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The exit rate of a forest is the sum of the exit rates of the trees.
A closed flow is a forest with exit rate 0.
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Theorem (Chapoton, C., Pons)

The number of closed flows of a given forest F is the number of
elements smaller than or equal to a certain binary tree T (F ) in the
Tamari order.

The proof is a bijection between all the closed flows on a rooted
forest and Tamari intervals having the same maximal element.
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Theorem (C., Pons)

The Tamari order intervals are in bijection with the posets with
labels in 1, . . . , n of size n such that:

I If a < c and a C c then b C c for all a < b < c.

I If a < c and c C a then b C a for all a < b < c.
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Thank you for your attention !
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