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BIJECTIVE PROOFS OF CHARACTER EVALUATIONS USING THE

TRACE FOREST OF JEU DE TAQUIN

WENJIE FANG

Abstract. Irreducible characters of the symmetric group are of special interest in combina-
torics. They can be expressed either combinatorially using ribbon tableaux, or algebraically
using contents. In this paper, these two expressions are related in a combinatorial way. We
first introduce a fine structure in the famous jeu de taquin called “trace forest”, with the help
of which we are able to count certain types of ribbon tableaux, leading to a simple bijective
proof of a character evaluation formula in terms of contents that dates back to Frobenius
(1901). Inspired by this proof, we give an inductive scheme that provides combinatorial
proofs of more complicated character formulae in terms of contents.

1. Introduction

Irreducible characters in the symmetric group have long attracted the attention of com-
binatorialists and group theorists. When evaluated at a fixed small partition padded with
parts of size 1, they can be expressed in terms of contents. More precisely, such an evaluation
(or “character value”), when divided by the dimension and multiplied by a suitable falling
factorial, can be expressed as a polynomial in content power sums. This normalization is
sometimes called “central character”, and the study of these central characters dates back
to Frobenius. In [Fro01, Ing50], for a partition λ of an integer n, the following evaluations
were given:

n(n− 1)χλ
2,1n−2 = 2fλ

(

∑

w∈λ

c(w)

)

,

n(n− 1)(n− 2)χλ
3,1n−3 = 3fλ

(

∑

w∈λ

(c(w))2 + n(n− 1)/2

)

,

n(n− 1)(n− 2)(n− 3)χλ
4,1n−4 = 4fλ

(

∑

w∈λ

(c(w))3 + (2n− 3)
∑

w∈λ

c(w)

)

.

Here, χλ
µ is the irreducible character indexed by λ evaluated at the conjugacy class indexed

by another partition µ of n, fλ is the dimension of the corresponding representation, c(w) is
the content of the cell w, and we sum over cells w in the Ferrers diagram of λ. We postpone
detailed definitions of these notions and related ones to Section 2. We observe that these
character evaluations can be expressed as a polynomial in n and certain sums of powers of
contents called content evaluations. This fact was proved in [CGS04] for the general case,
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and in [Las08] an explicit formula for χλ
µ,1n−k was given, where µ is a partition of k and

n ≥ k. Furthermore, functions of contents appear in many contexts, such as in the proof
that the generating function of some family of combinatorial maps is a solution to the KP
hierarchy (cf. [GJ08]). Therefore, a better understanding of the combinatorial importance
of contents would also help us better understand other combinatorial phenomena related to
contents.

Such character evaluations in terms of contents are mostly obtained in an algebraic way,
either using the Jucys–Murphy elements (e.g., [DG89]), or with the help of symmetric func-
tions (e.g., [CGS04, Las08]). They are also related to shifted symmetric functions evaluated
at parts of a partition (e.g., [KO94]). On the other hand, there is a well-developed com-
binatorial representation theory of the symmetric group (cf. [Sta99, Sag01]), in which we
can express characters combinatorially in terms of ribbon tableaux using the Murnaghan–
Nakayama rule. It is thus interesting to relate ribbon tableaux to content evaluations using
combinatorial tools, for example Schützenberger’s famous jeu de taquin.

Our main results are combinatorial proofs of the aforementioned character formulae, and
a promising general method to obtain such proofs of other similar formulae expressing char-
acters in terms of content power sums. In this article, we look into the fine structure of jeu
de taquin. In Section 3, we define a notion called “trace forest” for skew tableaux that en-
capsulates the paths of all possible jeu de taquin moves on such tableaux. Using this notion,
we give a simple bijective proof of the formula above for χλ

2,1n−2 by counting corresponding
ribbon tableaux. To the author’s knowledge, no such bijective proof has been known before.
Inspired by this simple proof, in Section 4 we investigate the possibility of using trace forests
to give counting proofs of more involved character evaluation formulae. For this purpose,
we sketch a general scheme using induction on the tree structure of trace forests to count
certain ribbon tableaux. This scheme leads to combinatorial proofs of the other two charac-
ter evaluation formulae above for χλ

3,1n−2 and χλ
4,1n−2 . Further possible development of this

scheme is also discussed.

2. Preliminaries

2.1. Partitions and standard tableaux. A partition λ is a finite non-increasing sequence
(λi)i>0 of positive integers. We say that λ is a partition of n (denoted by λ ⊢ n) if

∑

i λi = n.
The Ferrers diagram (in French convention) of a partition λ (also denoted by λ by abuse of
notation) is the graphical representation of λ consisting of left-aligned rows of boxes (also
called cells), in which the i-th row has λi boxes. We assume that cells are all unit squares,
and the center of the first cell in the first row is the origin of the plane. This representation in
French convention will be used throughout this article. For a cell w whose center is in (i, j),
we define its content to be c(w) = i − j. Figure 1 gives an example of a Ferrers diagram,
drawn in French convention, with the content of each cell.

A standard tableau of shape λ ⊢ n is a filling of the Ferrers diagram of λ using integers
from 1 to n such that each number is used exactly once, with increasing rows and columns.
Figure 1 also gives an example of a standard tableau. We denote by fλ the number of
standard tableaux of shape λ. The number fλ is also the dimension of the irreducible
representation of the symmetric group Sn indexed by λ (cf. [Sag01, VO04]).
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Figure 1. (a) the Ferrers diagram of the partition (5, 3, 3, 2), with the content
of each cell. (b) a standard tableau of shape (5, 3, 3, 2). (c) the skew diagram
of the skew partition (5, 3, 3, 2)/(3, 2). (d) a skew tableau of shape
(5, 3, 3, 2)/(3, 2).

The definitions above can be generalized to so-called skew-partitions. A skew-partition
λ/µ is a pair of partitions (λ, µ) such that, for all i > 0, we have λi ≥ µi. Graphically, this
inequality condition is equivalent to the condition that the Ferrers diagram of λ totally covers
that of µ. We then define the skew diagram of shape λ/µ as the (set-theoretic) difference
of the Ferrers diagrams of λ and of µ, i.e., the Ferrers diagram of λ without cells that also
appear in that of µ. Figure 1 gives an example of a skew diagram.

We now define the counterpart of standard tableau for skew diagrams. A skew tableau of
shape λ/µ is a filling of the skew diagram of λ/µ that satisfies all conditions of standard
tableaux. Figure 1 gives an example of a skew tableau. We denote the number of skew
tableaux of shape λ/µ by fλ/µ.

Standard tableaux and skew tableaux are classical combinatorial objects closely related to
the representation theory of the symmetric group. In [VO04, Sag01, Sta99], details of this
relationship are described.

2.2. Ribbon tableaux and the Murnaghan–Nakayama rule. We denote by Sn the
symmetric group formed by permutations of n elements. For partitions λ, µ of n, we denote
the irreducible character of Sn indexed by λ evaluated at the conjugacy class indexed by µ
by χλ

µ.
Irreducible characters can be expressed in a combinatorial way using so-called ribbon

tableaux. A ribbon is a special skew diagram that is connected and has no 2 × 2 block of
cells. The height ht(λ/µ) of a ribbon λ/µ is the number of rows it spans minus one. A
ribbon tableau T of shape λ is a sequence of partitions ∅ = λ(0), λ(1), . . . , λ(k) = λ such that
λ(i)/λ(i−1) is a ribbon for all i > 0. This ribbon tableau T can also be represented as a
filling of the Ferrers diagram of λ, where cells in λ(i)/λ(i−1) are filled with entry i. The entry
sequence of T is (a1, a2, . . . , ak), with ai the number of cells in λ(i)/λ(i−1). The total height of
T is defined by ht(T ) =

∑

i ht(λ
(i)/λ(i−1)), and the sign of T is defined by sgn(T ) = (−1)ht(T ).

Figure 2 gives an example of a ribbon and a ribbon tableau.
The Murnaghan–Nakayama rule (cf. Chapter 7.17 of [Sta99]) provides a combinatorial

interpretation of the irreducible characters. According to this rule, we have χλ
µ =

∑

T sgn(T ),
where we sum over all ribbon tableau T of shape λ and entry sequence µ. For a partition
µ ⊢ k and an integer n > k, we denote by µ, 1n−k the partition obtained by padding µ with
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Figure 2. (a) the ribbon (5, 4, 4)/(3, 3, 1) of height 2. (b) a ribbon tableau
T of shape (5, 3, 3, 2) with entry sequence (5, 4, 2, 1, 1) and sgn(T ) = 1.

n − k parts of size 1. In this article, for a fixed “small” partition µ ⊢ k, we are interested
in the evaluation of χλ

µ,1n−k for arbitrary λ ⊢ n in terms of contents. According to the
Murnaghan–Nakayama rule, this involves ribbon tableaux of shape λ and entry sequence
µ, 1n−k.

Lemma 2.1 (cf. [CGS04]). For partitions λ ⊢ n, µ ⊢ k and n > k, we have

χλ
µ,1n−k =

∑

ν⊢k

fλ/νχν
µ.

Proof. Let T0 be a ribbon tableaux of shape λ and entry sequence µ, 1n−k. By retaining only
the last n − k ribbons of size 1 in T0, we obtain a skew tableau T1, and T = T0 \ T1 is a
ribbon tableau with entry sequence µ. This is clearly a bijection between T0 and (T1, T ).
Moreover, sgn(T ) = sgn(T0). We now add up all the signs of all T0 in bijection with (T1, T ),
first by the shape ν of T , then by each T1 of shape λ/ν, and finally by each T . The proof is
completed by applying the Murnaghan–Nakayama rule. �

If we suppose that the character table of Sk is known, then, by the above lemma and the
fact that irreducible characters linearly span the space of class functions (cf. Chapter 2.6 of
[Ser77]), for all λ ⊢ n > k and all µ ⊢ k, the evaluation of the character χλ

µ,1n−k is equivalent

to computing the number of skew tableaux of shape λ/θ for all θ ⊢ k. Furthermore, it is
already known (cf. [KO94] and Theorem 8.1 in [OO97]) that fλ/θ can be expressed in content
power sums via shifted Schur functions. It is thus interesting for us to study skew tableaux.

2.3. Jeu de taquin. The jeu de taquin is a bijection between skew tableaux of different
shapes. It was first introduced by Schützenberger, and it turned out to be a powerful tool
in the combinatorial representation theory of the symmetric group. Its applications include
the Schützenberger involution, the Littlewood–Richardson rule (c.f [Sta99] for both), and
also a bijective proof of Stanley’s hook-content formula (cf. [Kra99]). An introduction to jeu
de taquin can be found in Appendix A of [Sta99].

We now define building blocks of jeu de taquin on skew tableaux, which are local exchanges
of entries in the tableaux. Given a skew tableau T with a distinguished entry ∗, the incoming
step tries to exchange ∗ with one of its “inward” neighbours (the ones immediately below or
to the left) while preserving increase of entries of the skew tableau along rows and columns
except for the distinguished entry ∗. This is always possible as on the left side of Figure 3.
The out-going step is similarly defined, by exchange with entries immediately above or to the
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Figure 3. Incoming step (a) and out-going step (b) in jeu de taquin

right. Figure 3 illustrates the precise rule of both kinds of steps. We verify that incoming
steps are exactly the reverse of out-going steps.

We now define the incoming slide of the distinguished entry ∗ as successive applications of
the incoming steps to ∗ until it has no neighbour below and to the left, then remove the cell
where ∗ is located in the end. Since incoming steps are reversible, given the distinguished
entry and the resulting skew tableau, we can also reverse an incoming slide. Therefore, the
incoming slide, which is a global operation on tableaux, is also reversible by restoring the cell
with ∗, doing successive out-going steps and stopping at the point where the distinguished
entry also verifies the conditions of increase of entries.

We now give a bijection that relates standard tableaux and skew tableaux using jeu de
taquin.

Lemma 2.2. For a partition λ ⊢ n and an integer k > 0, jeu de taquin gives a bijection
between the following two sets:

• the set of tuples (T, a1, . . . , ak), where T is a standard tableau of shape λ, and the ai’s
are distinct integers between 1 and n;

• the set of tuples (µ, T0, T1, a1, . . . , ak), where µ is a partition of k, T0 a skew tableau
of shape λ/µ with entries from 1 to n − k, T1 a standard tableau of shape µ with
entries from 1 to k, and the ai’s are distinct integers between 1 and n.

Proof. We apply the incoming slide to a1, . . . , ak successively in T . In this way, we obtain a
skew tableau T ′

0 of shape λ/µ for a certain partition µ ⊢ k and a standard tableau T1 of shape
µ of entries from 1 to k that indicates the exclusion order of cells (the first excluded cell has
entry 1, the second has entry 2, etc.). The entries in T ′

0 are all integers from 1 to n except
all ai’s. Since all the ai’s are known, we can renumber entries in T ′

0 to produce a standard
tableau of entries from 1 to n − k, and the reconstruction from T0 to T ′

0 is easy given the
ai’s. Since incoming slides are reversible, given (a1, . . . , ak), T0, T1, we can reconstruct T . We
conclude that this defines indeed a bijection. Figure 4 gives an example with λ = (5, 3, 3, 2)
and µ = (2). �

From the proof above, we conclude that, to compute a certain fλ/µ for µ ⊢ k, it suffices
to count the number of tuples (T, (a1, . . . , ak)), with T a standard tableau of shape λ, that
are associated to any tuple of the form (µ, T0, T1, (a1, . . . , ak)). To accomplish this task, we
need to know more about the fine structure of jeu de taquin.
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1 2 5 9 11
3 7 10
4 8 13
6 12 (12,5)
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4 7 13
6 8 (12,5)

1 2 2 8 10
1 3 9
4 6 11
5 7 (12,5)

T1 T0

Figure 4. Example of the bijective relation between standard tableaux and
skew tableaux via jeu de taquin

1 2 5 9 11
3 7 10
4 8 13
6 12

4 9 10
3 5

1 6 7
2 8

Figure 5. Examples of skew tableaux and their trace forests

3. Trace forest of jeu de taquin

We will now define a structure related to jeu de taquin in skew tableaux called “trace
forest”. It is essentially a directed graph whose vertices are cells in the tableau, and it
encapsulates the trace of the incoming slide of each entry. We begin with a definition. For
a cell c in F , we call the cell immediately to its right the right child of c, and the cell
immediately above the upper child of c. We write c< and c∨ for these cells, respectively.

Definition 3.1. Given a skew tableau T , its trace forest is the directed graph F with cells
in T as vertices, the edges being defined as follows. For a cell c in T , we put an arc from c
to the cell with larger entry among the cells immediately below or to the left.

Remark. The trace forest of a skew tableau T as defined above is indeed a forest. For, by the
order of coordinates, it is clear that no oriented cycle exists. If we assume, by contradiction,
that there exists a cycle in the underlying unoriented graph, then there is at least one vertex
with at least two out-going arcs. However, this is impossible in our construction. Therefore
the constructed graph is a forest, rooted at cells without neighbour below and to the left.

Figure 5 gives some examples of skew tableaux and their trace forests, where directions
of arcs are omitted since they either point down or to the left, which is unambiguous. For
a skew tableau T , let F be its trace forest. By definition, the incoming step out of any cell
c ∈ T follows exactly the out-going arc from c, if there is. By a simple induction on F , we
see that the incoming slide of the entry of any cell c ∈ T coincides with the path from c to
its root in F , which gives the structure F the name “trace forest”. It is also clear that, if
a cell c is on a tree S rooted at the cell a in the trace forest F , the incoming slide for the
entry in c must end in a. We denote by F< and F∨ the subtree of F rooted in c< and c∨
respectively.

We now study how an incoming slide changes the trace forest of a skew tableau.
Let T be a skew tableau, S a tree in its trace forest rooted in r. For a cell c ∈ S, we write

T c for the tableau obtained by applying an incoming slide to the entry contained in c, and
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Figure 6. Fine structure of the trace forest

F c its trace forest. The cells in S \ {r} are partitioned into the following categories, as in
Figure 6:

• D<(c) (respectively D∨(c)), the subtree rooted at the right child (respectively the
upper child) of c;

• Ph(c) (respectively Pv(c)), the set of cells among c and its ancestors with a horizontal
(respectively vertical) out-going arc;

• R(c) (respectively A(c)), the set of cells not in categories above and whose incoming
slide path lies weakly below (respectively weakly above) that of c.

We define C<(c, S) = D<(c) ∪ Ph(c) ∪ R(c) and C∨(c, S) = D∨(c) ∪ Pv(c) ∪ A(c), and, by
abuse of notation, we consider these sets of cells as subsets of cells of both T and T c. We
can see that C<(c, S) and C∨(c, S) divide cells in S \ {r} into two groups. In the following
lemma, we see that this grouping of cells is related to the structure of F c.

Lemma 3.2. For a skew tableau T , let S be a tree in its trace forest, and c a cell in S. The
two sets C<(c, S) and C∨(c, S) are in disjoint sets of trees in the trace forest of T c.

Proof. We only need to show that there is no no arc between elements in C<(c, S) and
C∨(c, S) in the trace forest of T c. We will first prove that there is no arc from C<(c, S) to
C∨(c, S) in the trace forest of T c. Let d ∈ C<(c, S), x be the entry of d in T c, d1 the cell
immediately to the left of d, d2 the one below d, and d0 the one in the south-west. There
are three cases: d ∈ Ph(c), d ∈ D<(c), and d ∈ R(c).

For d ∈ Ph(c) and d ∈ R(c), the only possible way that d1 ∈ C∨(c, S) is the case where
d1 ∈ Pv(c). For d ∈ D<(c), it suffices to look at the root d = r1 ofD<(c). The only possibility
that d1 ∈ C∨(c, S) is that we still have d1 ∈ Pv(c). Therefore, in all three cases, the arc of
d1 points to d0 in F .

Let y be the entry in d1 and z in d2 in T c. By definition of Pv(c), d0 contains y in T . This
implies y < z by the definition of skew tableau. Therefore, in T c, the arc from d points to
d2 according to the rule of jeu de taquin, and we have the desired separation. The right side
of Figure 6 illustrates this argument.

The proof that there is no arc from C∨(c, S) to C<(c, S) in the trace forest of T c is
similar. �

We have the following corollary when T is a standard tableau.

Corollary 3.3. For a standard tableau T of shape λ, let r be the first cell of the first row,
and c an arbitrary cell. We perform jeu de taquin on the entry in c to obtain a skew tableau
of shape λ/(1). Let F< and F∨ be the two trees of the trace forest of T c rooted at r< and
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r∨, respectively. The set of cells in F< (respectively F∨) is exactly C<(c, S) (respectively
C∨(c, S)), and, when we perform an incoming slide for the entry in one of the cells in
C<(c, S) (respectively C∨(c, S), it must end in r< (respectively r∨).

Proof. Since the trace forest of T c has only two trees, and C<(c, S), C∨(c, S) partition cells
in T c, we know that C<(c, S), C∨(c, S) must each consist of all the cells in the tree F< or the
tree F∨. Since a< is both in F< and C<(c, S), the claim follows. �

Lemma 3.2 can be seen as a clarification of an argument in Lemma HC∗ in [Kra99]. Using
Lemma 3.2, we have the following simple bijective proof of a well-known character formula
(cf. [Ing50, CGS04, Las08]). To the author’s knowledge, no purely bijective proof was known
before for this simple formula.

Theorem 3.4. For a partition λ ⊢ n, we have

n(n− 1)χλ
2,1n−2 = 2fλ

∑

w∈λ

c(w).

Proof. Since, from Lemma 2.1, it follows that χλ
2,1n−2 = fλ/(2)−fλ/(1,1), we want to count the

difference between the number of skew tableaux of shape λ/(2) and those of shape λ/(1, 1).
Let (T, e1, e2) be a tuple with T a standard tableau of shape λ and e1 6= e2 two entries in

T . We let ST (T, e1, e2) denote the skew tableau T0 such that (T, e1, e2) is associated with
(µ, T0, T1, e1, e2) in the bijection in Lemma 2.2, in which µ can only be either (2) or (1, 1), and
T1 is fixed by µ in our case. Therefore, when going through all (T, e1, e2), then ST (T, e1, e2)
“hits” each skew tableau of shape either λ/(2) or λ/(1, 1) exactly n(n− 1) times.

For entries e1, e2 with e1 < e2, we consider the contribution of ST (T, e1, e2) and
ST (T, e2, e1) to fλ/(2) − fλ/(1,1). There are two cases for e1, e2, either one of their cells
is an ancestor of the other or not, and we will show that only the “ancestor case” has a non-
zero total contribution that can be computed explicitly. Let c1 and c2 be the cells containing
e1 and e2 in T , respectively, and let F be the trace forest of T .

If c1 is not an ancestor of c2 in F , the two cells have a common ancestor c, and by symmetry
we can suppose that c2 is in the subtree rooted in c∨, while c1 is in the subtree rooted in c<.
By definition, in T e1, the cell c2 still contains e2 and is in A(c1) ⊂ C∨(c1, F ), and, in T e2,
the cell c1 still contains e1 and is in R(c2) ⊂ C<(c2, F ). From Corollary 3.3, we know that
ST (T, e1, e2) is of shape λ/(1, 1), while ST (T, e2, e1) is of shape λ/(2). Thus this case does
not contribute to fλ/(2) − fλ/(1,1).

The other case is that c1 is an ancestor of c2 in F , and the path in F from c2 to c1 can end
with either a horizontal or a vertical arc. We suppose that the path ends with a horizontal
arc. Let c1,< be the cell to the right of c1 (thus the right child of c1 in T ). By the definition of
incoming slide, we know that, in T e2 , the cell containing e1 will be c1,<, while, in T e1, the cell
c2 still contains e2. We have c2 ∈ D<(c1) ⊂ C<(c1, F ) in T e1 and c1,< ∈ P1(c2) ⊂ C<(c2, F )
in T e2. From Corollary 3.3, we infer that ST (T, e1, e2) and ST (T, e2, e1) are both of shape
λ/(2). For the case where the path from c2 to c1 ends with a vertical arc, we infer similarly
that ST (T, e1, e2) and ST (T, e2, e1) are both of shape λ/(1, 1).

The path in the trace forest from c2 at (i, j) to the cell at (0, 0) consists of i horizontal arcs
and j vertical arcs. Therefore, if we sum over all ancestors c1 of c2, among all ST (T, e1, e2)
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and ST (T, e2, e1), we have 2i tableaux of shape λ/(2) and 2j tableaux of shape λ/(1, 1).
This yields a contribution of 2c(c2) to fλ/(2) − fλ/(1,1), which is independent of T .

In the end, we conclude the proof by observing that

n(n− 1)(fλ/(2) − fλ/(1,1)) = 2fλ
∑

w∈λ

c(w). �

4. Character evaluation using the trace forest

We will now use the notion of trace forest to calculate fλ/µ with fixed small µ. In [CGS04]
and [Las08] (see also [KO94]), it was proved that χλ

µ can be expressed using so-called “content

evaluation”. By Lemma 2.1, we know that fλ/µ can also be expressed by such content
evaluation. It is now interesting to study the interaction between content evaluation and
trace forest, and how it applies to character evaluation.

In this section, we will define a notion called the “inductive form” of functions on the set
of subtrees in the trace forest. It enables the computation of such functions by identification
of the inductive form. Some examples of inductive forms will be given. Then we proceed
to the bijective counting of skew tableaux of different shapes using jeu de taquin, and, by
identification of the inductive form, we obtain an expression for fλ/µ for general λ and small µ
in terms of content evaluation. This provides counting proofs of various character evaluation
formulae.

4.1. Content power sums. We will start by defining various content power sums on sub-
trees of the trace forest of skew-tableaux related to contents.

For a skew tableau T , let S be a subtree in its trace forest and r a cell. We denote by
cr(c) the relative content of a cell c with respect to the cell r, i.e., r is taken as the origin
when computing the relative content cr(c). We have cr(c) = c(c) − c(r), where c(·) stands
for the usual content. For any partition α = (α1, . . . , αl), we define the content power sum
of S, denoted by cpαr (S), as follows, with the convention that 00 = 1:

cpαr (S) =

l
∏

i=1

∑

c∈S

cr(c)
αi−1.

When r is also the root of S, we omit the r in cpαr (S) and denote the function by cpα(S).
We can also define the function cpα on a partition λ by identifying λ with the set of all

cells in the Ferrers diagram of λ, and by using the first cell of the first row as the referential
cell r. We notice that, for any standard tableau T of shape λ and FT its only tree in its
trace forest, we have cpα(λ) = cpα(FT ).

We make the choice of using αi − 1 in the exponent of the power sum because we want to
include the size n of the partition λ as cp1(λ). In this way, we can express any polynomial
in n and power sums of contents as a linear combination of cpα(λ)’s for various partitions α.

By abuse of notation, given a subset C of cells in T , we define cpαr (C) as the sum
∑

i cp
α
r (Fi), where the Fi’s are subtrees in the trace forest of T whose disjoint union is

C.
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We note that the subscript r in cpαr represents the “origin” for the relative contents used in
the function. When evaluated over a tree with the root as origin, we will omit the subscript.
We notice that cp(k) is the sum of the content power sums of power k − 1.

We will now show that the algebra spanned by the cpαr ’s is independent of the choice of r.
We recall that, for a cell r in a Ferrers diagram, we denote by r< the cell to its right and by
r∨ the cell above. We define two linear operators Γ+ and Γ− as follows:

Γ+cp
(k)
r = cp(k)r< , Γ−cp

(k)
r = cp(k)r∨ .

By requiring Γ+ and Γ− to be compatible with multiplication, i.e., Γ+(fg) = (Γ+f)(Γ+g)
and the same for Γ−, these two operators are thus defined on the algebra generated by the
cpαr (S)’s.

Lemma 4.1. For any integer k ≥ 1, the result of application of Γ+ and Γ− is given by

Γ+cp
(k)
r =

k
∑

i=1

(−1)k−i

(

k − 1

i− 1

)

cp(i)r , Γ−cp
(k)
r =

k
∑

i=1

(

k − 1

i− 1

)

cp(i)r .

Therefore the algebra spanned by the cpαr ’s is invariant under application of Γ+ and Γ−.
Moreover, Γ+Γ− = Γ−Γ+ = id.

Proof. It is a simple observation that, for any cell c and r, we have cr<(c) + 1 = cr(c) =
cr∨(c)− 1. This is simply due to the change of origin.

Now, for any subtree S, we have

(Γ+cp
(k)
r )(S) =

∑

c∈S

ck−1
r< (c) =

∑

c∈S

(cr(c)− 1)k−1 =

k
∑

i=1

(−1)k−i

(

k − 1

i− 1

)

cp(i)r (S)

and

(Γ−cp
(k)
r )(S) =

∑

c∈S

ck−1
r∨ (c) =

∑

c∈C

(cr(c) + 1)k−1 =

k
∑

i=1

(

k − 1

i− 1

)

cp(i)r (S).

For establishing Γ+Γ− = Γ−Γ+ = id, we only need to notice that c(r<)∨(c) = cr(c) =
c(r∨)<(c) for any cell c. �

Therefore, for any choice of r, the algebra spanned by the cpαr ’s is the same. We denote this
algebra formed by real-valued functions over subtrees in the trace forests of skew tableaux by
Λ. We notice that, when restricted to a partition λ, a function f ∈ Λ is a shifted symmetric
function (cf. [CGS04, KO94]) evaluated at the parts λi of λ. Conversely, for any shifted
symmetric function s∗µ, there is a function f ∈ Λ such that s∗µ(λ1, λ2, . . .) = f(λ) for any
partition λ. Therefore, the algebra Λ is isomorphic to the algebra of shifted symmetric
functions.

4.2. Content evaluation and inductive form. We start with some definitions. For S
a subtree of a trace forest rooted at r, we write S< and S∨ for the subtrees rooted at r<
and r∨, respectively (if they exist, otherwise they are defined to be the empty tree). For a
partition α ⊢ k, we introduce the notations <(α) (S) (respectively ∨(α)(S)) by

<(α) (S) = cpαr (S<), ∨(α)(S) = cpαr (S∨).
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We now define a transformation called inductive form. Let f be a real-valued function on
subtrees of a trace forest. Its inductive form ∆f is defined by (∆f)(∅) = 0 and (∆f)(S) =
f(S)− f(S<)− f(S∨) for any non-empty subtree S. The transformation ∆ is clearly linear.

Lemma 4.2. Let f and g be two functions on subtrees of trace forests. If f(∅) = g(∅) and
∆f = ∆g, then we have f = g.

Proof. Since ∆ is linear, for any S, we have (f − g)(S) = (f − g)(S<) + (f − g)(S∨). The
proof is then completed by an induction on the size of the tree S. �

We now prove that the inductive form of cpα can be explicitly expressed as a polynomial of
<(k) and ∨(k). These expressions, combined with Lemma 4.2, will be used to recover content
power sums from their inductive form.

Proposition 4.3. For any non-empty subtree S in a trace forest and any integer k > 1, we
have

cp(1)(S) = 1+ <(1)(S) + ∨(1)(S); cp(k)(S) =<(k)(S) + ∨(k)(S);(4.1)

cp(k)(S<) =

k−1
∑

i=0

(−1)i
(

k − 1

i

)

<(k−i)(S); cp(k)(S∨) =

k−1
∑

i=0

(

k − 1

i

)

∨(k−i) (S).(4.2)

Furthermore, for any partition α, ∆cpα can be expressed as a polynomial in <(k) and ∨(k).

Proof. The equalities in (4.1) come directly from the definition of cp(k). For establishing those

in (4.2), we notice that cp(k)(S<) is rooted at r<, thus we have cp(k)(S<) = (Γ+cp
(k)
r )(S<),

and we conclude by Lemma 4.1. For cp(k)(S∨) we similarly have cp(k)(S∨) = (Γ−cp
(k)
r )(S∨).

By (4.1) and (4.2), for any subtree S of a trace forest, we can express cpα(S), cpα(S<),
and cpα(S∨) as polynomials in <(k)(S) and ∨(k)(S). The fact that (∆cpα)(S) = cpα(S) −
cpα(S<)− cpα(S∨) then completes the proof. �

Here are some examples of the inductive form of some cpα’s; for simplicity, we consider
cpα, <(α),∨(α) as functions and omit their arguments:

∆cp(1) = 1; ∆cp(2) =<(1) −∨(1); ∆cp(1,1) = 2 <(1) ∨(1) + 2 <(1) +2 ∨(1) +1;

∆cp(3) = 2 <(2) −2 ∨(2) − <(1) −∨(1);

∆cp(2,1) =<(2) ∨(1)+ <(1) ∨(2)+ <(2) + ∨(2) + <(1,1) −∨(1,1);

∆cp(1,1,1) = 3 <(1,1) ∨(1) + 3 <(1) ∨(1,1) + 3 <(1,1) +6 <(1) ∨(1) + 3 ∨(1,1) +3 <(1) +3 ∨(1) +1.

4.3. Inductive counting of skew tableaux. It is now natural to try to count skew
tableaux of different shapes using induction. For integers n, k ≥ 0, we define the falling
factorial (n)k = n(n − 1) · · · (n − k + 1). Evidently, the number of k-tuples of distinct ele-
ments from {1, 2, . . . , n} is exactly (n)k. Given a standard tableau of shape λ and a small
partition µ, we now try to inductively count the number of tuples that lead to a skew tableau
of shape λ/µ using the bijection in Lemma 2.2.

We now describe a general scheme for computing such quantities. We will first recursively
define a family of functions G(k) on the set of subtrees of a standard tableau T that will be

related to fλ/(k). The definition of G(k)(S) for a subtree S is essentially a sum over all cells
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c ∈ S of a certain evaluation involving G(k−1), and we want to compute this sum. This is
done inductively for all subtrees in the trace forest of T . For such a subtree S rooted at
r, instead of computing directly the sum we want, we try to find out the inductive form of
that sum. The idea is that the sum over c ∈ S splits into three cases: c = r, c ∈ S<, and
c ∈ S∨. The first case is readily expressed as content evaluation for S< and S∨, and the latter
two cases consist of a sum of the same type we are computing. They can, hopefully, also
be reduced to some content evaluation for S< and S∨. We thus obtain the inductive form,
and by comparing those of cpα, we can identify the sum as a linear combination of content
evaluations of S, thus proving that G(k) is in fact in Λ, and that fλ/(k) can be expressed in
terms of content power sums.

Before proceeding to examples of application of our scheme, we first present some defi-
nitions and facts we need. The conjugate of a partition λ, denoted by λ†, is the partition
whose Ferrers diagram is that of λ flipped alongside the line y = x.

Lemma 4.4. For a skew tableau T , a subtree S in its trace forest rooted in r, and c ∈ S,
we have the following three cases:

• c = r. In this case, C<(r, S) = S< and C∨(r, S) = S∨.
• c ∈ S<. In this case, C<(c, S) = C<(c, S<) ∪ {r<} and C∨(c, S) = C∨(c, S<) ∪ S∨.
• c ∈ S∨. In this case, C<(c, S) = C<(c, S∨) ∪ S< and C∨(c, S) = C∨(c, S∨) ∪ {r∨}.

Proof. The case c = r is trivial. We now analyse the case where c ∈ S<. The case where
c ∈ S∨ can be treated similarly.

If c ∈ S<, the common ancestor of any cell in S∨ and c is the root r, thus S∨ ⊂ A(c) ⊂
C∨(c, S). Now we only need to consider the cells in S<. By definition, we know that {r<},
C<(c, S<), and C∨(c, S<) is a partition of the set S<. We already know that r< ∈ C<(c, S)
by definition. Also, by definition, we have C<(c, S<) ⊂ C<(c, S) and C∨(c, S<) ⊂ C∨(c, S).
This finishes the proof. �

Since we will evaluate functions in Λ on disjoint union of sets, we need the following
proposition to “decompose” the evaluation.

Proposition 4.5. For a partition α = (α1, . . . , αl), two disjoint subsets A,B of cells in a
tableau T , and r an arbitrary cell in T , we have

cpαr (A ⊎ B) =
∑

α(1)⊎α(2)=α

(

∏

i≥1

(

m(α, i)

m(α(1), i)

)

)

cpα
(1)

r (A)cpα
(2)

r (B).

Here, ⊎ stands for the union of multisets, and m(α, i) (respectively m(α(1), 1)) is the multi-
plicity of i in α (respectively α(1)).

Proof. It follows from the definition of cp
(k)
r that

cpαr (A ⊎ B) =
l
∏

i=1

(

cp(αi)
r (A) + cp(αi)

r (B)
)

=
∑

α(1)⊎α(2)=α

(

∏

i≥1

(

m(α, i)

m(α(1), i)

)

)

cpα
(1)

r (A)cpα
(2)

r (B). �
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We will now investigate some relations on partitions that enable us to simplify some
calculations.

Proposition 4.6. For a partition µ, let P (µ) be the set of partitions whose Ferrers dia-
gram can be obtained by adding a cell to that of µ. For any partition λ, we have fλ/µ =
∑

µ′∈P (µ) f
λ/µ′

.

Proof. This follows from the classification of all skew tableaux of shape λ/µ by the cell
containing 1. �

Proposition 4.7. For a partition µ and its conjugate µ†, let F be a function such that, for
any λ, we have

(|λ|)(|µ|)f
λ/µ/fλ = F (cp(1)(λ), cp(2)(λ), . . . , cp(i)(λ), . . .).

Then we have

(|λ|)(|µ†|)f
λ/µ†

/fλ = F (cp(1)(λ),−cp(2)(λ), . . . , (−1)i−1cp(i)(λ), . . .).

Proof. By flipping skew tableaux alongside y = x, we see that fλ/µ†

= fλ†/µ. The claim then
follows by observing that cp(k)(λ) = (−1)k−1cp(k)(λ†). �

We now recursively define a family of functions G(k) on sets of cells that will be related to

fλ/(k) as follows. Let T be a skew tableau and d a cell in T . We first impose the unconnected
additivity of G(k), that is, for any disjoint sets of cells A,B in T that are not connected in
the trace forest of T , we have

G(k)(A ⊎B, d) = G(k)(A, d) +G(k)(B, d).

We then recursively define the function G(k) on subtrees S in the trace forest of T by

G(1)(S, d) = cp
(1)
d (S) = |S|, G(k)(S, d) =

∑

c∈S

G(k−1)(C<(c, S), d<) for k ≥ 2.

By abuse of notation, when d is also the root of the subtree S, we omit d in G(k)(S, d), and
only write G(k)(S). The referential point d may seem pointless since the function G(k)(S, d)
in the recursive definition does not depend on d. However, the referential point becomes
important for repositioning when computing G(k)(S), since in this case we need to reposition
every term to the root of S. Therefore, although seemingly pointless at first, we decide to
keep it for the clarity of later calculations. The definition of G(k) seems to depend on the
skew tableau T , but, in later applications, we always fix such T and then prove that G(k)

belongs to Λ and does not really depend on T .
This family of functions is closely related to the number of skew tableaux of the form

λ/(k) by the following proposition.

Proposition 4.8. For a partition λ, a standard tableau T of shape λ and F the only tree in
its trace forest, let r be the root of F . Then G(k)(F ) equals the number of tuples (e1, e2, . . . , ek)
with each ei situated in a cell in S from which, by performing the incoming slide for each ei
successively on T , we can obtain a skew tableau of the shape λ/(k).
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Proof. We proceed by direct counting of the tuples satisfying our conditions. For such a tuple
(e1, e2, . . . , ek), for 1 ≤ i ≤ k, let Ti be the tableau obtained by performing the incoming
steps for e1, e2, . . . , ei, and let T0 = T . Ti is a skew tableau of shape λ/(i). We should note
that each Ti depends on the entries e1, e2, . . . , ei.

The trace forest Fi of Ti consists of two trees, one rooted at the (i + 1)-st cell ri of the
first row, denoted by S<,i, the other rooted at the first cell of the second row, denoted by
S∨,i. Let ci be the cell containing ei in Ti−1. Since the incoming step of ei turns Ti−1, a skew
tableau of shape λ/(i− 1), into the skew tableau Ti of shape λ/(i), we have ci ∈ S<,i−1. It
is clear that S∨,i−1 does not intersect S<,i by imagining the standard tableau T∗ obtained by
filling in entries of smaller values in Ti−1 and applying Corollary 3.3 to the cell containing e1
in T∗. By Lemma 3.2, C<(ci, S<,i−1) is disconnected from C∨(ci, S<,i−1) in Fi. We also know
that C<(ci, S<,i−1) contains the root of S<,i. Therefore C∨(ci, S<,i−1) does not intersect S<,i

either. Since S∨,i−1, C<(ci, S<,i−1), and C∨(ci, S<,i−1) partition the set of cells in Ti, we know
that C<(ci, S<,i−1) is the set of the cells of the tree S<,i.

We recall that Ti, and hence S<,i, depends on e1, e2, . . . , ei. Let H(k,i)(T, e1, e2, . . . , ei) be
the number of possible choices of ei+1, . . . , ek when e1, e2, . . . , ei is fixed. It is clear that
Hk,k−1(T, e1, . . . , ek−1) = G(1)(S<,k−1, rk−1). Since S<,k−a = C<(ck−a, S<,k−a−1) in the sense
of sets of cells, if Hk,k−a(T, e1, . . . , ek−a) = G(a)(S<,k−a, rk−a), we have

Hk,k−a−1(T, e1, . . . , ek−a−1) =
∑

ck−a∈S<,k−a−1

Hk,k−a(e1, . . . , ek−a)

=
∑

ck−a∈S<,k−a−1

G(a)(S<,k−a, rk−a)

=
∑

ck−a∈S<,k−a−1

G(a)(C<(ck−a, S<,k−a−1), rk−a)

= G(a+1)(S<,k−a−1, rk−a−1).

The proof is completed by an induction on a to obtain H(k,0)(T ) = G(k)(S, r). �

With the help of the family G(k), we can now proceed to examples of computing fλ/(k)

with our scheme. We recall that, for a cell r in a trace forest, we denote by r< the cell to
the right of r, and by r∨ the cell above r.

Proposition 4.9. For a partition λ ⊢ n, we have

(n)2f
λ/(2)/fλ =

1

2
cp(1,1)(λ) + cp(2)(λ)−

1

2
cp(1)(λ) = n(n− 1)/2 +

∑

w∈λ

c(w).

Proof. The number (n)2f
λ/(2) equals the number of tuples ((2), T ′, T ′′, e1, e2), where T ′ is of

shape λ/(2). Therefore, by taking the correspondence in Lemma 2.2, and by Proposition 4.8,
writing FT for the trace forest (consisting of one single tree) of the standard tableau T , we
have

(n)2f
λ/(2) =

∑

T of shape λ

G(2)(FT ).
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We now compute G(2)(S) for S rooted at r. We notice that G(1) is in Λ, and that

G(2)(S) =
∑

c∈S

G(1)(C<(c, S), r<) =
∑

c∈S

(Γ+cp
(1)
r )(C<(c, S)) =

∑

c∈S

cp(1)r (C<(c, S)).

We now compute the inductive form of G(2)(S) using Lemma 4.4 and Proposition 4.5:

(∆G(2))(S) = G(2)(S)−G(2)(S<)−G(2)(S∨)

=
∑

c∈S={r}∪S<∪S∨

cp(1)r (C<(c, S))−
∑

c∈S<

(Γ+cp
(1)
r )(C<(c, S<))

−
∑

c∈S∨

(Γ−cp
(1)
r )(C<(c, S∨))

= cp(1)r (C<(r, S)) +
∑

c∈S<

(

cp(1)r (C<(c, S))− cp(1)r (C<(c, S<))
)

+
∑

c∈S∨

(

cp(1)r (C<(c, S))− cp(1)r (C<(c, S∨))
)

.

By the use of Lemma 4.4, the differences in the summand can be computed:

(∆G(2))(S) = cp(1)r (C<(r, S)) +
∑

c∈S<

cp(1)r ({r<}) +
∑

c∈S∨

cp(1)r (S<)

=<(1)(S) +
∑

c∈S<

1 +
∑

c∈S∨

<(1)(S)

= 2 <(1)(S)+ <(1)(S) ∨(1)(S)

=

(

∆

(

1

2
cp(1,1) + cp(2) −

1

2
cp(1)

))

(S).

By Lemma 4.2, we have G(2) =
1
2
cp(1,1)+cp(2)− 1

2
cp(1) ∈ Λ. We notice that, since G(2) ∈ Λ,

for any standard tableau T of shape λ, we have G(2)(FT ) = G(2)(λ), which does not depend
on T . We thus may finish the proof by combining G(2)(FT ) = G(2)(λ) with the sum formula
at the beginning of the proof, noticing that there are fλ standard tableaux of shape λ. �

A formula for fλ/(1,1) can be found either by the same approach, or by using Proposition 4.6
applied to µ = (1), or by using Proposition 4.7. Proposition 4.9 implies Theorem 3.4, thus
can be viewed as an alternative proof. We have the first evidence that our scheme may work.

We now investigate the next case, µ = (3), to see that our scheme also works in greater
generality.

Proposition 4.10. For a partition λ ⊢ n, we have

(n)3f
λ/(3)/fλ =

1

6
cp(1,1,1)(λ) + cp(2,1)(λ) + cp(3)(λ)− cp(1,1)(λ)− 2cp(2)(λ) +

5

6
cp(1)(λ).

Proof. The number (n)3f
λ/(3) equals the number of tuples ((3), T ′, T ′′, e1, e2, e3), where T ′

is of shape λ/(3). Therefore, by using the correspondence in Lemma 2.2, and by Proposi-
tion 4.8, writing FT for the trace forest (consisting of one single tree) of the standard tableau
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T , we have

(n)3f
λ/(3) =

∑

T of shape λ

G(3)(FT ).

We now compute G(3)(S) for S rooted at r. By the proof of Proposition 4.9, we see that
G(2) is in Λ. Furthermore, by the definition of G(3)(S), we have

G(3)(S) =
∑

c∈S

G(2)(C<(c, S), r<) =
∑

c∈S

(

Γ+

(

1

2
cp(1,1)r + cp(2)r −

1

2
cp(1)r

))

(C<(c, S))

=
∑

c∈S

(

1

2
cp(1,1)r + cp(2)r −

3

2
cp(1)r

)

(C<(c, S)).

We now compute the inductive form of G(3) using Lemma 4.4 and Proposition 4.5:

(∆G(3))(S) =
∑

c∈S

(

1

2
cp(1,1)r + cp(2)r −

3

2
cp(1)r

)

(C<(c, S))

−
∑

c∈S<

(

Γ+

(

1

2
cp(1,1)r + cp(2)r −

3

2
cp(1)r

))

(C<(c, S<))

−
∑

c∈S∨

(

Γ−

(

1

2
cp(1,1)r + cp(2)r −

3

2
cp(1)r

))

(C<(c, S∨))

=
∑

c∈S

(

1

2
cp(1,1)r + cp(2)r −

3

2
cp(1)r

)

(C<(c, S))

−
∑

c∈S<

(

1

2
cp(1,1)r + cp(2)r −

5

2
cp(1)r

)

(C<(c, S<))

−
∑

c∈S∨

(

1

2
cp(1,1)r + cp(2)r −

1

2
cp(1)r

)

(C<(c, S∨)).

By Lemma 4.4, the differences can be simplified by splitting the first sum into three parts:
c = r, c ∈ S<, and c ∈ S∨. We notice that, by Proposition 4.5, for two disjoint sets of cells

A and B, we have cp
(1,1)
r (A ⊎ B) = cp

(1,1)
r (A) + 2cp

(1)
r (A) + cp

(1,1)
r (B). Hence,

(∆G(3))(S) =

(

1

2
cp(1,1)r + cp(2)r −

3

2
cp(1)r

)

(S<) +
∑

c∈S<

(

1

2
cp(1,1)r + cp(2)r −

3

2
cp(1)r

)

({r<})

+ (cp(1)r ({r<}) + 1)
∑

c∈S<

cp(1)r (C<(c, S<))

+
∑

c∈S∨

(

1

2
cp(1,1)r + cp(2)r −

3

2
cp(1)r

)

(S<)

+ (cp(1)r (S<)− 1)
∑

c∈S∨

cp(1)r (C<(c, S∨)).
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We know from the definition of G(2) that G(2)(S) =
∑

c∈S cp
(1)
r (C<(c, S)), and from the

definition of cp
(1)
r and Lemma 4.1 that cp

(1)
r (S) = cp

(1)
r< (S) = cp

(1)
r∨ (S) = |S|. These facts,

combined with the expression of G(2)(S) in Proposition 4.9, yield

(∆G(3))(S) =
1

2
<(1,1)(S)+ <(2)(S)−

3

2
<(1)(S) + 2G(2)(S<)

+ ∨(1)(S)

(

1

2
<(1,1)(S)+ <(2)(S)−

3

2
<(1)(S)

)

+ (<(1)(S)− 1)G(2)(S∨).

We now compute G(2)(S<) and G(2)(S∨). Since the root of S< is r<, we have

G(2)(S<) =

(

1

2
cp(1,1)r< + cp(2)r< −

1

2
cp(1)r<

)

(S<) =

(

Γ+

(

1

2
cp(1,1)r + cp(2)r −

1

2
cp(1)r

))

(S<)

=

(

1

2
cp(1,1)r + cp(2)r −

3

2
cp(1)r

)

(S<) =
1

2
<(1,1)(S)+ <(2)(S)−

3

2
<(1)(S).

Similarly, we have G(2)(S∨) =
1
2
∨(1,1)(S)+∨(2)(S)+ 1

2
∨(1)(S). By substituting both expression

back into the computation of (∆G(3))(S), we obtain

(∆G(3))(S) =
1

2
<(1,1)(S) ∨(1)(S) +

1

2
<(1)(S) ∨(1,1)(S)+ <(2)(S) ∨(1)(S)+ <(1)(S) ∨(2)(S)

− <(1)(S) ∨(1)(S) + 3 <(2)(S)− ∨(2)(S) +
3

2
<(1,1)(S)−

1

2
∨(1,1)(S)−

9

2
<(1)(S)

−
1

2
∨(1)(S)

=

(

∆

(

1

6
cp(1,1,1) + cp(2,1) + cp(3) − cp(1,1) − 2cp(2) +

5

6
cp(1)

))

(S)

By Lemma 4.2, we have G(3) = 1
6
cp(1,1,1) + cp(2,1) + cp(3) − cp(1,1) − 2cp(2) + 5

6
cp(1) ∈ Λ.

Therefore, for any standard tableau T of shape λ, we have G(3)(FT ) = G(3)(λ), which is
independent of T . We then apply this fact and the expression of G(3) in cpα to the sum

formula of (n)3f
λ/(3) at the beginning of the proof to complete the proof. �

Combining this proposition with Propositions 4.6 and 4.9, we are also able to compute
fλ/(2,1) and fλ/(1,1,1), and we obtain the character evaluated at a 3-cycle for λ ⊢ n:

(n)3
fλ

χλ
(3,1n−3) = 3cp(3)(λ)−

3

2
cp(1,1)(λ) +

3

2
cp(1)(λ) = 3

∑

w∈λ

(c(w))2 − 3

(

n

2

)

.

Thus, we have another example of a bijective proof of a character evaluation formula given
by our scheme.

Still following our scheme, with the help of some more tedious computation which can be
automatized, we obtain the following result for fλ/(4).
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Proposition 4.11. For a partition λ ⊢ n,

(n)4f
λ/(4)/fλ =

1

24
cp(1,1,1,1)(λ) +

1

2
cp(2,1,1)(λ) +

1

2
cp(2,2)(λ) + cp(3,1)(λ) + cp(4)(λ)

−
3

4
cp(1,1,1)(λ)−

9

2
cp(2,1)(λ)−

9

2
cp(3)(λ) +

71

24
cp(1,1)(λ) + 6cp(2)(λ)−

9

4
cp(1)(λ).

Here we omit the proof, which is essentially a long (but automatic) computation of the
inductive form of G(4). Using Proposition 4.7, we also obtain an expression for fλ/(1,1,1,1),

and, by Proposition 4.6 applied to µ = (3) and µ = (1, 1, 1), we obtain expressions for fλ/(3,1)

and fλ/(2,1,1). We can thus compute χλ
(4,1n−4) using Lemma 2.1. The corresponding formula

reads

(n)4χ
λ
(4,1n−4)/f

λ = 4
∑

w∈λ

(c(w))3 + 4(2n− 3)
∑

w∈λ

c(w).

Our proof of this character evaluation formula is indeed a counting proof in line with general
idea of the present article. Furthermore, since we are also able to compute fλ/(2,2) using
Proposition 4.6, we can also obtain a counting proof for the character χλ

(2,2,1n−4). We remark

that our proofs above never depend on the precise structure of the trace forest FT , but rather
on the fact that it is a binary tree.

5. Discussion

In this article, using the notion of “trace forest” which reflects a fine structure in the
famous jeu de taquin, we gave a simple bijective proof of Theorem 3.4 through counting
skew tableaux of different shapes. Inspired by this simple proof, we sketched a scheme for
counting skew tableaux of more general shapes in an elementary way, using induction on the
trace forest, and this scheme also led to combinatorial proofs of several more sophisticated
character evaluation formulae.

We would like to extend the range of application of our scheme. Empirically, our scheme
seems to work for fλ/µ for µ a hook. We conjecture that, in that case, our scheme will indeed
always give a combinatorial proof for formulae for fλ/µ of the type discussed in this article.

One of the difficulties of extension is that, for a general partition µ, the corresponding
function Gµ cannot always be so easily defined as in the case µ = (k) we treated here.
However, for µ a hook, it seems to be possible to define Gµ by supposing that, in the
successive incoming slides, the arm of µ is formed before the leg. However, for general µ, the
precise definition of Gµ should depend on the exact ordering of cells that are excluded from
the tableau in successive incoming slides, in other words, the tableau T0 in the bijection of
Lemma 2.2. Xiaomei Chen observed that, even for the hook µ = (3, 1), for a certain standard
tableau T , the number of tuples (T, a1, a2, a3, a4) corresponding to T0 is not invariant under
the choice of T0. Therefore, the choice of order in the definition of Gµ is important.

However, there is another difficulty in obtaining any generic result, even in the case where
µ = (k). In the computation of the inductive form, we have to deal with a certain kind of
sums over a ∈ F< and a ∈ F∨, but there is no guarantee that these sums can be expressed
in terms of <(k) and ∨(k). To obtain a more general statement, a further study of the action
of the difference operator ∆ on elements of Λ seems necessary.
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When passing from fλ/µ to χλ
µ,1n−k , we notice that χλ

µ,1n−k often has a much simpler form,
due to some cancellations in the sum. Thus it might be easier to directly deal with the
inductive form of characters, and we might see the combinatorial reason behind.
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