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ENUMERATIVE APPLICATIONS

OF SYMMETRIC FUNCTIONS

BY

IRA M. GESSEL (*)

1. Introduction. - This paper consists of two related parts. In the
first part the theory of D-finite power series in several variables and the
theory of symmetric functions are used to prove P-recursiveness for regu-
lar graphs and digraphs and related objects, that is, that their counting
sequences satisfy linear homogeneous recurrences with polynomial coeffi-
cients. Previously this has been accomplished only for small degrees. See,
for example, GOULDEN, JACKSON, and REILLY [7], GOULDEN and JACK-
SON [6], and READ [16, 18]. These authors found the recurrences satisfied
by the sequences in question. Although the methods used here are in
principle constructive, we are concerned here only with the question of
existence of these recurrences and we do not find them.

In the second part we consider a generalization of symmetric functions
in several sets of variables, first studied by MACMAHON [13, 14, vol. 2, pp.
280-326]. MacMahon's generalized symmetric functions can be used to
find explicit formulas and prove P-recursiveness for some objects to which
the theory of ordinary symmetric functions does not apply, such as Latin
rectangles and 0-1 matrices with zeros on the diagonal and given row and
column sums.

(*) partially supported by NSF grant DMS-8504134
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I. Symmetric functions and P-recursiveness

2. D-finite power series and P-recursive functions. - A formal
power series f{x} is said to be D-finite (or differentiably finite) if / satisfies
a linear homogeneous differential equation with polynomial coefficients.
An equivalent condition is that the set of derivatives of / spans a finite-
dimensional vector space over the field of rational functions in x. A func-
tion a(n) defined on the nonnegative integers is said to be P-recursive (or
polynomially recursive) if there exist polynomials po("), Pi (n), ..., pfc(n)
such that

\pi{n)a{n+i) =0
t=0

for all nonnegative integers n.
The fundamental fact relating these two concepts is that a(n) is P-

recursive if and only if its generating function ̂ ^g a{n)xn is 'D-finite.
We refer the reader to STANLEY [20] for the proofo^this and other basic
facts.

In this paper we show that counting sequences for certain combinatorial
problems which can be expressed as coefficients of symmetric functions are
p»'x.!c^rsive"To dothis we need a multivariable generalization of the theory
of D-finiteness and P-recursiveness. Such a generalization was first given
by ZEILBERGER [22]. However, Zeilberger's definition of multivariable P-
recursiveness is not suitable for our purposes. A more useful definition of
multivariable P-recursiveness has been given by LIPSHITZ [10], but we shall
work only with multivariable D-finiteness.

The theory of D-finiteness generalizes easily to the multivariable case.
In the next section we define multivariable D-finiteness and describe some
of its properties.

3. D-finite power series in several variables. - First we discuss
the theory of D-finite power series. Let I be an integral domain and
let F be the quotient field of I[x^x^..., Xn}. Let f(x^x^... , Xn) be
a formal power series in I[[xi ,3-2,..., a-n]]. We say that 7(a-) "is D-finite in
the variables a;i, 3-2, ..., a-n if the set of all partial derivatives 9 f

9x\l . . . 9xinn
spans a finite-dimensional vector space over F (as a subspace of the tensor
product_F®^^,. ^J[[^, ^,..., ^]]).

The following lemma contains some of the basic facts about D-finite
power series in several variables that we will need :

LEMMA1.

(i) The set of all the D-finite power series forms an I-subalgebra of
I[[xi,..., Xn]}.
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(h) If f is D-finite in a;i, 3;2,... , a-n then f is D-finite in any subset of
3;l,.T2,..., 3:n.

(iii) J//(a;i a;2,..., a;n) is D-finite in x^^x^,... , Xn and for each i, n
is a polynomial in the variables yi, y^, ..., y^, (which may include some
or aUofthe^x, )thenf{r^^,..., rn~) is D-finite myi, y^, . '.., y^, as long
as it is well-defined as a formal power series.

(iv) IfP(x) is a polynomial in a;i, a;2,... , a--n then ep^ is D-finite.
The proofs of these statements are straightforward, and are similar

to proofs for the one-variable case given by STANLEY [20]. (See also
LIPSHITZ [10]. ) We need one further fact about D-finite power'series in
several variables, due to LIPSHITZ [9], which is somewhat harder to prove.
If A(x) =^Ea(ii,..., in)x[l ... x^ and B{x) = ^ 6(^,..., i^x{1 -^. x^,
then the Hadamard product A(x) Q B(x) with respect to the variables
xi, x-2,... , Xn is defined to be

J^a(il,..., in)b(ii,..., i^x{1 X'.

Note that the a's and Vs may involve other variables.

LEMMA 2. (LIPSHITZ [9]). - Suppose that A and B are D-finite in
the variables x^,x^, ..., x^^n. Then the Hadamard product A Q B with
respect to the variables a;i, a;2,..., a-n is D-finite in a-i, 3-2,..., a-m+n.

Now suppose that / is a formal power series in an infinite set X of
variables. For any subset S o! X let /s be the formal power series in the
variables in S obtained by setting to zero all the variables in X - S. We
shall say that / is D-finite in X if fs is D-finite in S for every finite subset
S of X. With this definition, all the properties of D-finite series in finitely
many variables are easily seen to remain valid, except that in LEMMA 1 (ill)
we may only substitute for finitely many variables.

3. Symmetrlc functions. - We recall some facts about symmetric
functions. We refer the reader to MACDONALD [12] for proofs and details.

We work with symmetric functions in the infinitely many variables
3;i, a;2,... with coefficients in a field of characteristic zero. We will be
concerned with the following particular symmetric functions:

The power sum symmetric function pn is defined by

Pn=EX '-

More generally, if A = \i\2--->k is a partition, we define p^ =
P\lP\2 ... P\k-
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The elementary syminetrlc function Cn is defined by

Cn = ^ , Xi^Xi^ . . . Xi^.
2l<l2<-"<tn

IfA = AiA.2 ... Afe is a partition, we define e\ = e^iCAz ... eAfc.
The complete symmetric function hn is defined by

n == ^ , 2'ii ̂ 22 ' ' ' ^^n '

tl<t'2<--.$in

It is convenient to define h\ to be h\^h\^ . . . h\^ for any sequence A =
\i\-i---\k of nonnegative integers, not necessarily a partition. We set
h = Sn=0 /l" and e = Z/n=o e"' where ho = CQ = 1.

The monomial symmetric function m\ is the sum of all distinct mono-

mials of the form x^ . . . a;^*, where ii,... , ik are distinct.
It is known that each of the sets {e\}, {h\}, {p\}^ and {m\}, where A

ranges over all partitions of n, is a basis for the vector space of symmetric
functions homogeneous of degree n.

If \ has ri parts equal to i for each i, then we define ^A to be
in2r2... A;rfcn!r2'---rfe!.

There is a symmetric scalar product ( , ) defined on symmetric
functions that has the following properties:

(4. 1)
and

(4. 2)

{m\, h,,) ==S\i,

{P\, P^} = zx6^

where 6\p, is 1 ifA= /^ and 0 otherwise.
This scalar product was introduced by REDFIELD [19] in 1927 in his

then-ignored but now-famous paper on what later became known as Polya
theory. Redfield called it the "cap product. " The scalar product was
rediscovered by HALL [8] in 1957 and is often attributed to him. It is
equivalent to the usual scalar product on characters of symmetric groups.

Note that (4. 1) implies that if / is a symmetric function, then the
coefficient of x^lx^2---x^k in / is {f, h\}. To evaluate scalar products
of symmetric functions, we shall express them in terras of power sum.
syinmetric functions and use (4. 2). Thus, we need to express the complete
homogeneous symmetric functions in terms of power sum symmetric
functions, and this is accomplished by the formula

(4. 3) Sh"=exp(ST
n=0 fe=l
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which implies that

"-E^
where the sum is over all partitions A of n.

Next we recall the operation of internal (also called inner) product on
symmetric functions which is defined by

(4. 4) P\*P^ =6\^z\p\

and extended by linearity to all symmetric functions. The internal product
was discovered by REDFIELD [19] in 1927, who called it the "cup product,"
and it was rediscovered by LITTLEWOOD [11] in 1956. It is equivalent
to pointwise multiplication of characters of symmetric groups, which
corresponds to the tensor (or Kronecker) product of representations.

5. D-finite symmetric functions. - We shall say that a symmetric
function is D-finite if it is D-finite when considered as a power series in
the pn. We shall show that functions obtained from coeflficients of D-finite
symmetric functions are P-recursive.

THEOREM 3. - Suppose that f and g are symmetric functions which
are D-finite in the pi and possibly in some other variables. Then f * g is
D-finite in these variables.

Proof. - Note that f*g=fQgQu, where Q is the Hadamard product
in the p, and u is the symmetric function given by

u= ̂ 2;APA,

where the sum is over all partitions A. Now

u= ^ lrl2^... n\r, l... pr^pr,
ri, r-2,

=(E^'(lPl)rl)(Er2!(2p2 )r2;
ri / v r2

=A(lpi)A(2p2 )---,

where A(y) = ^^L() n! t/n. Since u is easily seen to be D-finite, f *g is a.
Hadamard product of three D-finite power series, and is thus D-finite by
Lipshitz's theorem.

COROLLARY 4. - Let f and g be symmetric functions which are D-
finite in the pi and in another variable t, and suppose that g involves
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only finitely many of the pi. Then {f, g} is D-finite in t as long as it is
well-defined as a formal power series.

Proof. - By the previous theorem, f * g is D-finite in the pi and in
t, and involves only finitely many of the pi. Then {fi g} is obtained from

/ * g by setting each pi equal to 1, and thus the conclusion follows from
LEMMA 1 (in).

Note that without the restriction on g the theorem would not be true:
according to our definitions, ^n^o Cnpn is D-finite for any coefficients Cn
and thus any power series in t can be obtained as a scalar product of two
D-finite symmetric functions.

COROLLARY 5. - Let f be a D-finite symmetric function and let S
be a finite set of integers. Define integers bn as follows : bn is the sum
over all n-tuples (Ai, A2,..., An)   5" of the coefficient of x^ .. -x^n in
/. Then b(t) = ^^p bntn is D-finite.

Proof. - The coefficient of x^1 . . . x^n in / is (/, /i\), and so b{t} =
{/, g), where

00 / __ \n / \-1

9=E((Ek. ) =(l-tEk.)
"=0 v i6S / v i£S

and the assertion follows from the previous corollary.
In particular, it will follow that the generating functions for various

types of graphs and hypergraphs on n vertices whose degrees are constrai-
ned to a finite set are D-finite. This proves a conjecture of GOULDEN and
JACKSON [6].

Next we need to consider the operation of composition (also called
plethysm) for symmetric functions. First, suppose that ^ is a symmetric
function which can can be expressed in the form <i+^2+'""; where each ti
is of the form x[lx1^ . .. x^k. (The terms ti need not be distinct. ) Then for

any symmetric function / = /(a-i , 3-2,... ) the composition , (5') is defined
to be /(^i, *2,... ).

In the general case, composition may be defined as follows : If /i and ,2
are symmetric functions then (/i + /2)(9) = /i(ff) + ,2(9) and (fi fz^g) =
f\{g}fi{g} so it is sufficient to define pn{9}- This is accomplished by the
forniulapn($f) = fif(pn), where g(pn ) is determined by the special case given
in the previous paragraph, or by the formula pm(pn) = Pmn-

THEOREM 6. - Suppose that g is a polynomial in the pn- Then h(g)
is D-finite.

Proof. - To show that h^g) is D-finite we need only show that ^(^) is
D-finite in the variables pi, p2, .. . .> Pn for each n.

10
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By (4. 3) we have

^)-xp(g"f))=exp(g^)

..V^>'(.L^
where the second factor on the right does not involve pi, p2, ..., pn. Then
by LEMMA 1 (iv), h(g) is D-finite inpi, p2, ..., pn.

The same reasoning shows that e(g) is also D-finite, where e = ^^, 0 e"-
Let us now give some examples of THEOREM 6. Consider the products

(5. 1)

(5. 2)

(5. 3)

(5. 4)

hw =!IT-:
^ 1 - ^j

/l(e2)==IIrrL
y1 -x^

<^)=n(i+^,)
i<j

e(e2)=r[(i+^^-).
i<3

By THEOREM 6, they are all D-finite. Each counts a class of graphs.
Thus the coefficient of x^x^2 ... in (5. 1) is the number of graphs on the
vertex set {1, 2,... }, with multiple edges and loops allowed, such that
the degree of vertex 2 is A, where a loop contributes 2 to the degree
of its vertex. Similarly, (5. 2) counts graphs with multiple edges but no
loops, (5. 3) counts graphs with loops allowed, but not multiple edges, and
(5. 4) counts graphs without loops or multiple edges. Graphs with loops
in which a loop contributes only 1 to the degree of its vertex are counted
by /i(ei +02) (multiple edges allowed) and e(ei + 62) (multiple edges
not allowed). Similarly, ^-uniform hypergraphs are counted by e(ejfc), and
so on.

6. Symmetric functions in several sets of variables. - In some
applications it is necessary to work with symmetric functions in two or
more sets of variables. For simplicity, we consider here only the case of two
sets of variables, which we use to count nonnegative integer matrices with
prescribed row and column sums (or equivalently, digraphs with prescribed
indegrees and outdegrees or two-colored graphs with prescribed degrees).

Let a;i, a-2, ... and 1/1, 1/2,... be two disjoint sets of variables. We shall
consider power series in these variables which are symmetric in the a-'s

11
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and symmetric in the y's. It is easy to see that such a symmetric function
can be expressed in the form

^a\izP\{x)p^y)
\,^

where ^(a;) means pA (a;i, a-2,...) and similarly for p^y). We call these

series D-finite if they are D-finite in the p, (a-) and pj(y).
We may extend the scalar product ( , ) to symmetric functions in two

sets of variables by setting

{f^x)f^y\g, {x)g^y)} = { \g, {x)}{f, (y\g^y)}.

If / is a symmetric function, by f(xy) we mean /(a-i yi,.Ei?/2,..., a-, ^-,... ).
Thus, for example, we have

/l^)=nT -L--
^ 1 - w

This product is easily seen to be D-finite using the fact that pn(xy) =
Pn(x)pn (y) It is clear that the coefficient of x^1 - . x^ny^ ... y^" in h(xy)
is the number of digraphs on {1, 2,. . . , n}, with multiple edges allowed,
in which vertex i has outdegree A, and indegree //,, or equivalently, the
number of n x n matrices of nonnegative integers in which the sum of
the ith row is A, and the sum of the j th column is ̂ j. This coefficient
is easily seen to be equal to {h(xy), h^x)h^y)}, which is also equal to
{h\(x), h^x)).

Now let bn be the number of n x n nonnegative integer matrices with
every row and column sum equal to k. It follows that

(6. 1) b{t)=^bntn^{h{xy), g(x, y)),L^
n=0

where ̂(a-, y) i^ given by ̂(a;, ?/) = (l-^fe(a;)/ife(t/))-l, and by reasoning as
before, b{t) is D-finite. Similarly, e(xy) counts 0-1 matrices with prescribed
row and column sums, or equivalently, digraphs without multiple edges
with prescribed indegrees and outdegrees.

7. Explicit formulas and asymptotlcs. - In all of our examples,
we have actually shown something stronger than P-recursiveness-we have
shown that there exists an explicit formula for the numbers in question as
a sum of fixed multiplicity. (In the terminology of Zeilberger, these sums

12
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are "multi-hypergeometric. ") Although these formulas are complicated,
they can be used to derive asymptotic approximations.

For example, the number of n x n nonnegative integer matrices with
every row and column sum two is

{h(xy), h^x)h^y)} = (h^h^) = ^ ^_+P2\lfP 2, +P^

'n')f")(p!"-2iri. rf"-^)--2"s;(:)C)^-2
=2-2"E(")(ri"-"ri, ri'-2<ri)

=E^ -(2n-«) n

(2n - 2?)! z!.

It can be shown that asymptotically we may replace each summand by its
limit as n -> oo, and thus the sum is asymptotic to

2-2n(2n)!^;i(iy'=2-2n(2n)!e1/2.
7=0 '.

A more detailed analysis yields a complete asymptotic expansion.
More generally, the number of n x n nonnegative integer matrices with

every row and column sum k is {h1k, h^), and it can be shown that the

major contribution to this scalar product comes from the terms in

^;i ,rf-2. ^Y/rf, rf-2 p3 V\
k\ ' (fc-2)!T; ^IT'r(T^2)iy,

(fcn)!^(^-l))2t (n(n-l)... (n-, +i))2
k\2 ^£

t=0
i\ 2l kn(kn- I)---(A-n - 2i + 1)'

The sum is asymptotic to

(^)! f. (k\k - l)^/2)t ^Yl 
_ 

(^)!^, _, ). /,
^2n ^ it^^ =^Tev ~'"'

as found by EVERETT and STEIN [2], who also used symmetric functions.
A similar analysis can be used to obtain asymptotic expansions for related
problems, since although in general the formulas have many terms, nearly
all are asymptotically insignificant.

13
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II. MacMahon's symmetric functions
of several systems of quantities

8. MacMahon's symmetric functions. - Some enumeration pro-
blems involve generating functions which are almost, but not quite, sym-
metric. Here are three examples :

Example 1. - The number ofn x n 0-1 matrices with zeros on the
diagonal with row sums ri, 7-2, ..., ^m and column sums ci, C2, ..., c» is
the coefficient of .r[l . . . x^y^ . . -y^n in

n(i+^'y, ).
.̂ J

Example 2. - The number of 3 x n Latin rectangles is the coefficient
ofa;ia;2 . . . Xnyiy-i . . . ynZ^z-i ... Zn'm

n

^ XiVjZk ) ,
<«j, fc

where the sum is over all triples of distinct integers i, j, k.

Example 3. - Consider the monoid freely generating by the letters
ai, as, ..., an, 61, &2, ..., &n, subject only to the commutation relations
aibi = biOi. By the CARTIER-FOATA theory of free partially commutative
monoids [I], the number of equivalence classes of words in this monoid
with Ui occurrences of a; and v, occurrences of 6, is the coefficient of
x
"I

. xunnyll . yvnn in

(1-a-i -... a-n-yi -... -^+^^ + ... 4. a. ^y^)-i.

One can show that this coefficient is also the number of words in the letters
c(i, c(2, ..., "n, &i, &2, ..., &n, with u, occurrences of a, and Ui occurrences
of b,, containing no consecutive os, 6,.

These generating functions all have the property that they are symme-
trie under any permutation of the subscripts which acts the same on a-'s
and y's, i.e. the coefficient of x^y^ is equal to the coefficient of x^ as
long as a^- 6, but need not be equal to the coefficient of x\y\. (The zisual
theory of symmetric functions in two sets of variables applies to symme-
trie functions which are symmetric independently in the a-'s and the y's.)
These more general symmetric functions were studied by MACMAHON [13,
14, Vol. 2, pp. 280-326] who called them "symmetric functions of several
systems of quantities. " MacMahon applied to them his favorite tool for
manipulating symmetric functions, Hammond operators, and claimed to

14
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have solved the problem of counting Latin rectangles with these operators.
His work on these symmetric functions seems to have been ignored, and
his claimed solution to the problem of counting Latin rectangles dismissed
as impractical and useless.

In previous sections we showed how the theory of syinmetric functions
can be applied to get "useful" formulas from symmetric function gene-
rating functions, and in particular, to show that certain sequences are
P-recursive. We now do the same for MacMahon s symmetric functions of
several systems of quantities, which we henceforth call Mac^/Iahon sym-
metric functions. First we discuss the fundamental bases for MacMahon

symmetric functions and the formulas relating them, which are straightfor-
ward generalizations of those for ordinary symmetric functions. For sim-
plicity, we discuss here only MacMahon symmetric functions in two sets
of variables. The generalization to more than two presents no difficulties.

9. Bases. - We take two sets of variables, a-i, x-z, ... and yi, 1/2,
.... A formal power series / in these variables is a MacM^ahon symmetric
function if whenever ?i, ?2, . . ., in are distinct positive integers, and GI,
<32, .. ., a-n and bi, &25 . . . 5 ^n are nonnegatlve integers, the coefficient of
x^y^x^y^ -.. in / is equal to the coefficient of x^y^x^y^ ... 'mf.

Just as bases for ordinary partitions are indexed by partitions of in-
tegers, bases for the MacMlahon symmetnc functions are indexed by bi-
partite partitions. A bipartite number is an element ofN x N - {(0, 0)},
where N is the set of nonnegative integers. A bipartite partition of the
bipartite number (a, &) is a multiset of bipartite numbers with (compo-
nentwise) sum (a, &). Thus {(0, 1), (0, 1), (1, 0)} is a bipartite partition of
(1, 2). For simplicity we write {(0, 1), (0, 1), (1, 0)} as (0, 1)(0, 1)(1, 0) or as
(0, 1)2(1, 0).

Now if A = (ai, bi)(a2, &2) . . . is a bipartite partition, we define the
monomial symmetric function m\ to be the sum of all monomials of the
form.

. Ol,, 6lT. a2,, »2 . . .
-2i yii .ii2 ̂ 22" "'

where ii, i^, ... are distinct. For example,

m(i, o)(o, i)=^. r«^
i^J

m(i, i) = ^xiy,
2

m(i, -i)(-i, i)=^x, zjiXjijj.
i<j

15
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Note that m(ij)(^i) is not equal to Y.^jXiyiXjyj since the latter sum

contains every monomial twice. It is clear that the m\ over all bipartite
partitions A of (a, 6) constitute a basis for the vector space of all MacMahon
symmetric functions of degree (a, b).

Next we define the three "multiplicative bases": the elementary sym-
metric functions e\, the complete symmetric functions h\, and the power
sum symmetric functions p\. These bases are multiplicative in the sense
that if A = (ai, 6i)(ci2, &2) . . . then e\ = e(a^b^e(a^, b.,) . . . and similarly for
the other bases. We define e(a, b) by

1 + ^e(a, i)5a<6 = IJ(1 + ̂  + y, <),
a, 6 i

so that e(a, b) = m(^o)<'(o, i)i>, and we define h(a, b) by

l+Eh(^tt=ni
_,,

l, _^.T~b -^ i-XiS- yil

Note that in general h(a, b) is not a sum of m\s with unit coefl&cients. For
example,

h(i, i) = a-iyi + yia-i + xiy-s + yix-s + . .. = 2m(i, i) + m(i, o)(o, l).

We define p(a, b) by

P(^, b) =^x^y^ =rn(a, b)-
I

By taking logarithms and exponentiating we obtain

(9. 1) 1 + ̂ . (., ",. (. = exp ( ̂ (-D'+'-'^f^')^,, )^')
a,6 vfc+/>0

and

(9. 2) 1+^;/, (., ",. (> =e,=p(^ ^(^')^,, A-).
a.b

We now show that {e\}, {h),}, and {p^} are in fact bases. Since they
have the right cardinality, it is sufficient to show that they span, and in
view of (9. 1) and (9. 2) it is sufficient to show that the p\ span.

We may define a partial order on the bipartite partitions of (a, &) by
saying that ^ covers A if A can be obtained from /j, by replacing two
parts of ̂  by their sum. Thus (2, 0)(1, 3) < (1, 0)(1, 0)(1, 0)(0, 3) since
(2, 0) = (1, 0) + (1, 0) and (1, 3) = (1, 0) + (0, 3).

16
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It is easy to see that

P/z = ^ c\m^
\<fl

for sonie integers c\, with c^ ^ 0. Thus, for example,

P(i, i)(l, i) = (S^^)(^^!/i)
2 3

=^x, yiXjyj+^x2, y]
i^7 '

=2m(i, i)(i, i)+m(2, 2)

It, follows that, these equations can be solved to express the m\ as linear
combinations of the p\, and thus the p\ form a basis.

If every part of A is of the form (a, i, 0), then all of these MlacMahon
symmetric functions reduce to the corresponding ordinary symmetric
functions.

Now let xi, X2,. .. , yi, y2, -. . 
be new variables. If / is a Mac]V[ahon

symmetric function let us write f(x, y) for / and f(x, y) for / with x,
replacing Xi and y^ replacing y;.

Suppose that A has r^- parts equal to (z, j) for each i and j. Then set

^=ilr
2>J

n z\]\
ZJ:

.
O'+j-l)!

r;j

Note that unlike the case of ordinary symmetric functions, the z\ are not
in general integers; for example, -z'(2, 2) = 2/3. The following formulas are
proved similarly to their analogs for ordinary symmetric functions:

(9. 3)

(9. 4)

Hr
1

»,J
- XiXj - yiVj

~^~. = ^h>{x^y)m>{x. y)

= ^z\lp>(x^y)p^(. x^y)

MACMAHON [14, Vol. 2, pp. 286-291] proved the following "law of
syminetry": The coefficient of x^ly[lxyy^ ... in ^(ci, di)(c2, d2)--- ls e(lual
to the coefficient; of x^y^x^y^ . . . in ̂ (ai, &i)(a2, 62)--' . MacMahon's law
of symmetry follows easily from (9. 3).

Just as in the case of ordinary symm.etrlc functions, we may define a
scalar product on MacMahon synimetric functions by {h\, m^} = S\^.
Equivalently, for any symmetric function /, {h\, f} is the coefficient of
x^y^x^y^ .. . in /. MacMahon's law of symmetry is then equivalent to

17
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the formula {h\, h^} = {h^, h\}, which implies that { , ) is symmetric. It
follows from (9. 4) by a standard linear algebra argument that {p\, p^} =
z\S\^.

In the author's opinion MacMahon's work on symmetric functions failed
to achieve what it might have because of his ignorance of the scalar
prodzict, which is understandable, since linear algebra was not well-known
in MacMahon's day. Instead of the scalar product, MacMahon used what
he called "Hammond operators, " which can be used for the same purposes.
Hammond operators, as explained elegantly and concisely by MACDONALD
[12, p. 45], are adjoints of multiplication operators: if / is a symmetric
function then the Hammond operator Of is defined by

{0f{9^h}={g, fh)

for all symmetric functions g and h. Thus in particular, (/, g} = {f . 1, g) =
{l, 0f{g)}, so if / and g are homogeneous of the same degree, {f, g} =
6f{g). But Hammond operators are undesirable for two reasons. First
they disguise the symmetry of the scalar product. Second, they can be
represented as differential operators. Although this might seem like an
advantage, it seems to be of little use, but misleads by directing attention
in the wrong direction.

10. D-finlteness and P-recurslveness. - The theory of D-finiteness
for symmetric functions generalizes easily to MacMahon symmetric func-
tions. We call a MacMahon symmetric function D-finite if it is D-finite in
the P(a, b)- For example,

r[(i+^y,)
i^J

is D-finite because it is equal to

exp[s
^=1

v-i(-1)
-{P(j, o)P(o, j) -PO, J)) ).

It follows that for fixed k, the number ofn x n 0-1 matrices with zeros
on the diagonal and every row and column sum k is P-recursive as as a
function of n.

By using MacMahon synimetric functions in k sets of variables, one can
show that for fixed k, the number of A; x n Latin rectangles is P-recursive
as a function of n. In GESSEL [4] a combinatorial derivation is given of
a formula for k x n Latin rectangles which implies P-recursiveness. This
formula can also be obtained from MacMahon symmetric functions.
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11. Explicit forniulas. - We now give two simple examples of the
use of MacMahon symmetric functions to derive explicit formulas. First
we find the number of 2 x n Latin rectangles. This number is easily seen

n

to be the coefficient of a-i .. . Xny-i . . -yn in [S, ^^ Xiyj^ = e^^y Thus
the desired number is {h-^^, e^ ̂ . We have

h(i, i) =P(I, O)(O, I)+P(I, I)
and

6(1,1) =P(1,0)(0, 1) -P(l, l)-

Therefore, the number of 2 x n Latin rectangles is

</lFl, l)'eFl, l)) = <(P(1, 0)(0, 1) +P(l, l))n, (p(l, o)(0, l) -P(l, l))"}

=(S(^)Pa, o)PSo, i)PFi-it)'
i=0

E [",)pL^,^r-'p^)
j=0

= E (^) (-l)n-t^i, o^o, n^)^a, o)^. i)Ci2))
i=0

=E(^) (-i)n-^. <'("-o'
i=0

=»!D-l)°-(^7), =n'^.
2=0

where Dn is the nth derangement number.
Next we consider Example 3 of Section 7, which involves the coefficient

ofx^... x^yv, l... yv̂  in

(1 -3-1 - .... );" -t/i - ... - t/n + Xiyi + . .. + Xnyn)~1.

This coefficient is then {^(ui, i>i)(u2, v2)---»/)> where

/ = (1 - p(i, o) - P(o, i) + P(l, l))
(?" +J+ k)\

"P(i, i)'(i, o)^(o, i)*-7i7iTT
^ -. -. -. - , :J:/,:

It follows that if A = (1, 1)*(1, 0)-''(0, l)fc then

(ii. i) (px. f}={-mi+j+^.
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and {p\, f) = 0 for A not of this form. Now let 0 be the homomorphism
from the MacMahon symmetrlc functions to polynomials in z defined by

^(P(l, l)) = -^, ^(P(l, 0)) = ^(P(0, l)) = ^,

and 0(p(a,, b)) = 0 for other (a, 6). Let L be the linear functional on
polynomials in z defined by L{zn') = n!, so that L has the integral
representation

. 00

L{r{z)) = I e-zr{z~}dz.
Fo

It follows from (11. 1) that for any symmetric function g,

{g, f}=L(6{g)Y

inin {u, u}
. u+v-i

Now let

rn, ^)=8{h^)= ^ (-l)l,,,,. ^w. _, M'
^ ' -/ i](u-i)\(v-i)\'

Then the coefficient we want is

(11. 2) L(T[r.,, ^)).
^=1

We note that this result can also be obtained by an argument like that
used in the theory of rook polynomials.

For the special case u, =u, = 1 we obtain

{h^f) = L{^2 - zD = E(-l)!(^)(2n - ^
1=0

as is well-known. (See, for example, STANLEY [21, Exercise 10, p. 89;
Solution, p. 93].)
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