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INCIDENCE HOPF ALGEBRA OF THE HYPERTREE POSETS

BÉRÉNICE DELCROIX-OGER

Abstract. We adapt the computation of characters on incidence Hopf algebras in-
troduced by Schmitt in the 1990s for families of bounded posets to a family mixing
bounded and unbounded �nite posets. This computation relies on the introduction of
an auxiliary bialgebra: the coproduct in this bialgebra enables us to compute the con-
volution of some characters on the incidence Hopf algebra. After establishing a general
result on the link between the bialgebra and the incidence Hopf algebra, we apply it
to the family of hypertree posets and partition posets. This link for hypertree posets
enables us to recover the Möbius numbers of these posets due to the coproduct in
the associated bialgebra. This coproduct is computed using the number of hypertrees
with �xed valency set and �xed edge sizes set.
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Introduction

In 1994, Schmitt [13] de�ned the notion of incidence Hopf algebra associated with
a given family of intervals satisfying some closure properties. Using the Hopf algebra
structure, one can de�ne a convolution on characters on this algebra. The Möbius
number for posets of the family can then be computed using characters on the incidence
Hopf algebra.
However, the incidence Hopf algebras of Schmitt are only de�ned for bounded posets.

In the present article, we introduce a way to compute some characters for another type of
�nite posets, called the triangle and diamond posets. The diamond posets are bounded
posets whereas the triangle posets have a least element but no greatest one. If we
consider the hereditary family generated by the diamond posets and the augmented
triangle posets, i.e., the triangle posets with an added greatest element, we can build
the associated incidence Hopf algebraH. The coproduct in the non-counital bialgebra B
generated by isomorphism classes in the hereditary family obtained from diamond and
triangle posets can be linked with the coproduct of the incidence Hopf algebra H: this
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relation enables us to identify a computation involving maps from the bialgebra B to
Q with the convolution of characters on the incidence Hopf algebra H. The advantage
of this method is that the computation of such maps on the bialgebra B is, in most
cases, easier. In the rest of the article, we will apply this method to hypertree posets.
This method could also be applied to other families mixing bounded and unbounded
posets, such as, for instance, to planar hypertree posets or pointed hypertree posets (cf.
[10]), which are Cohen�Macaulay but for which there is still no known closed formula
for their Möbius numbers.
In the �rst section of the article, we present generalities on posets and incidence Hopf

algebras, before de�ning the bialgebra B in the second section.
In the third section of the article, we recall the notion of hypertrees. Hypergraphs

have been introduced in 1989 by Berge [3] as a generalization of graphs. Hypertrees are
hypergraphs satisfying a kind of connectedness and acyclicity. The set of hypertrees on
a vertex set I can be endowed with a partial order given by union of edges. We provide
a criterion on sequences (αi) and (πj) for the existence of a hypertree with αi vertices
of valency i and πj edges of size j, which also appears in [1]. In the fourth section, we
also present a formula for the number of hypertrees with a given edge-size and valency
sets, which was already computed by Bacher [1] and by Bousquet-Mélou and Chapuy
in [4] (see also [16]). We include the proof for self-containment, and refer the reader to
the beginning of this section for more bibliographic details.
The results of the third and fourth section are then used in the �fth section to compute

the coproduct in the bialgebra BHT associated with the hypertree posets. The Möbius
number of the poset of hypertrees on n vertices has been computed by McCammond and
Meier in [8]. The hypertree poset has also been studied in [6]. Chapoton has computed
its characteristic polynomial in [5], and he conjectured a formula for the action of the
symmetric group on the homology of the hypertree poset. This conjecture has been
proven by the author in [11]. In the last section, we propose a new way to compute
the Möbius number of the hypertree posets. The advantage of this method is that it is
algebraic, that it does not need the Cohen�Macaulayness of the posets, and that it uses
the usual framework of incidence Hopf algebra. This leads to the enumerative formula
(6.4) relating an alternating sum of quotients of factorials to the number of rooted trees
on n− 1 vertices.
We thank the referees for their advice, which helped me to improve this paper.

1. Generalities on posets and incidence Hopf algebras

In this section, we review some general notions on posets and incidence Hopf algebras
which will be needed in this article.

1.1. Generalities on posets. A poset is a set endowed with a partial order ≤. All
posets considered here will be �nite. The trivial poset is the poset which has only one
element. If P is a poset in which x ≤ y, then the interval [x, y] is the set {z ∈ P : x ≤
z ≤ y}, and the half-open interval [x, y) is the set {z ∈ P : x ≤ z < y}. If P is an
interval, P is called a bounded poset. In this case, its least and greatest elements will
be denoted by 0̂P and 1̂P , respectively, or by 0̂ and 1̂ if there is no ambiguity.
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Given a locally �nite poset P , its Möbius function µ is recursively de�ned by

µ(x, x) = 1, for all x ∈ P,(1.1)

µ(x, y) = −
∑
x≤z<y

µ(x, z), for all x < y ∈ P.(1.2)

The Möbius invariant, or Möbius number, of a �nite bounded poset P is de�ned as

(1.3) µ(P ) := µ(0̂P , 1̂P ).

Conceptually, the Möbius number of a poset can be de�ned as the inverse of the zeta
function with respect to convolution, as explained in Section 6.1.

Example 1.1. The Möbius number of the poset Bn of subsets of J1, nK, ordered by
inclusion, is (−1)n.

1.2. Generalities on incidence Hopf algebra. All the de�nitions recalled here are
extracted from the article [13] of Schmitt.
A family of intervals P is interval closed, if it is non-empty and, for all P ∈ P and

x ≤ y ∈ P , the interval [x, y] belongs to P . An order compatible relation on an interval
closed family P is an equivalence relation ∼ such that P ∼ Q if and only if there exists
a bijection φ : P → Q such that [0P , x] ∼ [0Q, φ(x)] and [x, 1P ] ∼ [φ(x), 1Q], for all
x ∈ P . Isomorphism of posets is an example of an order compatible relation.
Given an order compatible relation ∼ on an interval closed family P , we consider the

quotient set P/ ∼ and denote by [P ] the ∼-equivalence class of a poset P ∈ P . We
de�ne a Q-coalgebra C(P) as follows.

Proposition 1.2 ([13, Theorem 3.1]). Let C(P) denote the free Q-module generated

by P/ ∼. We de�ne linear maps ∆ : C(P)→ C(P)⊗ C(P) and ε : C(P)→ Q by

(1.4) ∆[P ] =
∑
x∈P

[0P , x]⊗ [x, 1P ]

and

(1.5) ε[P ] = δ|P |,1,

where δi,j is the Kronecker symbol. Then C(P) is a coalgebra with comultiplication ∆
and counit ε.

The direct product of posets P1 and P2 is the Cartesian product P1 × P2 partially
ordered by the relation (x1, x2) ≤ (y1, y2) if and only if xi ≤ yi in Pi, for i = 1, 2. A
hereditary family is an interval closed family which is also closed under formation of
direct products. Let ∼ be an order compatible relation on P which is also a semigroup
congruence, i.e., whenever P ∼ Q in P , then P ×R ∼ Q×R and R× P ∼ R×Q, for
all R ∈ P . This relation is reduced if, whenever |R| = 1, then P × R ∼ R × P ∼ P :
all trivial intervals are then equivalent and give a unit element for the product on the
quotient. These hypotheses ensure that the product will be well de�ned on the quotient.
The obtained unit is denoted by ν. An order compatible relation on a hereditary family
P which is also a reduced congruence is called a Hopf relation on P . Isomorphism of
posets is a Hopf relation.
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Proposition 1.3 ([12]). Let ∼ be a Hopf relation on a hereditary family P. Then

H(P) = (C(P),×,∆, ν, ε, S) is a Hopf algebra over Q, with the antipode S on an

equivalence class of posets [P ] in C(P) given by

(1.6) S[P ] =
∑
k≥0

∑
x0<···<xk
x0=0P
xk=1P

(−1)k
k∏
i=1

[xi−1, xi].

Example 1.4. The incidence Hopf algebra generated by the family of posets of subsets
of J1, nK is the polynomial algebra Q[x], endowed with the coproduct

∆(xn) =
n∑
k=0

(
n

k

)
xk ⊗ xn−k.

We may consider the set of Q-linear algebra homomorphisms between H(P) and
Q, which send the trivial poset to the unit of Q. These homomorphisms are called
characters. The set of characters has a canonical group structure as follows. Given two
characters φ and ψ and an element P of H(P), the convolution of φ and ψ is de�ned
by

(1.7) (φ ∗ ψ)(P ) =
∑

φ(P(1))ψ(P(2)),

where ∆(P ) =
∑
P(1)⊗P(2), using Sweedler's convention. The unit of this group is the

counit of the Hopf algebra H(P).

2. Incidence Hopf algebra of triangle and diamond posets

In this section, we �rst present the incidence Hopf algebra of triangle and diamond
posets. This incidence Hopf algebra is bigger than desired, as some open intervals of
triangle posets are products of triangle posets but cannot be decomposed as products
anymore once bounded by the addition of a greatest element. We thus present in
the second subsection a non-counital bialgebra for the family of triangle and diamond
posets, before linking characters on the incidence Hopf algebra of triangle and diamond
posets with a computation in the bialgebra associated with triangle and diamond posets.
This link is used in Section 6 to compute some characters on the hypertree posets.

2.1. Presentation of the triangle and diamond posets and their incidence

Hopf algebra. Let us consider the family F0 consisting of posets {(di)i≥1, (tj)j≥3},
such that d1 is the trivial poset, di is a �nite interval for all i ≥ 2, and tj is a �nite
poset with a least element but without a greatest element. The elements of the collection
(di)i≥1 will be called diamond posets, and the elements of (tj)j≥2 will be called triangle

posets. We denote by t̂j the augmented triangle poset, bounded by the addition of a

greatest element 1̂ to tj. We moreover assume that:

Decomposition Property 1. Any closed interval in a diamond poset can be written
as a direct product of diamond posets.

Decomposition Property 2 a. Any closed interval in a triangle poset can be written
as a direct product of diamond posets.
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Decomposition Property 2 b. Any half-open interval [t, 1̂) in an augmented triangle
poset t̂j is trivial or can be written as a direct product of triangle posets (see
Figure 2.1).

We denote by F1 the smallest hereditary family containing F0. Due to the decompo-
sition properties, this family is constituted by direct products of diamond and triangle
posets. As diamond and triangle posets admit a least element, all posets in F1 have a
least element, some of these are intervals but others are not. We construct a hereditary
family of intervals from this family.
To apply Schmitt's construction, we now consider the smallest hereditary family F2

containing the elements of the family F1 augmented with a maximal element when
they are not intervals. The family F2 then contains all the augmented elements of
F1, but also upper intervals in augmented triangle posets which cannot be rewritten
as a direct product anymore, and direct products of these posets. The family F2 is
then a hereditary family of intervals. We apply Schmitt's construction to this family
taking isomorphism of posets as a reduced order compatible relation to obtain the
incidence Hopf algebra H�,O. We show that, under some assumptions, the calculus of
some characters on H�,O can be reduced to a calculus in a smaller algebra.

2.2. A smaller bialgebra constructed on triangle and diamond posets. The
family F1 is closed under direct product and under taking intervals, in the sense that any
closed or half-open interval of a poset of the family belongs to the family. We construct
a bialgebra from this family in the same way as Schmitt constructs an incidence Hopf
algebra from a hereditary family of intervals, adapting the construction to the fact that
some posets of the family have no greatest element. The bialgebra obtained is not
counital on the right due to the absence of a greatest element in some poset. It would
be interesting to generalize this construction to a family F of �nite not necessarily
bounded posets, closed under direct product and by taking down- and up-sets, i.e.,
such that, for any poset P and any x in P , the sets D(x) = {y ∈ P | y ≤ x} and
U(x) = {y ∈ P | y ≥ x} belong to the family F . The obtained bialgebra would be
counital on the right if and only if all posets in F have a greatest element and counital
on the left if and only if all posets in F have a least element. However, as the posets
considered in the rest of this paper have a least element, we will restrict ourselves to
families of posets of this type.
Taking isomorphism of posets as an order compatible relation which is also a reduced

congruence ∼, the set F̃1 = F1/ ∼ is a monoid, with product induced by direct product
of posets and identity element 1 equal to the class of any trivial poset. Let us denote
by V (F1) the free Q-module generated by F̃1. The monoid structure on F̃1 induces
an algebra structure on V (F1), isomorphic to the monoid algebra of F̃1 over Q. As
F1 is the set of monomials on triangle and diamond posets of F0, the algebra V (F1) is
generated by isomorphism classes of triangle and diamond posets of F0. Let us remark
that all elements of F1 have a least element, but some of them do not have a greatest
element. We de�ne the coproduct on P ∈ F1 by

(2.1) ∆(P ) =
∑
x∈P

D(x)⊗ U(x),
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•
•

Figure 2.1. Intervals in diamond and triangle posets: all of these are
products of diamond posets, except half-open upper intervals in triangle
posets, which are trivial or products of triangle posets.

where D(x) = {y ∈ P |y ≤ x} is called a down-set and U(x) = {y ∈ P |y ≥ x} is called
an up-set, as above.
Let us remark that diamond posets are intervals, whereas triangle posets are not:

these two types of posets thus cannot belong to the same isomorphism class.

Proposition 2.1. The coproduct ∆ is an algebra homomorphism. The algebra V (F1)
together with this coproduct is then a bialgebra, not counital on the right, and denoted

by B�,O.
The subalgebra D� generated by the diamond posets is a subbialgebra of B�,O iso-

morphic to the incidence Hopf algebra of diamond posets. The subalgebra TO of B�,O
generated by the triangle posets is a right comodule over D�.

Proof. An interval I in a product of posets P1 × · · · × Pk can be seen as a product of
intervals I1 × · · · × Ik, where each Ik is an interval in Pk.
Due to this property, we can rewrite the coproduct of a product of two posets P and

Q in the form

∆(P ×Q) =
∑

x∈P,y∈Q

D(x, y)⊗ U(x, y)

=
∑
x∈P

∑
y∈Q

(D(x)×D(y))⊗ (U(x)× U(y))

=
∑
x∈P

D(x)⊗ U(x)×
∑
y∈Q

D(y)⊗ U(y).

This coproduct is thus an algebra homomorphism. The algebra V (F1) is then endowed
with a coproduct which is an algebra homomorphism: it is a bialgebra. Let us remark
that for a triangle poset P , the coproduct ∆(P ) never contains the term P ⊗ 1: the
bialgebra is therefore not counital on the right.
The subalgebra D� generated by the diamond posets is also a subcoalgebra according

to the �rst decomposition property. Indeed, every interval in a diamond poset is a
product of diamond posets, therefore the coproduct of a diamond poset is a sum of tensor
products of products of diamond posets. The subalgebra D� is then a subbialgebra of
B�,O. By de�nition, this subbialgebra is isomorphic as a bialgebra to the incidence Hopf
algebra of diamond posets.
According to the second decomposition property, the coproduct of a triangle poset is

a sum of tensor products. The terms on the left of this product are diamond posets and
the terms on the right are triangle posets: the subalgebra TO of B�,O generated by the
triangle posets is then a right comodule over D�. The subalgebra TO is not unital. �
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We next show that the computation of some characters on the incidence Hopf algebra
H�,O can be reduced to some calculus in the bialgebra B�,O.

2.3. Characters on the incidence Hopf algebra of triangle and diamond

posets. We de�ne the linear map

(2.2) λ : B�,O → H�,O
which sends an isomorphism class cdi of a diamond poset di in B�,O to the isomorphism
class cdi of di in H�,O and which sends an isomorphism class ctj of a triangle poset tj
in B�,O to the isomorphism class ct̂j of the augmented triangle poset t̂j in H�,O. We
stress the fact that this map is neither an algebra homomorphism nor a coalgebra
homomorphism.
This linear map is well de�ned. Indeed, if two diamond posets are in the same iso-

morphism class in B�,O, then they are also in the same isomorphism class in H�,O. If two
triangle posets are in the same isomorphism class in B�,O, then these posets augmented
with a greatest element are also isomorphic, and thus in the same isomorphism class in
H�,O.
We would like to compute some characters on the isomorphism classes of the diamond

posets di of F0 and augmented triangle posets t̂j coming from triangle posets tj of F0

in H�,O. As F0 is a subfamily of F1, to any element of F0 corresponds an isomorphism
class in B�,O which is sent to the isomorphism class of the corresponding element in
H�,O: the elements on which we want to compute characters belong to the image of λ.
We observe that the �bre of any isomorphism class in the image of λ contains at most

one isomorphism class of triangle posets and at most one isomorphism class of diamond
poset. Indeed, if two isomorphism classes of triangle posets, or two isomorphism classes
of diamond posets, are sent by λ to the same isomorphism class, then these isomorphism
classes are equal.
A character γ on H�,O is said to satisfy the HtoB-condition if there exists a rational

number ωγ and a map γ̃ from B�,O to Q which satisfy

(2.3) γ(λ(cdi)) = γ̃(cdi) and γ(λ(ctj)) = ωγ γ̃(ctj),

The number ω will be chosen as −1 in the example of hypertree posets developed in
the following sections.
The convolution of two characters onH�,O can be computed by means of the following

theorem.

Theorem 2.2. The convolution of the characters α and β on H�,O satisfying the HtoB-
condition (2.3) is given by

(α ∗ β)(λ(cdi)) =
∑

α̃(c
(1)
di

)β̃(c
(2)
di

),

and

(α ∗ β)(λ(ctj)) = ωβ
∑

α̃(c
(1)
tj )β̃(c

(2)
tj ) + ωαα̃(ctj),

where ∆(cdi) =
∑
c
(1)
di
⊗ c(2)di and ∆(ctj) =

∑
c
(1)
tj ⊗ c

(2)
tj in B�,O.

Proof. The isomorphism class λ(cdi) is the isomorphism class of the diamond poset di
in H�,O by de�nition of λ. Moreover, the coproduct of λ(cdi) in H�,O and of cdi in B�,O
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are the same by de�nition of the coproduct. As α and α̃ on the one hand, and β and β̃
on the other hand, are equal on λ(cdi) and cdi , respectively, the �rst equality follows.
To obtain the second equality, we observe that the isomorphism class λ(ctj) corre-

sponds to the isomorphism class of the augmented triangle poset t̂j by de�nition of λ.
Hence the coproduct of λ(ctj) in H�,O has one more term than the coproduct of ctj in

B�,O, due to the fact that the poset t̂j has one more element than the poset tj. This
term is λ(ctj) ⊗ 1. All the other terms can be matched by associating λ(ctj) with the
unique isomorphism class of triangle posets of its �bre ctj . Moreover, the posets on the
left part of the coproduct of λ(ctj) are of diamond type, except for the term that does
not belong to the coproduct of ctj , and α and α̃ coincide on diamond posets. Therefore
we have

(α ∗ β)(λ(ctj)) =
∑

α̃(c
(1)
tj )ωββ̃(c

(2)
tj ) + ωαα̃(ctj).

This yields the claimed result. �

3. Hypertree posets

A hypergraph is a pair (V,E), where the elements of V are called vertices and the
elements of E, called edges, are sets of at least two vertices. We will only consider
hypertrees on at least two vertices: each vertex thus belongs to at least one edge. The
size of an edge e is the number of vertices in the edge e. The valency of a vertex v is
the number of edges to which v belongs. A walk on a hypergraph H = (V,E) from a
vertex s of H to a vertex f of H is an alternating sequence of vertices and edges in H,
s = v0, e0, v1, e1, . . . , en−1, vn = f , such that ei is an edge containing the vertices vi and
vi+1, for i ∈ J0, n − 1K. A hypertree is a hypergraph such that, given any pair (s, f)
of vertices, there exists exactly one walk from s to f without repeated edges. Given
a hypertree T with vertex set V of cardinality n, we say that T is a hypertree on n
vertices.
We may de�ne the following order on hypertrees: a hypertree T is smaller than

a hypertree T ′ whenever the edges of T are unions of some edges of T ′. The set of
hypertrees on n vertices endowed with this partial order is a poset denoted by hn. This
poset has a least element 0̂, given by the hypertree the only edge of which being the
one which is formed by the complete vertex set V . The poset obtained by adding a

greatest element 1̂ is called the (n-)augmented hypertree poset and is denoted by ĥn.
We now want to characterize tuples α = (α1, . . . αk) and (π2, . . . , π`) such that there

exists a hypertree with αi vertices of valency i and πj edges of size j, for i ≥ 1 and
j ≥ 2. For that purpose, we will consider hypertrees as J1, nK-labelled bipartite trees
as in [9]. A J1, nK-labelled bipartite tree is a tree T together with a bijection from J1, nK
to a subset of its vertex set such that the image of J1, nK includes all of the vertices
of valency 1, and for every edge in T exactly one of its endpoints lies in the image
of J1, nK. The labelled vertices of a bipartite tree correspond to the vertices of the
associated hypertree, and the other vertices correspond to the edges of the hypertree.
An example of a hypertree and the associated labelled bipartite tree is presented in
Figure 3.2. The number of labelled vertices of valency i is then denoted by αi and the
number of unlabelled vertices of valency j (or of edges of size j in the hypertree) by πj.
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Figure 3.2. A hypertree and its associated labelled bipartite tree.

We obtain the following criterion for the existence of such an hypertree, which was
�rst given in an equivalent formulation by Bacher [1]. Here, we provide a direct proof
of his result.

Proposition 3.1. Given two tuples α = (α1, . . . , αk) and π = (π2, . . . , π`), there exists

a hypertree on n vertices with αi vertices of valency i and πj edges of size j if and only

if

k∑
i=1

αi = n,(3.1)

∑̀
j=2

(j − 1)πj = n− 1,(3.2)

k∑
i=1

iαi = n+
∑̀
j=2

πj − 1.(3.3)

We postpone the proof of this proposition in order to illustrate it �rst by an example.

Example 3.2. For n = 4, the second equation of (3.1) implies that
∑`

j=2 πj ≤ 3, i.e.,∑k
i=1 iαi ≤ 6. The possible α's are:

• α = (4); in that case, we obtain the condition
∑`

j=2 πj = 1, so the only possible
π is π = (0, 0, 1);

• α = (3, 1); in that case, we obtain the condition
∑`

j=2 πj = 2, so the only
possible π is π = (1, 1);

• α = (2, 2); in that case, we obtain the condition
∑`

j=2 πj = 3, so the only
possible π is π = (3);
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• α = (3, 0, 1); in that case, we obtain the condition
∑`

j=2 πj = 3, so the only
possible π is π = (3).

We now give a new direct proof of the criterion in Proposition 3.1.

Proof of Proposition 3.1. Suppose that there exists such a hypertree. Let T be such
a hypertree. Every vertex in T has a �xed valency. Therefore, counting vertices, we
obtain the �rst equation

k∑
i=1

αi = n.

By construction of the labelled bipartite tree B associated with T , every unlabelled
vertex is linked with a labelled vertex. This leads to the following equality by counting
edges around labelled and unlabelled vertices of B:

(3.4)
k∑
i=1

iαi =
∑̀
j=2

jπj.

Moreover, with a bipartite tree we may associate a simplicial complex with faces of
dimension at most 1. This simplicial complex is connected without cycles, therefore its
Euler characteristic is equal to 1 and can be expressed as

(3.5) χ = 1 =
∑
j≥2

πj −
∑
j≥2

jπj +
∑
i≥1

αi.

These equations are equivalent to (3.1)�(3.3).

Let us now prove that this condition is also su�cient. We consider a set of αi labelled
vertices with i half-edges and πj unlabelled vertices with j half-edges, with i ≥ 1 and
j ≥ 2, such that (3.1)�(3.3) are satis�ed. As this implies that (3.4) is satis�ed, we can
then choose a way to associate the vertices to obtain a J1, nK-labelled bipartite graph
T , i.e., a graph together with a chosen bijection from J1, nK to a subset of its vertex set
such that the image of J1, nK includes all of the vertices of valency 1 and for every edge
in T exactly one of its endpoints lies in the image of J1, nK.
As our assumption also implies that (3.5) is satis�ed, the Euler characteristic, i.e.,

the di�erence between the number of connected components and the number of cycles,
is equal to 1. If the graph T is connected, then it has no cycles: it is a tree and we
have constructed a J1, nK-labelled bipartite tree. The associated hypertree has �xed set
of valencies and �xed set of edge sizes.
If the graph T is not connected, then there is a cycle in one of the connected com-

ponents. Therefore, there is an edge in this connected component that can be removed
without increasing the number of connected components. This edge is between an un-
labelled vertex u1 and a labelled vertex l1. Let us cut an edge in one of the other
connected components between two vertices u2 and l2. We then obtain a graph with
each element of the set {u1, l1, u2, l2} having an unlinked half-edge. Linking u2 with l1
and u1 with l2, we obtain a J1, nK-labelled graph satisfying the conditions with one less
connected component. Indeed, we may have disconnected the connected component
of u2 and l2 by deleting the edge but when linking the vertices we create a path from
u2 to l2 by using the one existing between u1 and l1. As this operation decreases the
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number of connected components, we can repeat it until we �nd a hypertree matching
the required conditions. �

From the second equation of the proposition, we may deduce the following expression
for π2 in terms of πj for j ≥ 3:

π2 = n− 1−
∑
j≥3

(j − 1)πj.

4. Computation of the number of hypertrees with fixed parameters

In this section, we compute the number of hypertrees with a given edge size and
valency set. After having written the proof, the author was informed that this result
was already obtained by Bacher [1] and by Bousquet-Mélou and Chapuy [4] in terms
of bicoloured trees (see also [16]). Although the proof of this section is really close
to the reasoning of Bacher, we still present it here for self-containment. The Prüfer
code presented here is di�erent from the one presented by Bacher, although it was
already introduced by Selivanov in [14] according to Bacher [2]. We thank the di�erent
mathematicians who have reported to us the already existing literature and helped us
improve the accuracy of the references.
We want to compute the number of hypertrees with αi vertices of valency i and πj

edges of size j. We do this using bijections. Given a tuple π, we call a partition a
π-hanging partition if it has one block consisting of a vertex, πj other blocks consisting
of j − 1 vertices, and in each of these πj other blocks a �fastener�, which by de�nition
is a mark in the block indicating that this block will be linked to the vertex of another
block, for j ≥ 2.

Example 4.1. A π-hanging partition P , for π = (1, 2):

2 1 5 4 3 6 .

For convenience, we write X for the fastener and represent the π-hanging partition
as

P = (2) (X|1 5) (X|4 3) (X|6).

Then the assembly of elements of a π-hanging partition of a hypertree can be seen as
an assembly of coat-hangers and coat racks. In Figure 4.1, we represent the assembly
of the π-hanging partition

(2) (X|1 5) (X|4 3) (X|6) (X|7 8 9)

and the corresponding hypertree.

Let us �x π and α and denote the set of π-hanging partitions by ΠHP, and the set
of rooted hypertrees with αi vertices of valency i and πj edges of size j by Hp

α,π. We
de�ne a map ϕ : Hp

α,π → ΠHP in the following way. Given an edge e, we map it to
the set of all vertices of e, except the closest to the root, with a fastener added to this
set. If we add the singleton made of the root to this set of hanging sets, we obtain a
π-hanging partition. Indeed, all sets but one of cardinality one have a fastener, and the
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6

1

52 4

37

8

9

2

6

1 5

4 3

7 8 9

Figure 4.1. A hypertree and the corresponding assembly of a π-hanging
partition (2) (X|1 5) (X|4 3) (X|6) (X|7 8 9).

size of each hanging set is one less than the size of the associated edge. An example of
the image of a hypertrees under the map ϕ is presented in Example 4.3.
Given P in ΠHP, we denote the �bre ϕ

−1(P ) by FP . The cardinality ofHp
α,π is the sum

of the cardinalities of the disjoint �bres. As we will see in the proof, the cardinality of a
�bre is independent of the considered π-hanging partitions. We denote this cardinality
by dnα. We will say that we can construct a hypertree H from a π-hanging partition P
if ϕ(H) = P .
Let us now link hypertrees to hanging partitions.

Lemma 4.2. The number of rooted hypertrees with αi vertices of valency i and πj edges
of size j is given by

(4.1) |Hp
α,π| =

1

n
× n!∏

j≥2(j − 1)!πjπj!
× dnα.

Proof. We want to compute the cardinality of Hp
α,π. Let us consider the action of the

symmetric group Sn on Hp
α,π by permutation of vertices. By de�nition of the map ϕ,

which is Sn-equivariant, this action induces an action of the symmetric group on the
set ΠHP. The action of the symmetric group Sn on the set of all hanging partitions
of type π is transitive, as it does not change the sizes of the blocks of the partitions.
Let (Oj)1≤j≤p be the orbits for the action of Sn on the set Hp

α,π. The �bre FP has a

component fPj in every orbit Oj. We summarize all these notations in the diagram of
Figure 4.2.

ϕ

ΠHPHpα,π

O1O2O3

PH3 H2 H1

fP3 fP2 fP1

FP

Figure 4.2. The map ϕ.
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We consider a hypertree Hj in each fPj . The orbit-stabilizer theorem applied to Oj
yields

n! = |Oj| × |AutHj
|,

where |AutHj
| is the cardinality of the automorphism group of the rooted hypertree

Hj. As Hp
α,π =

⊔p
j=1Oj, we obtain the relation

(4.2) |Hp
α,π| = n!×

p∑
j=1

1

|AutHj
|
.

Let us consider the group GP of permutations of J1, nK �xing P . There are exactly∏
j≥2(j − 1)!πjπj! such permutations. The group GP acts on the �bre FP transitively

on each fPj . Indeed, if σ ∈ Sn sends a hypertree H of fPk to a hypertree H ′ of fPk , then
σ stabilizes P since ϕ(H) = ϕ(σ(H)) = P . Subsequently, the orbit-stabilizer theorem
applied to fPj gives

(4.3) |fPj | × | StabGP
Hj| = |GP | =

∏
j≥2

(j − 1)!πjπj!,

where StabGP
Hj = {σ ∈ GP |σ(Hj) = Hj}.

We show that StabGP
Hj = AutHj

. As GP ⊆ Sn, it is easily shown that StabGP
Hj ⊆

AutHj
. For a permutation σ in AutHj

, we have ϕ(σ(Hj)) = ϕ(Hj) = P and ϕ(σ(Hj)) =
σ(P ). In other words, σ stabilizes P . Therefore, we obtain the relation StabGP

Hj =
AutHj

. Combined with (4.2) and (4.3), we get the result, since dnα =
∑p

j=1 |fPj |. �

Example 4.3. We consider the π-hanging partition P

P = (2) (X|1 5) (X|4 3) (X|6),

with π = (1, 2), where X represents the fastener of the block. For α = (4, 2), we may
construct the following rooted hypertrees (and many others):

T = 6

1

52 4

3

and T ′ = 6

5

12 4

3

.

Let us consider the group GP of permutations of J1, nK �xing P , introduced in the
proof of Lemma 4.2. We describe an example of the action of the group GP on the �bre
of P . Considering T and T ′ in the �bre of P (ϕ(T ) = ϕ(T ′) = P ), the permutation
(3 4) �xes T and T ′, but the permutation (1 5) sends T to T ′. Hence T and T ′ are in
the same orbit.
The following hypertree T ′′ is not in the orbit of T and T ′:

6

4

321

5

.

We now want to compute the number dnα of constructions of a hypertree of valency
set α from a π-hanging partition Pπ. This is also the cardinality of the �bre ϕ−1(Pπ).
This construction is given by a bijection introduced by Bacher in [1], which we recall
for self-containment of this article.
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Lemma 4.4. Given a pair (α, π) in Pn and a π-hanging partition Pπ, there is a bijection
between the set of constructions of a rooted hypertree of valency set α from Pπ and the

set of words on J1, nK of length
∑

j≥2 πj − 1 with
∑

i≥2 αi di�erent letters, where αi
letters appear i− 1 times for i ≥ 2.

Proof. We prove this lemma using a Prüfer code type proof. We want to count the num-
ber of di�erent rooted hypertrees which can be constructed from a π-hanging partition
Pπ and which have αi vertices of valency i for i ≥ 1. Given such a rooted hypertree,
we recursively construct a variant of Prüfer code.
If the hypertree has only one edge of size n, then we can separate the root from the

edge and put a fastener instead: we obtain two blocks, the one of the root and another
hanging one of size n− 1. Given a π-hanging partition, we assemble the two blocks of
the partition into one edge and it gives back the hypertree. The associated word is the
empty word, which is of length 0.
If the rooted hypertree H has more than one edge, we consider the set of leaves of

the hypertree, i.e., the set of edges whose vertices but the closest from the root, called
the petiole, are of valency 1. We order the set of leaves according to their minimal
unshared element. The petiole of the minimal leaf will be the �rst letter w1 of the word
w associated with H. We suppose that this vertex has a valency v. We denote the size
of the minimal leaf by sm. Then, by deleting the minimal leaf and its sm − 1 vertices
di�erent from the petiole, we obtain a rooted hypertree H ′ on n − sm + 1 vertices in
which the valency of the petiole w1 has decreased by one, the number of vertices of
valency 1 has decreased by sm − 1, and all other vertices have the same valency. As
vertices of valency 1 do not appear in the word associated with the hypertree, the
deletion of these vertices only decreases the number of occurrences of w1 in the word
associated with H ′ by one compared with the word associated with H. If w is the word
associated with H and w′ the one associated with H ′, then w = w1w

′.
Moreover, the hanging partition associated with H ′ can be obtained from Pπ by

deleting the hanging block of Pπ containing the vertices of valency 1 of the minimal
leaf. We then construct the word w′ associated withH ′: it is a word of length

∑
j≥2 πj−2

letters, with
∑

i≥2 αi di�erent letters, where αi letters appear i−1 times for i 6= v, v−1,
αv − 1 letters appear v − 1 times, and αv−1 + 1 letters appear v − 2 times. We note
that the vertex w1 is of valency v− 1 in H ′, so it appears v− 2 times in w′. Hence, the
letter w1 appears v − 1 times in the word w = w1w

′, and the word w = w1w
′ satis�es

the required conditions.

If we have a π-hanging partition and a word w satisfying the required conditions, we
can build the associated rooted hypertree by ordering the blocks with a fastener whose
elements are not letters of w according to their minimal element. Then we attach the
least element of these blocks to the last letter of the word, which is an element of
another block and delete this last letter. We repeat these operations until the word is
empty. We �nally obtain a rooted hypertree, and this operation is the inverse of the
construction above. Hence, this gives a bijection between the constructions of rooted
hypertrees from hanging partitions and the set of words of the lemma. �

Example 4.5. Considering the hanging partition P and the hypertrees T , T ′, and T ′′

of Example 4.3, the words associated with the construction of T , T ′ and T ′′ from P are
1 6, 5 6, and 2 6, respectively.
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The hypertree whose construction from P is associated with the word 6 2 is

6

1

524

3

.

There are 36 words associated with the π-hanging partition: 6 corresponding to
hypertrees with a vertex of valency 3 and the others of valency 1, and 30 corresponding
to hypertrees with two vertices of valency 2 and the others of valency 1.

Lemma 4.6. For a tuple (α1, α2, . . . ), put k =
∑

i≥1(i− 1)αi and n =
∑

i≥1 αi. Then

the number of length k words on the alphabet [1, n], with αi letters repeated i− 1 times,

is

(4.4) dnα =
k!× n!∏

i≥1(i− 1)!αiαi!
.

Proof. This lemma is a classical result. �

Using this lemma, we obtain the following proposition.

Proposition 4.7. If the tuples α = (α1, . . . ) and π = (π2, . . . ) satisfy (3.1)�(3.3), the
number of hypertrees with αi vertices of valency i and πj edges of size j, for i ≥ 1 and

j ≥ 2, is given by

(4.5) cnα,π =
1

n
× n!∏

j≥2(j − 1)!πjπj!
× (K − 1)!× n!∏

i≥1(i− 1)!αiαi!
,

with K =
∑

j≥2 πj =
∑

i≥1(i− 1)αi + 1 and n =
∑

i≥1 αi.

Proof. This proposition follows from Lemmas 4.2, 4.4, and 4.6. �

5. Coproduct in the bialgebra

Some intervals in the hypertree posets will be described in terms of another type of
posets: partition posets. A partition poset is a poset on the set of all partitions of a set
V . A partition a1 is smaller than a partition a2 if each block of a1 is the union of some
blocks of a2. The partition poset on n vertices pn is based on the set of partitions of a
set of cardinality n. The poset p4 is presented in Figure 5.1.

We need the following result of McCammond and Meier on intervals in the hypertree
poset.

Lemma 5.1 ([8, Lemma 2.5]). Let T be a hypertree on n vertices, for n ≥ 2. Then the

following hold:

(a) The interval [0̂, T ] is a direct product of partition posets, with one factor pj for
each vertex in T with valency j.

(b) The half-open interval [T, 1̂) is a direct product of hypertree posets, with one

factor hj for each edge in T with size j.

Let us consider the incidence Hopf algebra HĤT = (HĤT ,×, ε, η,∆, S) obtained from
the construction of Section 2.1 by taking the set of partition posets (pi)i≥1 for the
set of diamond posets and the set of hypertree posets (hn)n≥3 for the set of triangle
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{1}{2}{3}{4}

{1, 2}{3}{4} {1, 3}{2}{4} {1}{2, 3}{4} {1, 4}{2}{3} {1}{2, 4}{3} {1}{2}{3, 4}

{1, 2, 3}{4} {1, 2, 4}{3} {1, 2}{3, 4} {1, 3}{2, 4} {1, 3, 4}{2} {1, 4}{2, 3} {1}{2, 3, 4}

{1, 2, 3, 4}

Figure 5.1. The poset p4

posets. Indeed, the partition poset p1 on one element and the hypertree poset h2 on two
elements are both isomorphic to the trivial poset, partition posets are intervals, and
hypertree posets have a least element but no greatest one. Moreover, it is a classical
result that every interval in a partition poset is isomorphic to a product of partition
posets (see [16]). This fact combined with Lemma 5.1 implies that this family satis�es
the decomposition property and therefore all the requirements of Section 2.1. We denote

the augmented hypertree poset by ĥn.
We consider H∗

ĤT
, the group of characters χ : HĤT → Q. We aim at calculating

the Möbius numbers of the augmented hypertree posets using the classical techniques
of characters. A good reference for such a computation of characters for the partition
posets, and Möbius numbers, is the article [15] of Speicher. To compute the character
which associates with a poset of HĤT its Möbius number, we use Theorem 2.2.
We write BHT for the bialgebra de�ned in Section 2.2, where partition posets play

the role of diamond posets and hypertree posets play the role of triangle posets. Due
to Lemma 5.1(b), we see that this bialgebra is not only generated as an algebra by
isomorphism classes of partition posets and isomorphism classes of intervals [τ, 1̂), where
τ is a hypertree, but also by a smaller set: the isomorphism classes of partition posets
pn and the isomorphism classes of hypertree posets hn. Moreover, partition posets and
hypertree posets are both graded, therefore two partition posets or hypertree posets on
n and m elements, respectively, are isomorphic if and only if m and n are equal. As
every pi and hj are pairwise not in the same isomorphism classes, due to gradings, and
as we focus on these classes, we will use the same notation for the isomorphism classes
of posets and posets themselves.
Let us remark that the subalgebra of BHT generated by partition posets, as described

in Proposition 2.1, is the Faà di Bruno Hopf algebra. This is also a subalgebra of HĤT .
Moreover, the subalgebra of BHT generated by hypertree posets is a right comodule
over the Faà di Bruno Hopf algebra.
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Example 5.2. We consider the poset ĥ3 shown in Figure 3.1. The computation of the
coproducts gives

∆(ĥ3) = 1⊗ ĥ3 + 3 p2 ⊗ ĥ2 + ĥ3 ⊗ 1, in HĤT ,

∆(h3) = 1⊗ h3 + 3 p2 ⊗ h2, in BHT .

Hence, the convolution of characters α and β on HĤT can be computed using the
bialgebra BHT .

Proposition 5.3. The convolution of characters α and β on HĤT can be computed

using maps α̃ and β̃ from BHT to Q, provided α and β satisfy the HtoB-condition
(2.3). This computation is given by

(α ∗ β)(pi) =
∑

α̃(p
(1)
i )β̃(p

(2)
i ),

and

(α ∗ β)(ĥj) = ωβ
∑

α̃(h
(1)
j )β̃(h

(2)
j ) + ωαα̃(hj),

where ∆(pi) =
∑
p
(1)
i ⊗ p

(2)
i and ∆(hj) =

∑
h
(1)
j ⊗ h

(2)
j in BHT .

Proof. This is a corollary of Theorem 2.2 for pi and hj. �

We now compute the coproduct ∆ in the algebra BHT . We denote the neutral element
of BHT for the product, i.e., the trivial poset, by 1.
The coproduct of isomorphism classes of partition posets pn has already been com-

puted. It can be found for instance in the article [13] of Schmitt.

Proposition 5.4 ([13, Example 14.1]). The coproduct on the isomorphism classes of

partition posets is given by

∆
(pn
n!

)
=

n∑
k=1

∑
(j1,...,jn)∈N∑n

i=1 ji=k,
∑n

i=1 iji=n

(
k

j1, . . . , jn

) n∏
i=1

(pi
i!

)ji
⊗ pk
k!
,

where p1 is the trivial poset.

We now compute the coproduct for hn. According to the structure of the hypertree
posets and Lemma 5.1, the left part of the coproduct of isomorphism classes of the
hypertree poset hn is a product of isomorphism classes of partition posets, and the
right part is a product of isomorphism classes of hypertree posets hk. The coe�cient of
a term pα ⊗ hπ is the number of hypertrees with αi vertices of valency i and πj edges
of size j, as computed in Proposition 4.7, for tuples α and π satisfying (3.1)�(3.3).

Theorem 5.5. If the set P(n) is the set of tuples α = (α1, . . . , αk) and π = (π2, . . . , π`)
satisfying (3.1)�(3.3), the coproduct of hn in BHT is given by

∆(hn) =
1

n
×

∑
(α,π)∈P(n)

n!∏
j≥2(j − 1)!πjπj!

× (K − 1)!× n!∏
i≥1(i− 1)!αiαi!

k∏
i=2

pαi
i ⊗

∏̀
j=2

h
πj
j ,

with K =
∑

j≥2 πj =
∑

i≥1(i− 1)αi + 1 and n =
∑

i≥1 αi.
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Example 5.6. We are now able to compute the coproduct of some hn. Using the values
of (α, π) on which cnα,π does not vanish, computed in Example 3.2, we obtain for h4 that

∆h4 =
1

4
× 4!

3!
× 0!4!

4!
× p41 ⊗ h4 +

1

4
× 4!

2!
× 1!4!

3!
× p31p2 ⊗ h2h3

+
1

4
× 4!

3!
× 2!4!

2!2!
× p21p22 ⊗ h32 +

1

4
× 4!

3!
× 2!4!

3!2!
× p31p3 ⊗ h32,

∆h4 = 1⊗ h4 + 12 p2 ⊗ h2h3 + 12 p22 ⊗ h32 + 4 p3 ⊗ h32.
When summing the coe�cients in this coproduct, we obtain the total number of hyper-
trees on 4 vertices, which is 29, as expected.

6. Computation of the Möbius number of augmented hypertree posets

On an incidence Hopf algebra H with algebraic generators gn (which are posets), we
de�ne the characters ζ and µ for n ≥ 1 by

ζ : gn 7→ 1

and

µ : gn 7→ µ(gn),

where µ(gn) is the Möbius number of the poset gn.
These characters are inverses of each other. This means that, if ε is the counit of H

and ∗ is the convolution on characters, we have

ζ ∗ µ = µ ∗ ζ = ε.

Indeed, these equations come from the de�nitions of the convolution and the Möbius
function:

(µ ∗ ζ)([h, h]) = µ([h, h]) = 1

and

(µ ∗ ζ)([h, h′]) =
∑

h≤x≤h′
µ([h, x])× 1 = µ(h, h′) +

∑
h≤x<h′

µ(h, x),

for intervals [h, h′] with h < h′ in H.
According to De�nition 1.1 of the Möbius function, µ ∗ ζ and ζ ∗ µ vanish on any

non-trivial interval.
We want to compute the Möbius number of augmented hypertree posets. We use

Proposition 5.3. To prove that the characters satisfy the assumptions of the proposition,
we need the notion of a sum function. If P is a �nite poset with a unique least element,
then we de�ne the sum function by s(P ) =

∑
x∈P µ(0̂, x).

If P̂ is the poset obtained from P by the addition of a greatest element 1̂, then
µ(P̂ ) = −s(P ).

Lemma 6.1 ([8, Lemma 4.4]). If Pi, i ∈ [k], is a list of �nite posets, each with a unique

minimal element, and Q =
∏k

i=1 Pi, then s(Q) =
∏k

i=1 s(Pi).

We de�ne the following maps from BHT to Q, for a poset p of BHT with both a least
and a greatest element and a poset h with a least but no greatest element:

ζ̃(p) = ζ(p) = 1, ζ̃(h) = ζ(h) = 1,
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and
µ̃(p) = µ(p), µ̃(h) = s(h).

These maps satisfy the following property due to their de�nitions and Lemma 6.1, for
i ≥ 2 and j ≥ 3:

ζ̃(
k∏
i=1

pi) =
k∏
i=1

ζ̃(pi), ζ̃(
∏̀
j=1

hj) =
∏̀
j=1

ζ̃(hj),

and

µ̃(
k∏
i=1

pi) =
k∏
i=1

µ̃(pi), µ̃(
∏̀
j=1

hj) =
∏̀
j=1

µ̃(hj).

As these maps satisfy the conditions of Proposition 5.3, we apply it in the following
subsections. Since partition and hypertree posets are not mixed in the coproduct of
a hypertree poset, the computation of the convolution of µ and ζ will be given by a

computation using only the values of ζ̃ and µ̃ on partition and hypertree posets. The
�rst part of this section will be devoted to the equation ζ ∗ µ = ε, and the second part
will be devoted to the equation µ ∗ ζ = ε.

6.1. Right-sided computation. In this subsection, we give a simpli�ed proof of the
result of McCammond and Meier on the computation of the Möbius number of the
augmented hypertree poset. The proof of McCammond and Meier presented in [8] used
generating function calculus. The introduction of incidence Hopf algebras enables us to
give a shorter proof, only using the hypothesis of Theorem 2.2.
Applying the Möbius function on the right side of the coproduct, we obtain

(ζ ∗ µ)(ĥn) = 0,

for n ≥ 2. Hence, applying the computation of the coproduct of Theorem 5.5 and
Proposition 5.3, for n ≥ 2 we obtain the equality

0 = −
∑

µ̃(h(2)n ) + 1,

where ∆(hn) =
∑
h
(1)
n ⊗h(2)n . Using Lemma 5.1, the de�nition of the coproduct on BHT

computed in Theorem 5.5, and the multiplicativity of µ̃, we thus obtain

(6.1) 0 = −
∑
h∈hn

∏
i∈ES(h)

µ̃(ĥi) + 1,

where ES(h) is the multiset of the edge sizes of h.
The �rst terms are given by

µ(ĥ2) = −1,

µ(ĥ3) = 3× (−µ(ĥ2))
2 − 1 = 2,

and
µ(ĥ4) = 13× (−µ(ĥ3)) + 16× (−µ(ĥ2))

3 + 1 = −26 + 16 + 1 = −9.

To obtain a closed formula, we consider the exponential generating function of hy-

pertrees with a weight µ̃(ĥi) = −µ(ĥi) for each edge of size i,

T (x) = x+
∑
n≥2

∑
h∈hn

∏
i∈ES(h)

(
−µ(ĥi)

) xn
n!
,
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where, again, ES(h) is the multiset of edge sizes of the hypertree h. Using (6.1), we
obtain

T (x) = x+
∑
n≥2

xn

n!
= ex − 1.

Moreover, it has been proven by Kalikow [7] that the derivative of T satis�es the
following functional equation.

Theorem 6.2 ([7]). The generating function T (x) satis�es the equation

(6.2) xT ′(x) = x× exp(y(x)) where y(x) =
∑
j≥1

−µ(ĥj+1)
xjT ′(x)j

j!
.

Hence, we obtain

x =
∑
j≥1

−µ(ĥj+1)
xjejx

j!
.

At this point, we recall that the compositional inverse of xex is the Lambert W function,
given by

(6.3) W (x) =
∑
n≥1

(−n)n−1
xn

n!
.

This establishes the following theorem by McCammond and Meier.

Theorem 6.3 ([8, Theorem 5.1]). The Möbius number of the augmented hypertree poset

on n vertices is given by

µ(ĥn) = (−1)n−1(n− 1)n−2.

As the homology of the augmented hypertree poset is concentrated in top degree,
this Möbius number is also the dimension of the only homology group of the hypertree
poset. The action of the symmetric group on this homology group has been computed
by the author in [11].

Remark 6.4. To apply this method to pointed hypertree posets and to other posets
satisfying the conditions of Theorem 2.2, it would be su�cient to have a theorem
analogous to Theorem 6.2.
Moreover, using the expression for the coproduct computed in Section 5 and the

Möbius numbers of the hypertree posets, we obtain the following proposition.

Proposition 6.5. We have

1 =
n−1∑
K=1

∑
(π2,... )∑
j≥2 πj=K

(−1)K+n−1(n− 1)!nK−1
∏
j≥2

1

πj!

(
(j − 1)j−2

(j − 1)!

)πj
,

with K =
∑

j≥2 πj and n− 1 =
∑

j≥2(j − 1)πj.

Proof. We use (6.1) together with the expression for the coproduct recalled in Section 5
and the expression for Möbius numbers of hypertree posets. As the left part of the
coproduct does not interfere here, we can sum over the possible tuples α. This leads to
a sum of multinomial coe�cients which can be easily computed. �



INCIDENCE HOPF ALGEBRA OF THE HYPERTREE POSETS 21

6.2. Left-sided computation. Applying the Möbius function on the left side of the
coproduct, we obtain

(µ ∗ ζ)(ĥn) = 0,

for n ≥ 2. By Proposition 5.3, for n ≥ 2 this can be rewritten as

0 =
∑

µ̃(h(1)n )ζ̃(h(2)n )− µ̃(hn).

The formula for the coproduct is

µ(ĥn) = −
∑

(α,π)∈Pn

cnα,π
∏

(−1)(i−1)αi(i− 1)!αi

Using Theorems 6.3 and 5.5, we obtain the following proposition.

Proposition 6.6. We have

(6.4) (n− 1)n−2 =
∑

(α,π)∈P(n)

(−1)iαi−1

n
× n!∏

j≥2(j − 1)!πjπj!
× k!× n!∏

i≥1 αi!
,

where P(n) is the set of pairs of tuples (α, π) with α = (α1, . . . , αk) and π = (π2, . . . , π`)
satisfying (3.1)�(3.3).

This equation is quite surprising as it links the number of rooted trees on n vertices
with an alternating sum of quotient of factorials.

Proof of Proposition 6.6. This equation comes from the computation of the coproduct,
combined with the Möbius numbers of the augmented hypertree posets and of the parti-
tion posets. Indeed, the Möbius number of the partition poset on n elements is given by
(−1)n−1(n− 1)!. �

Example 6.7. The �rst terms are

µ(ĥ4) = −1 + 12− 12− 8 = −9

and
µ(ĥ5) = −1 + 20 + 12− 120− 60 + 60 + 120 + 30 = 64.
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