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DUAL GARSIDE STRUCTURE OF BRAIDS AND

FREE CUMULANTS OF PRODUCTS

PHILIPPE BIANE AND PATRICK DEHORNOY

Abstract. We count the n-strand braids whose normal decom-
position has length at most 2 in the dual braid monoid B+∗

n
by

reducing the question to a computation of free cumulants for a
product of independent variables, for which we establish a general
formula.

1. Introduction

A Garside structure on a group G consists of a generating family
that gives rise to distinguished decompositions of a particular type,
leading in good cases to an automatic structure on G and, from there,
to solutions of the word and conjugacy problems of G [7]. In the case of
the n-strand Artin braid group Bn, two Garside structures are known:
the so-called classical Garside structure, in which the distinguished
generating family (the “Garside base”) is a copy of the symmetric
group Sn [9, Chapter 9], and the so-called dual Garside structure,
in which the Garside base is a copy of the family NC(n) of all size n
noncrossing partitions [1].
Whenever a finite Garside base S is given on a group G, natural

counting problems arise, namely the problem of counting how many el-
ements of the group G or of the submonoid generated by S have length
(at most) ℓ with respect to S. Call S-normal the distinguished de-
compositions associated with a Garside base S; as S-normal sequences
happen to be geodesic, the above question amounts to counting the S-
normal sequences of length ℓ. Moreover, since S-normality is a purely
local property, the central question is to determine S-normal sequences
of length two, the general case then corresponding to taking the ℓth
power of the incidence matrix associated with length two.
Initially motivated by the investigation of the logical strength of

certain statements involving the standard braid ordering [5], the above
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mentioned counting questions in the case of the classical Garside struc-
ture of braids have been addressed in [6], leading to nontrivial results
involving Solomon’s descent algebra and to natural conjectures, like the
one established in [11] using the theory of quasi-symmetric functions.
The aim of this paper is to address similar questions in the case of the

dual Garside structure of braids and to obtain an explicit determination
of the generating function for the number of normal sequences of length
two. In the statement of the corresponding result below, the symbol
Catn denotes the nth Catalan number 1

n+1

(
2n
n

)
.

Theorem 1.1. Let b∗n,2 be the number of braids of length at most 2 in
the dual braid monoid B+∗

n . Then the function R(z) = 1+
∑

n>1 b
∗
n,2z

n

is connected with M(z) = 1 +
∑

n>1Cat
2
nz

n by the equality

(1.1) R(zM(z)) = M(z).

This formula, which inductively determines the numbers b∗n,2, will be
deduced from a general formula for computing the free cumulants of a
product of independent random variables.
Free cumulants were invented by Roland Speicher in order to per-

form computations with free random variables [14]. In particular, free
cumulants give a simple way of computing the free additive convolution
of two probability measures on the real line, namely the free cumulants
of the sum of two free random variables are the sums of the free cu-
mulants of the variables. Free cumulants also appear when one tries
to compute the free cumulants of a product of free random variables,
although in a more complicated way.
Here is the general formula we establish (the notations are standard

and explained in Section 3):

Theorem 1.2. Let X1, . . . , Xk be a family of commuting independent

random variables, and let R
(i)
n be the free cumulants of Xi. Then the

free cumulants of the product X1X2 . . .Xk are given by

(1.2) Rn =
∑

π1∨···∨πk=1n

∏

i

R(i)
πi
,

the sum being over all k-tuples of noncrossing partitions in NC(n)
whose join is the largest partition.

Since this result is purely combinatorial, we give also another formu-
lation, without reference to free probability.
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Theorem 1.3. For i = 1, . . . , k, let R
(i)
n and M

(i)
n be families of com-

muting indeterminates, with generating functions

R(i)(z) = 1 +
∑

n>1

R(i)
n zn and M (i)(z) = 1 +

∑

n>1

M (i)
n zn

related by

R(i)(zM (i)(z)) = M (i)(z).

Then the generating functions of

Mn =
∏

i

M (i)
n and Rn =

∑

π1∨···∨πk=1n

∏

i

R(i)
πi
,

the latter sum being over all k-tuples of noncrossing partitions in NC(n)
whose join is the largest partition, are related by

R(zM(z)) = M(z).

Free cumulants are specifically designed to deal with highly noncom-
muting objects. Therefore it may come as a surprise that there is also
a simple formula for computing free cumulants of a product of inde-
pendent commuting random variables, in terms of the free cumulants
of the factors. As a matter of fact, such a formula also holds, with
appropriate modifications, for classical and Boolean cumulants.
The organization of the paper is as follows. In Section 2, we recall the

description of the dual Garside structure of braid groups and raise the
induced counting questions. In Section 3, we review basic definitions
about free cumulants and establish Theorem 1.2. This part can be
read independently of the rest of the paper. In Section 4, we apply the
result of Section 3 to braids and conclude with further questions and
one additional result about the determinant of the involved incidence
matrix.

2. The dual Garside structure of braids

Braid groups. For n > 1, the n-strand braid group Bn is the group
defined by the presentation

(2.1) Bn =

〈
σ1, . . . , σn−1

∣∣∣∣
σiσj = σjσi for |i− j| > 2

σiσjσi = σjσiσj for |i− j| = 1

〉
.

The group Bn is both the group of isotopy classes of n-strand geomet-
ric braids, the mapping class group of an n-punctured disk, and the
fundamental group of the configuration space obtained by letting the
symmetric group act on the complement of the diagonal hyperplanes
in C

n [3].
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Garside structures. A Garside base in a group G is a subset S of G
such that every element of G admits a decomposition of a certain syn-
tactic form in terms of the elements of S, namely a symmetric S-normal
decomposition in the following sense.

Definition 2.1 ([7]). Assume that G is a group and S is included in G.

(i) A finite S-sequence (s1, . . . , sd) is called S-normal if, for i < d,
every element of S left-dividing sisi+1 left-divides si, where “f left-

divides g” means “f−1g lies in the submonoid Ŝ of G generated by S”.

(ii) A pair of finite S-sequences ((s1, . . . , sd), (t1, . . . , te)) is called
symmetric S-normal if (s1, . . . , sd) and (t1, . . . , te) are S-normal and,
in addition, the only element of S left-dividing s1 and t1 is 1.

(iii) A Garside base for G is a subfamily S of G such that every
element g of G admits a symmetric S-normal decomposition, meaning
that we have g = t−1

e . . . t−1
1 s1 . . . sd for some symmetric S-normal pair

((s1, . . . , sd), (t1, . . . , te)).

Every group G is trivially a Garside base in itself, and the notion
is interesting only when S is small, typically when G is infinite and S
is finite or, at least, is properly included in G. Under mild assump-
tions, the existence of a finite Garside base implies good properties for
the group G such as the existence of an automatic structure or the
decidability of the word and conjugacy problems.
Whenever S is a finite generating family in a group G, it is natural

to consider the numbers

NS
d = #{g ∈ G | ‖g‖S = d},

where ‖g‖S is the S-length of g, that is, the smallest ℓ such that g can
be expressed as se11 . . . seℓℓ with s1, . . . , sℓ in S and e1, . . . , eℓ in {±1}.
In the case of a Garside base, symmetric S-normal decompositions
are (essentially) unique, and they are geodesic. Therefore, NS

d can be
identified with the number of length d symmetric S-normal sequences.

In such a context, the submonoid Ŝ of G generated by S is the family
of all elements of G whose symmetric S-normal decomposition has an
empty denominator, that is, of all elements that admit an S-normal
decomposition. Thus, it is also natural to introduce the number

NS
d,+ = #{g ∈ Ŝ | ‖g‖S = d},

which, by the above remark, is the number of S-normal sequences of
length d. It then follows from the definition that a sequence (s1, . . . , sd)
is S-normal if and only if every length two subsequence is S-normal,
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and the basic question is therefore to investigate the numbers

(2.2) NS
2,+ = #{(s1, s2) ∈ S2 | (s1, s2) is S-normal}.

The classical Garside structure of Bn. In the case of the braid
group Bn, two Garside structures are known. The first one, often called
classical, involves permutations. By (2.1), mapping σi to the transpo-
sition (i, i+1) induces a surjective homomorphism prn : Bn → Sn.
The positive braid diagrams in which any two strands cross at most
once (“simple braids”) provide a set-theoretic section for prn, whose
image is a copy Sn of Sn inside Bn. The family Sn is a Garside base
in Bn [9, Chapter 9], the submonoid of Bn generated by Sn being the
submonoid B+

n generated by σ1, . . . , σn−1 [10]. The associated num-
bers NSn

d,+ have been investigated in [6]. In particular, writing bn,d
for NSn

d,+, it is shown that the numbers bn,2 are determined by the re-
currence

(2.3) bn,2 =
n−1∑

i=0

(−1)n+i+1

(
n

i

)2

bi,2,

and that the double exponential series
∑

bn,2z
n/(n!)2 is the inverse of

the Bessel function J0(
√
z).

The dual Garside structure of Bn. It is known since [4] that, for
every n, there exists an alternative Garside structure on Bn, corre-
sponding to the dual Garside base S∗

n, whose elements are in one-to-one
correspondence with the noncrossing partitions of {1, 2, . . . , n}. The
question then naturally arises of determining the corresponding num-

bers N
S∗
n

d and N
S∗
n

d,+. Here we shall concentrate on the latter, hereafter
denoted b∗n,d, and specifically on b∗n,2. By (2.2), we have
(2.4)
b∗n,d = #{(s1, . . . , sd) ∈ (S∗

n)
d | (si, si+1) is S

∗
n-normal for all i < n}.

In order to compute the numbers b∗n,d, we shall describe the cor-
respondence between S∗

n and noncrossing partitions and interpret the
S∗
n-normality condition in terms of the latter.
We recall that a set partition of the set {1, . . . , n} is called noncross-

ing if there is no quadruple 1 6 i < j < k < l 6 n such that i and k
belong to some block of the partition, whereas j and l belong to an-
other block. The set of noncrossing partitions of {1, . . . , n}, denoted by
NC(n), is a poset for the reverse refinement order: for two partitions π
and π′ we have π 6 π′ if and only if each block of π is included in some
block of π′. With this order, NC(n) is a lattice, with largest element 1n

— the partition with only one block — and smallest element 0n — the
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partition into n singletons. We denote by π1 ∨ · · · ∨ πd the join of the
partitions π1, . . . , πd.

Definition 2.2 ([4]). For 1 6 i < j, put

ai,j = σi . . . σj−2 σj−1 σ
−1
j−2 . . . σ

−1
i

in Bn. The dual braid monoid B+∗
n is the submonoid of Bn generated

by all elements ai,j, and S∗
n is the family of all left-divisors of ∆∗

n in B+∗
n ,

with ∆∗
n = σ1σ2 . . . σn−1.

Note that σi = ai,i+1 holds for every i, hence B+∗
n includes B+

n , a
proper inclusion for n > 3.

Proposition 2.3 ([4]). The family S∗
n is a Garside base for the

group Bn.

It is convenient to associate with the n-strand
braid ai,j a graphical representation as the
chord (i, j) in a disk with n marked vertices on
the border as shown on the right.

1

i

j

n

Then the correspondence between the elements of S∗
n and noncrossing

partitions stems from the following observation.

Lemma 2.4 ([1]). For P a union of disjoint polygons in the n-marked
disk, say P = P1 ∪ · · · ∪ Pd, let aP = aP1

. . . aPd
, with

aPk
= ai1,i2ai2,i3 . . . aink−1,ink

,

where (i1, . . . , ink
) is a clockwise enumeration of the vertices of Pk.

Then:

(i) The braid aP only depends on P and not on the order of enumer-
ation.

(ii) Mapping P to aP establishes a bijection between unions of disjoint
polygons in the n-marked disk and elements of S∗

n.

It is standard to define a bijection between noncrossing partitions of
the set {1, . . . , n} and unions of disjoint polygons in the n-marked disk,
yielding the announced correspondence. Noncrossing partitions can be
embedded into the symmetric group, using geodesics in the Cayley
graph [2]: this amounts to mapping a union of polygons to the product
of the cycles obtained by enumerating their vertices in clockwise order.
Note that, although noncrossing partitions may be viewed as particular
permutations, the associated braids need not coincide: for instance, the
cycle (13), which corresponds to the partition {{1, 3}, {2}}, is associ-
ated in S∗

3 with the braid a1,3, that is, σ1σ2σ
−1
1 , whereas it is associated

with σ1σ2σ1 in S3.
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For π a noncrossing partition of {1, . . . , n},
we denote by aπ the associated ele-
ment of S∗

n. For instance, for π =
{{1}, {2, 8}, {3, 5, 6}, {4}, {7}}, we find
aπ = a2,8a3,5a5,6, as shown on the right.

1
2

3

4
5

6

7

8

Under the above correspondence, ∆∗
n corresponds to the (unique) n-

gon in the n-marked disk, hence to the (noncrossing) partition 1n with
one block. Due to (2.4), the numbers b∗n,d are determined by

(2.5) b∗n,d = #{(π1, . . . , πd) ∈ NC(n)d |
(aπi

, aπi+1
) is S∗

n-normal for all i < d},
and we have to recognize when the braids associated with two partitions
make an S∗

n-normal sequence.
By construction, the Garside base S∗

n is what is called bounded by
the element ∆∗

n, that is, it exactly consists of the left-divisors of ∆∗
n

in B+∗
n . In this case, the normality condition takes a simple form.

Lemma 2.5 ([7, Chapter VI]). Assume that S is a Garside base for
a group G, and S is bounded by an element ∆. Then, for s, t in S,
the pair (s, t) is S-normal if and only if the only common left-divisor

of ∂s and t in the monoid Ŝ is 1, where ∂s is the element satisfying
s · ∂s = ∆.

We are thus left with the question of recognizing, in terms of non-
crossing partitions (or of the corresponding unions of polygons), when a
braid ai,j left-divides the braid aπ, and what the partition π′ satisfying
aπ′ = ∂aπ is.

Lemma 2.6 ([1]). Assume that π lies in NC(n). Then:

(i) For 1 6 i < j 6 n, the braid ai,j left-divides aπ in B+∗
n if and

only if the chord (i, j) lies inside the union of the convex hulls of the
polygons associated with π.

(ii) We have ∂aπ = aπ, where π is the Kreweras complement of π
(as defined in [12]).

Putting pieces together, we obtain:

Proposition 2.7. For all n and d, the number b∗n,d of n-strand braids
in B+∗

n that have length at most d with respect to the Garside base S∗
n

is given by

(2.6) b∗n,d = #{(π1, . . . , πd) ∈ NC(n)d | πi ∧ πi+1 = 0n for all i < d}.
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Figure 1. The polygons associated with a partition π and
with its image under the complement map ∂ and ∂2: the red
partition is the Kreweras complement of π, and repeating the
operation leads to the image of the initial partition under a
rotation by 2π/n, corresponding to conjugating under ∆∗

n

in B+∗
n .

Proof. By Lemma 2.6 (i), saying that 1 is the only common left-divisor
of aπ and aπ′ in B+∗

n amounts to saying that the convex hulls of the
polygons associated with π and π′ have no chord in common, hence
are disjoint, so, in other words, that the meet of π and π′ in the
lattice NC(n) is the minimal partition 0n. By Lemma 2.6 (ii), this
condition has to be applied to πi and πi+1 for every i. �

3. Free cumulants

In view of Proposition 2.7, we have to count sequences of noncrossing
partitions satisfying lattice constraints involving adjacent entries. We
shall derive partial results from a general formula expressing the free
cumulants of a product of independent random variables.

3.1. Noncrossing partitions and free cumulants. We recall some
basic facts. More details can be found in [14].
Given a sequence of indeterminates T1, . . . , Tl, . . . and a noncrossing

partition π in NC(n), we define

(3.1) Tπ =
∏

p∈π

T|p|,

where the product ranges over all blocks p of π, and |p| is the number
of elements of p in {1, . . . , n}.
Two sequences of indeterminates M1, . . . ,Ml, . . . and R1, . . . , Rl, . . .

are related by the moment-cumulant formula if, for every n, we have

(3.2) Mn =
∑

π∈NC(n)

Rπ.

It is easy to see that this equation can be inverted, and the Rl can be
expressed as polynomials in the Ml. In fact, introducing the generating
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functions

M(z) = 1 +

∞∑

l=1

zlMl, R(z) = 1 +

∞∑

l=1

zlRl,

we can recast the relation (3.2) in the form

(3.3) R(zM(z)) = M(z).

It follows from (3.3) and the Lagrange inversion formula that

(3.4) Mn is the coefficient of zn in the expansion of
1

n + 1
R(z)n+1.

If the Ml are the moments of a probability measure (or a random
variable), then the quantities Rl are called the free cumulants of the
probability measure (or random variable).
Recall that a semi-circular variable is a random variable with mo-

ments M2n+1 = 0, M2n = Catn, and free cumulants R2 = 1, Rn = 0
for n 6= 2. One can see that the square of a semi-circular variable has
moments Mn = Catn and free cumulants Rn = 1.

Free cumulants of a product of independent random variables.

Now we establish the general formula for free cumulants of products of
independent random variables stated as Theorem 1.2 in the introduc-
tion.

Proof of Theorem 1.2. Let M
(i)
n be the moments of Xi. Let us write

the moment-cumulant formula for each of the variables in the product
X1X2 . . .Xk. As the nth moment of X1X2 . . .Xk is

Mn = M (1)
n . . .M (k)

n ,

we have

Mn = M (1)
n . . .M (k)

n =
∑

π1,...,πk∈NC(n)

k∏

i=1

R(i)
πi
.

Let us now decompose the sum on the right hand side according to
the value of π = π1 ∨ · · · ∨ πk. Since πi 6 π holds, each block of πi is
included in some block of π. Let p be a block of π. The intersections
πi,p := πi ∩ p form a partition of the set p. If we identify p with
{1, . . . , |p|} by the only increasing bijection, then the sets πi,p form a
noncrossing partition of {1, . . . , |p|}. Furthermore we have

π1,p ∨ · · · ∨ πn,p = 1|p|,
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whence

Mn =
∑

π∈NC(n)

∏

p∈π


 ∑

π1,p∨···∨πn,p=1|p|

∏

i

R(i)
πi,p


 .

Defining the sequence Qn by

Qn =
∑

π1∨···∨πn=1n

∏

i

R(i)
πi
,

we obtain

Mn =
∑

π∈NC(n)

∏

p∈π

Q|p| =
∑

π∈NC(n)

Qπ.

Then it follows from (3.2) that the quantities Qn are the free cumulants
of the sequence of moments M1, . . . ,Mn, . . . . �

The above argument is closely related to an argument in [17]. The
first author would like to thank Roland Speicher for pointing out this
reference.

Corollary 3.1. The number of k-tuples (π1, . . . , πk) in NC(n)k satisfy-
ing π1∨· · ·∨πk = 1n is the nth free cumulant of the variable X2

1 · · ·X2
k ,

where X1, . . . , Xk are independent centered semi-circular variables of
variance 1.

Proof. If we pick R
(i)
m = 1 for all i and m in Theorem 1.2, then Rn

counts the k-tuples (π1, . . . , πk) in NC(n)k satisfying π1∨· · ·∨πk = 1n,

and the corresponding moments M
(i)
n are the Catalan numbers (see the

end of Section 3.1). �

Classical and Boolean cumulants. Cumulants can also be defined
using the lattice of all set partitions of {1, . . . , n} (this is the classical
case, studied by Rota, Schützenberger, . . . ), or the lattice of interval
partitions (these are the Boolean cumulants, see [16]). In both cases,
it is immediate to check that the proof of Theorem 1.2 goes through
and gives a formula for computing the corresponding cumulants of a
product.

4. Back to braids

We now apply the result of Section 3 to braids.
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Incidence matrices. For every n, there exists a binary relation on
NC(n) that encodes S∗

n-normality. We introduce the associated inci-
dence matrix.

Definition 4.1. For n > 2, we let A∗
n be the Catn×Catn-matrix whose

entries are indexed by pairs of noncrossing partitions, and such that
(A∗

n)π,π′ is 1 (respectively 0) if π ∧ π′ = 0n holds (respectively fails).

For instance, if the partitions of {1, 2, 3} are enumerated in the or-

der , , , , , the matrix A∗
3 is

(
1 0 0 0 0
1 1 0 1 0
1 1 1 0 0
1 0 1 1 0
1 1 1 1 1

)
. It

follows from the properties of 0n and 1n that the column of 0n and
the row of 1n in A∗

n contain only ones, whereas the row of 0n, with the
exception of its 0n-entry, and the column of 1n, with the exception of
its 1n-entry, contain only zeroes.

Proposition 4.2. For all n and d > 1, the number b∗n,d is the sum of

all entries in the matrix (A∗
n)

d−1; in particular, b∗n,2 is the number of
positive entries in A∗

n.

Proof. For π in NC(n) let b∗n,d(π) be the number of S∗
n-normal se-

quences of length d whose last entry is π. By Proposition 2.6, a
length d sequence (π1, . . . , πd−1, π) contributes to b∗n,d(π) if and only
if (π1, . . . , πd−1) contributes to b∗n,d−1(πd−1) and (πd−1, π) contributes
to b∗n,2(π), that is, (A

∗
n)πd−1,π = 1 holds. We deduce

b∗n,d(π) =
∑

π′∈NC(n)

b∗n,d−1(π
′) · (A∗

n)π′,π.

From there, an obvious induction shows that b∗n,d(π) is the πth entry in

(1, 1, . . . , 1) (A∗
n)

d−1, and the result follows by summing over all π. �

(Note that, for d = 1, Proposition 4.2 gives b∗n,1 = Catn, which is
indeed the sum of all entries in the size Catn identity-matrix.)
Using Theorem 1.2, we can now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By Proposition 4.2, b∗n,2 is the number of pos-
itive entries in the matrix A∗

n, that is, the number of pairs (π, π′)
in NC(n)2 satisfying π ∧ π′ = 0n. As the Kreweras complement is
bijective, this number is also the number of pairs (π, π′) in NC(n)2

satisfying π∧π′ = 0n. By complementation, the latter is also the num-
ber of pairs satisfying π ∨ π′ = 1n. By Corollary 3.1, this number is
the nth free cumulant ofX2

1X
2
2 , where X1, X2 are independent centered

semi-circular variables of variance 1. The moments of the latter are the
squares of the Catalan numbers, so (3.3) gives the expected result. �
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Further questions. It is easy to compute the numbers b∗n,d for small
values of n and d, see Table 1.

d 1 2 3 4 5 6 7

b∗1,d 1 1 1 1 1 1 1
b∗2,d 2 3 4 5 6 7 8
b∗3,d 5 15 83 177 367 749 1 515
b∗4,d 14 99 556 2 856 14 122 68 927 334 632
b∗5,d 42 773 11 124 147 855 1 917 046 24 672 817
b∗6,d 132 6 743 266 944 9 845 829 356 470 124

Table 1. The number b∗n,d of n-strand braids of length at

most d in the dual braid monoid B+∗
n : the first column (d = 1)

contains the Catalan numbers, whereas the second column con-
tains the sequence specified in Theorem 1.1, which is A168344
in [15].

It is natural to ask for a description of the columns in Table 1 beyond
the first two ones. The characterization of Theorem 1.1 does not extend
to d > 3. For instance, we have

b∗n,3 = {(π1, π2, π3) ∈ NC(n)3 | π1 ∧ π2 = 0n and π2 ∧ π3 = 0n}.
Replacement of ∧ and 0n by ∨ and 1n is easy, but the Kreweras com-
plement cannot be forgotten in this case.
On the other hand, attempts to describe the rows in Table 1 lead to

further natural questions. By Proposition 4.2, the generating function
of the numbers b∗n,d is rational for every n, and b∗n,d can be expressed
in terms of the dth powers of the eigenvalues of the matrix A∗

n. For
instance, we easily find b∗3,d = 6 · 2d − 2d − 5 for every d, as well as

b∗3,d(π) = 2d+1 − 1 for π 6= 0n, 1n (as above, we write b∗n,d(π) for the
number of braids with a normal form finishing with π). Very little is
known for n > 4.
It would be of interest to compute, or at at least approximate, the

spectral radius of the matrix A∗
n. Here are the first values.

n 1 2 3 4 5 6 7

ρ(A∗
n) 1 1 2 4.83 . . . 12.83 . . . 35.98 . . . 104.87 . . .

Table 2. Spectral radius of the incidence matrix A∗
n
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A determinant. Although we are not able to compute the eigenval-
ues of the matrix A∗

n explicitly, we can give a closed formula for its
determinant.

Theorem 4.3. For every n, we have

| det(A∗
n)| =

n∏

k=2

Cat
(2n−k−1

n−1 )
k−1 .

Before proving this formula, we need an auxiliary result involving
Möbius matrices, due to Lindström [13]. (Lindström’s theorem is in
fact slightly more general as it applies to semilattices.) By definition,
if X is a finite poset, the associated Möbius matrix µ is the inverse of
the order matrix ζ indexed by the elements of X and given by

ζ(x, y) =

{
1 for x ≤ y,

0 otherwise.

If the elements of X are ordered according to a linear extension of the
partial order of X , then ζ is an upper triangular matrix, with ones
on the diagonal. In particular, its determinant is 1. The same is true
for µ.

Lemma 4.4 ([13]). Assume that X is a lattice, and ϕ is a complex
valued function on X. Let Φ be the matrix defined by Φ(x, y) = ϕ(x∧y).
Then we have

det(Φ) =
∏

x∈X

ϕ̂(x),

where ϕ̂ is given by ϕ̂(x) =
∑

y≤x µ(y, x)ϕ(y).

Note that, under the above assumptions, we have ϕ(x) =
∑

y≤x ϕ̂(y)
by definition of the Möbius matrix.

Proof of Theorem 4.3. We apply Lemma 4.4 to X = NC(n) and ϕ
defined by ϕ(π) = 1 for π = 0n and ϕ(π) = 0 for π 6= 0n. We obtain
ϕ̂(π) = µ(0n, π). It is known that the Möbius function for the lattice
of noncrossing partitions is multiplicative: if π is made of pk blocks of
size k for k = 1, 2, . . . , then we have

µ(0n, π) =
∏

k

((−1)k−1Catk−1)
pk .

The matrix A∗
n coincides with the corresponding matrix Φ up to a

permutation of the columns (given by taking the Kreweras comple-
ment). We deduce

| det(A∗
n)| =

∏

k

Cat
an,k

k−1,
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with
an,k =

∑

π∈NC(n)

pk(π).

The numbers an,k have been computed in [8] (see item 4 on page 218),

and we have an,k =
(
2n−k−1
n−1

)
. We are grateful to an anonymous referee

for this reference. For the convenience of the reader we give a short self-
contained proof of this evaluation (our original proof has been greatly
improved by a second anonymous referee, whom we also thank here).
Let us introduce the generating functions

fn,k(y) =
∑

π∈NC(n)

ypk(π) and f(z, y, k) =
∑

n≥0

znfn,k(y).

Then we have
an,k = f ′

n,k(1).

By the moment-cumulant formula, f(z, y, k) is the moment generating
function for the cumulant sequence Rk = y, Rn = 1, n 6= k. Since

R(z) =
1

1− z
+ (y − 1)zk,

it follows from (3.4) that fn,k(y) is equal to the coefficient of xn in the
expansion of

1

n+ 1

(
1

1− x
+ (y − 1)xk

)n+1

.

Taking the derivative with respect to y, at y = 1 we deduce that

f ′
n,k(1) is the coefficient of xn in xk

(1−x)n
, which is an,k =

(
2n−k−1
n−1

)
, as

expected. �
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