+k2)X) =

n∑
i=0

h̃i−k1 (k1X)h̃n−k2−i (k2X).

Hence (
k1 + k2

k1

)
Bn,k1+k2 =

n∑
i=0

(
n
i

)
Bi,k1Bn−i,k2 .
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Sums of alphabets

for two alphabets X and Y, we deduce that

Bn−k,k (X + Y) =
(n − k)!

k !
hn−2k (k(X + Y))

=
(n − k)!

k !

n−2k∑
i=0

hi (kX)hn−i−2k (kY)

=
(n − k)!

k !

∑
i1+i2=n

hi1−k (kX)hi2−k (kY).

Observation

Bn−k,k (X + Y) =

(
n
k

)−1 ∑
i1+i2=n

(
n
i1

)
Bi1,k (X)Bi2,k (Y)
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Bell polynomials and binomial functions

The partial binomial polynomials are known to be involved in
interesting identities on binomial functions.

In this section we want to prove the equality :

Bell polynomials and binomial polynomials

Bn,k (1, . . . , ifi−1(a), . . . ) =

(
n
k

)
fn−k (ka)

∀n 6 k 6 1, where (fn)n∈N is a binomial function satisfying{
f0(x) = 1

fn(a + b) =
∑n

k=0

(n
k

)
fk (a)fn−k (b)

This last identity is nothing but the sum of two alphabets stated in
terms of modified complete functions h̃n.
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Bell polynomials and binomial functions

With the specialization

h̃n(A) := fn(a) and h̃n(B) := fn(b)

the last equality is equivalent to the classical

h̃n(A + B) =
n∑

k=0

(
n
k

)
h̃k (A)h̃n−k (B)

which is a direct consequence of σt (A + B) = σt (A)σt (B)

As a direct consequence of

Bn,k (1,2!h1, . . . , (m + 1)!hm(X), . . . ) =

(
n
k

)
h̃n−k (kX)

we obtain

Bn,k (1, . . . , ifi−1(a), . . . ) = Bn,k (A) =

(
n
k

)
h̃n−k (kA) =

(
n
k

)
fn−k (ka).
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Product of two alphabets

Let (an)n and (bn)n be two sequences of numbers such that
a1 = b1 = 1 and a−n = b−n = 0 for each n ∈ N, k = k1k2.
the following identity seems laborious to prove :

Bn,k

(
. . . ,n!

∑
λ`n−1

det
∣∣∣∣ aλi−i+j+1

(λi − i + j + 1)!

∣∣∣∣det
∣∣∣∣ bλi−i+j+1

(λi − i + j + 1)!

∣∣∣∣ , . . .
)

=

n!

k !

∑
λ`n−k

(k1!k2!)`(λ) det
∣∣∣∣Bλi−i+j+k1,k1 (a1, . . . )

(λi − i + j + k1)!

∣∣∣∣det
∣∣∣∣Bλi−i+j+k2,k2 (b1, . . . )

(λi − i + j + k2)!

∣∣∣∣ .

Observation
But it looks rather simpler when we recognize

Bn,k (XY) =
n!

k !
hn−k (kXY)

and apply hn(kXY) =
∑
λ`n sλ(k1X)sλ(k2Y), where sλ = det

∣∣hλi−i+j
∣∣.
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specialization with the power sum functions pn

Bell polynomials in Sym again

σt (X) =
∑
n>0

hn(X)tn = exp{
∑
n≥1

pn(X)
tn

n
}

∑
n>0

An(a1,a2, . . . ,ap, . . . )
tn

n!
= exp

∑
m>1

am
tm

m!


we can consider the complete Bell polynomials An as the complete
functions h̃n(X). Here we define
Ap

n(X) := h̃n(X) = An(0!p1(X),1!p2(X), . . . , (n − 1)!pn(X), . . . )

Bp
n,k = Bn,k (0!p1(X),1!p2(X), . . . , (n−1)!pn(X), . . . ) = n!

∑
λ`n

#λ=k

1
zλ

pλ(X)

where zλ =
∏

i mi (λ)!imi (λ).

31/42



32

Combinatorial Hopf algebras Bell polynomials Bell polynomials in combinatorial Hopf algebras Conclusion

Arbogast(1800) - Faà di Bruno formula

Faà di Bruno formula can be expressed in terms of Bell
polynomials

dn

dtn f (g(t)) =
∑
k>0

∑
λ=(λ1,...,λk )`n

n!

zλ
f (k)(g(t))

k∏
j=1

g(λj )(t)
(λj − 1)!

.

for σx (X) = exp{
∑

n≥1
g(n)(t)

n! xn}

in other words, pn(X) = g(n)(t)
(n−1)!

We deduce

n!
∑
λ`n

1
zλ

k∏
j=1

g(λj )(t)
(λj − 1)!

= Bp
n,k (X)

so that
dn

dtn f (g(t)) =
∑
k>0

f (k)(g(t))Bp
n,k (X).
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Operation on alphabets

set hn(X) = g(n+1)(t)
(n+1)!g′(t)

we obtain the equivalent expression

dn

dtn f (g(t)) =
∑
k>0

(g′(t))k f (k)(g(t))Bn,k (X)

we define a new operation on alphabets :

σt (X♦Y) := (σt (X) ◦ tσt (Y)).

assuming that f (t) = σt (X) and g(t) = tσt (Y)

we obtain :

hn(X♦Y) =
n∑

k=1

k !

n!
hk (X)Bn,k (Y).
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Faà di Bruno’s algebra

the operation ♦ does not define a coproduct which is compatible
with the classical product in Sym.

the relationship with Bell polynomials can be established by
observing that, from the Faà di Bruno’s composition given by :

σt (X ◦ Y) = σt (Y)σt (X♦Y)

we have

hn(X ◦ Y) =
n∑

k=0

(k + 1)!

(n + 1)!
hk (X)Bn+1,k+1(Y)
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Faà di Bruno’s algebra

We define for each alphabet X an alphabet X〈−1〉 satisfying

σt (X ◦ X〈−1〉) = 1

We have

hn(X〈−1〉) =
hn(−(n + 1)X)

n + 1
=

n!

(2n + 1)!(n + 1)
B2n+1,n(−X).
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Lagrange-Bürmann’s formula

set ω(t),ω(0) = 0 and φ(t) such that ω(t) = tφ(tω(t))

the classical Lagrange-Bürmann formula for any formal power
series F :

F (ω(t)) = F (0) +
∑
n≥0

dn−1

dun−1 [F ′(u)(φ(u))m]∣∣u=0

tn

n!
.

Remark that if we suppose F (t) = σt (X) and ω(t) = tσt (Y) :

σt (X♦Y) = 1 +
∑
n≥1

dn−1

dun−1 [σ′u(X)σu(−nY〈−1〉)]|u=0
tn

n!
.
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Lagrange-Bürmann formula

In other words,

hn(X♦Y) = 1
n

∑
i+j=n−1(i + 1)hi+1(X)hj (−nY〈−1〉)

= 1
n

∑n
k=1 khk (X)hn−k (−nY〈−1〉)

so that
hn−k (−nY〈−1〉) =

(k − 1)!

(n − 1)!
Bn,k (Y).

as a consequence,

Bn,k (1,h1(2X), . . . ,m!hm((m + 1)X), . . . ) =
(n − 1)!

(k − 1)!
hn−k (nX).
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Bell polynomials of compositions of alphabets

from the Cauchy series :

σt (X♦Y) := (σt (X) ◦ tσt (Y)).

we give formulas involving Bell polynomials and composition of
alphabets

1

(
n
k

)−1

Bn,k (X♦Y) =
n−k∑
i=1

(
i + k

i

)−1

Bi+k,k (X)Bn−k,i (Y),

2

(
n + k

n

)
Bn,k (X ◦ Y) =

n−k∑
i=0

(
n + k
i + k

)
Bi+k,k (X♦Y)Bn−i,k (Y).
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Bell polynomials in other Hopf algebras

in the algebra of word symmetric functions, we obtain

Bn,k (S{{1}}(A), . . . ,S{{1,...,m}}(A), . . . ) =
∑
#π=k
π�n

Sπ(A).

the bi-indexed word algebra BWSym

Bn,k

(
S1,S12 + S21, . . . ,

∑
σ∈Sm

Sσ, . . .

)
=
∑
Π̂�n

#Π̂=k

SΠ̂.

the Hopf algebra SQSym
denoting by Cn the set of the cycles of size n
we obtain

Bn,k (M1,M21,M231 + M312, . . . ,
∑
σ∈Cn

M{{1,2,...,m}}, . . . ) =
∑
σ∈Sn

#supp(σ)=k

Mσ.
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Conclusion

The algebra Sym can be used to encode equalities on Bell
polynomials

we inverstigate analogues of Bell polynomials in other
combinatorial Hopf algebras

WSym
BWSym
the Faà di Bruno’s algebra

express the r− Bell polynomials in combinatorial Hopf algebras
(Sym).
we use properties of symmetric functions to prove known
identities about r−Bell polynomials as well as some new ones.
Link : (1402.2960)
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