
Sminaire Lotharingien de Combinatoire 66 (2012), Article B66dGOG AND MAGOG TRIANGLES, AND THE SCHÜTZENBERGERINVOLUTIONHAYAT CHEBALLAH AND PHILIPPE BIANEAbstra
t. We des
ribe an approa
h to �nding a bije
tion between Alternating SignMatri
es and Totally Symmetri
 Self-Complementary Plane Partitions, whi
h is basedon the S
hützenberger involution. In parti
ular, we give an expli
it bije
tion betweenGog and Magog trapezoids with two diagonals.1. Introdu
tion1.1. Alternating Sign Matri
es. An alternating sign matrix (ASM) is a square ma-trix with entries in {−1, 0,+1} su
h that, along ea
h line and along ea
h 
olumn, thenon-zero entries alternate in sign, the sum of the entries in ea
h line and in ea
h 
olumnbeing equal to 1. The number of su
h matri
es of size n is
An =

n−1
∏

j=0

(3j + 1)!

(n+ j)!
= 1, 2, 7, 42, 429, . . .(1.1)as proved by Zeilberger [11℄ and Kuperberg [8℄. More of this story 
an be found in [2℄.There have been still other proofs sin
e then, e.g., [4℄.It has been known for a long time (see [1℄) that the numbers An also 
ount the numberof Totally Symmetri
 Self-Complementary Plane Partitions (TSSCPP), however noexpli
it bije
tion between these 
lasses of obje
ts has been 
onstru
ted, and �ndingone is a major open problem in 
ombinatori
s.In this paper we propose an approa
h to this question whi
h is based on the S
hützen-berger involution. More pre
isely, we 
onsider Gog and Magog triangles (in the termi-nology of Zeilberger), whi
h are triangular arrays of positive integers, satisfying somegrowth 
onditions, in simple bije
tion with ASMs and TSSCPPs, respe
tively. The ba-si
 idea underlying our approa
h is that these triangles are examples of Gelfand�Tsetlinpatterns to whi
h one 
an apply some known transformations, su
h as the S
hützen-berger involution. In fa
t we 
onje
ture the existen
e of a bije
tion between Gog andMagog triangles whi
h 
an be obtained in two steps: �rst by making a �modi�
ation�of a Gog triangle, based on its inversion pattern, then by applying the S
hützenbergerinvolution. This bije
tion should also preserve trapezoids, whi
h are parti
ular 
lassesof triangles, and whi
h are equi-enumerous, due to Zeilberger's result [11℄. As a �rststep towards a full bije
tion we 
onstru
t here a bije
tion between (n, 2) Gog and Magogtrapezoids (the terminology is explained below).The paper is organized as follows. In Se
tion 2 we introdu
e the de�nitions ofGelfand�Tsetlin triangles, the Gog and Magog triangles and trapezoids, and the S
hüt-zenberger involution. In Se
tion 3 we give a bije
tion between (n, 2) Gog and Magogtrapezoids.



2 HAYAT CHEBALLAH AND PHILIPPE BIANEWe thank the referees of this paper for their 
onstru
tive 
omments leading to im-provements in the presentation.2. Gog and Magog triangles and trapezoids2.1. Gelfand-Tsetlin.De�nition 1. AGelfand�Tsetlin triangle of size n is a triangular arrayX = (xi,j)n>i>j>1of positive integers
xn,1 xn,2 . . . xn,n−1 xn,n

xn−1,1 xn−1,2 . . . xn−1,n−1

. . . . . . . . .

x2,1 x2,2

x1,1su
h that, whenever the entries belong to the array, one has
xi+1,j 6 xi,j 6 xi+1,j+1.In other words, the triangle is made of n diagonals in the Northwest-Southeast (NW-SE) dire
tion, of lengths n, n−1, . . . , 2, 1 (from left to right), and it is weakly in
reasingin the SE and in the NE dire
tions. For example,
1 2 2 3 6

1 2 2 5
2 2 4

2 4
3

6>is a Gelfand�Tsetlin triangle of size 5.Gog and Magog triangles will be obtained from Gelfand�Tsetlin triangles by imposingfurther 
onditions on the entries.2.2. Gog.2.2.1. Triangles.De�nition 2. A Gog triangle of size n is a Gelfand�Tsetlin triangle su
h that
(i) xi,j < xi,j+1, j < i 6 n− 1in other words, su
h that its rows are stri
tly in
reasing, and su
h that
(ii) xn,j = j, 1 6 j 6 n.Here is an example with n = 5:

1 2 3 4 5
1 3 4 5

1 4 5
2 4

3There is a simple bije
tion between Gog triangles and alternating sign matri
es (see,e.g., [2℄). If (Mij)16i,j6n is an ASM of size n, then the matrix M̃ij =
∑n

k=iMij has



GOG, MAGOG, AND SCHÜTZENBERGER 3exa
tly i − 1 entries 0 and n − i + 1 entries 1 in row i. Let (xij)j=1,...,i be the indi
es(in in
reasing order) of the 
olumns 
ontaining an entry 1 in row n− i+ 1 of M̃ . Thetriangle X = (xij)n>i>j>1 is the Gog triangle 
orresponding to M .For example, the above Gog triangle 
orresponds to the following alternating signmatrix












0 1 0 0 0
0 0 1 0 0
1 −1 0 0 1
0 1 −1 1 0
0 0 1 0 0











2.2.2. Trapezoids.De�nition 3. An (n, k) Gog trapezoid (for k ≤ n) is a Gog triangle of size n, X =
(xi,j)n>i>j>1 su
h that(2.1) xi,j = j for i− j ≥ k.Below is a (5, 2) Gog trapezoid.

1 2 3 4 5
1 2 4 5

1 3 4
1 3

2The entries outside the box are frozen by 
ondition (2.1).2.3. Magog.2.3.1. Triangles.De�nition 4. A Magog triangle of size n is a Gelfand�Tsetlin triangle su
h that
xi,i 6 i, 1 6 i 6 n.The set of Magog triangles of size n is in simple bije
tion with the set of TotallySymmetri
 Self Complementary Plane Partitions (see [2℄).2.3.2. Trapezoids.De�nition 5. An (n, k) Magog trapezoid (with k 6 n) is a Magog triangle X =

(xi,j)n>i>j>1, su
h that xi,j = 1 for i− j ≥ k.Below is a (5, 2) Magog trapezoid.
1 1 1 2 4

1 1 2 2
1 1 2

1 1
1Again, the entries outside the box are frozen.



4 HAYAT CHEBALLAH AND PHILIPPE BIANE2.4. Remark. Our de�nitions of trapezoids di�er from Zeilberger's [11℄ de�nitions inthat we 
hop o� the last diagonals instead of the �rst ones. One 
an add a parameter
m to the de�nition; thus, an (n, k,m) Gog (respe
tively Magog) trapezoid will be an
(n, k) Gog (respe
tively Magog) trapezoid su
h that

xi,j = max(j, xm,m−j+i) for m < i ≤ j + k − 1(respe
tively xi,j = 1 for j ≤ n−m).Here is a (5, 2, 3) Gog trapezoid:
1 2 3 4 5

1 2 3 5
1 2 5

2 3
3This is the smallest (entrywise) Gog triangle 
ontaining the boxed entries.On the other hand, here is a (5, 2, 3) Magog trapezoid:

1 1 1 2 4
1 1 2 4

1 1 2
1 1

1These trapezoids are in one-to-one 
orresponden
e with the trapezoids de�ned by Krat-tenthaler in [7℄; more pre
isely, if aij is an (m,n, k) Gog trapezoid a

ording to Krat-tenthaler's de�nition, then the numbers m + n + 1 − aij , suitably reindexed, form thenonfrozen entries of an (n + m,n, k) Gog trapezoid a

ording to our de�nition, andsimilarly the bij entries of an (m,n, k) Magog trapezoid a

ording to Krattenthaler'sde�nition 
orrespond to the nonfrozen entries of an (n +m,n, k) Magog trapezoid a
-
ording to our de�nition.2.5. S
hützenberger involution.2.5.1. Gelfand�Tsetlin triangles label bases of irredu
ible representations of general lin-ear groups. As su
h, they are in simple bije
tion with semi-standard Young tableaux(SSYT). It follows that the S
hützenberger involution, whi
h is de�ned on SSYTs, 
anbe transferred to Gelfand�Tsetlin triangles. The following des
ription of this involutionhas been studied by Berenstein and Kirillov [6℄.First de�ne operators sk, for k 6 n−1, a
ting on the set of Gelfand�Tsetlin trianglesof size n. If X = (xi,j)n>i>j>1 is su
h a triangle, the a
tion of sk on X is given by
skX = (x̃i,j)n>i>j>1 with

x̃i,j = xi,j , if i 6= k,

x̃k,j = max(xk+1,j, xk−1,j−1) + min(xk+1,j+1, xk−1,j)− xi,j .It is understood that max(a, b) = max(b, a) = a and min(a, b) = min(b, a) = a if theentry b of the triangle is not de�ned. The geometri
 meaning of the transformation ofan entry is the following: in row k, any entry xk,j is surrounded by four (or less if it is



GOG, MAGOG, AND SCHÜTZENBERGER 5on the boundary) numbers, in
reasing from left to right:
xk+1,j xk+1,j+1

xk,j

xk−1,j−1 xk−1,jThese four numbers determine a smallest interval 
ontaining xk,j , namely
[max(xk+1,j, xk−1,j−1),min(xk+1,j+1, xk−1,j)] ,and the transformation maps xk,j to its mirror image with respe
t to the 
enter of thisinterval.De�ne ωj = sjsj−1 · · · s2s1.De�nition 6. The S
hützenberger involution, a
ting on Gelfand�Tsetlin triangles ofsize n, is given by the formula

S = ω1ω2 · · ·ωn−1.It is a non trivial result that S is an involution (see [6℄), and it 
oin
ides with theS
hützenberger involution when transferred to SSYTs. Note that the sk do not satisfythe braid relations.Below, we give an example of the a
tion of the S
hützenberger involution S =
ω1ω2ω3 = s1s2s1s3s2s1 on a Gelfand�Tsetlin triangle of size 4, the entries to be 
hangedbeing in red:

1 2 2 5
2 2 4

2 3
2

s1
1 2 2 5

2 2 4
2 3

3

s2

1 2 2 5
2 2 4

2 4
3

s3
1 2 2 5

1 2 5
2 4

3

s1
1 2 2 5

1 2 5
2 4

3

s2
1 2 2 5

1 2 5
1 4

3

s1
1 2 2 5

1 2 5
1 4

2



6 HAYAT CHEBALLAH AND PHILIPPE BIANE2.5.2. One 
an 
ompute the rightmost diagonal of SX .Lemma 1. Let X = (Xi,j) be a Gelfand�Tsetlin triangle and Y = SX its image underthe S
hützenberger involution. Then
Ynn = Xnn(2.2)
Ykk = max

n=j0>j1>j2>...>jn−k≥1

[(

n−k−1
∑

i=0

Xji+i,ji −Xji+1+i,ji+1

)

+Xjn−k+n−k,jn−k

](2.3) for 1 ≤ k < n.Proof. We re
all the des
ription of the S
hützenberger involution in terms of wordsand the Robinson�S
hensted 
orresponden
e. To the Gelfand�Tsetlin triangle X let usasso
iate the semi-standard Young tableau, with entries in [1, n], su
h that the shapeof the tableau formed with letters u ≤ i is the partition Xij , j = 1, . . . , i. For example,our Gelfand�Tsetlin triangle
1 2 2 3 6

1 2 2 5
2 2 4

2 4
3
orresponds to the tableau (in Fren
h notation)

5

4 5

3 3

2 2 5

1 1 1 2 4 5To su
h a tableau we asso
iate the word w obtained by reading the tableau from topto bottom and from left to right. In our example, this is
w = 5 | 4 5 | 3 3 | 2 2 5 | 1 1 1 2 4 5.Then we perform the S
hützenberger involution on the word: we read it ba
kwards andrepla
e ea
h letter i by n + 1− i to yield a word Sw. In our example, we obtain
Sw = 1 2 4 5 5 5 | 1 4 4 | 3 3 | 1 2 | 1.This word is a 
on
atenation of nonde
reasing words (Sw)1|(Sw)2| . . . 
orrespondingto the su

essive rows of the tableau read from bottom to top and from right to left.It is easy to verify that these nonde
reasing words, viewed as partitions, are thepartitions 
onjugate to the su

essive SW-NE diagonals of the original Gelfand�Tsetlintriangle (starting from the rightmost one). E.g., in our example (Sw)2 is the word 144whi
h is the partition 
onjugate to 3222, the se
ond rightmost SW-NE diagonal of thetriangle. It follows that, for 1 ≤ i ≤ j < k,

Xk,k−i+1 −Xj,j−i+1 is the number of letters of (Sw)i whi
h(2.4) belong to [n− k + 1, n− j].



GOG, MAGOG, AND SCHÜTZENBERGER 7Looking again at our example, with i = 2, j = 4, k = 5, one hasX5,4−X4,3 = 3−2 = 1,the number of 1's in the word (Sw)2 = 144.Applying the Robinson�S
hensted algorithm to the word Sw yields an insertiontableau whi
h is the image of our tableau under the S
hützenberger involution. Theshape of the insertion tableau is the same as that of the original tableau, thereforethe top row of the Gelfand�Tsetlin triangle is un
hanged (this follows also easily fromDe�nition 6). This yields (2.2).By a fundamental property of the Robinson�S
hensted algorithm, the largest elementof the ith row (from bottom) in the Gelfand�Tstelin triangle is equal to the length ofthe longest nonde
reasing subsequen
e of the subword Swi of Sw made of the numbers
≤ i.A nonde
reasing subsequen
e of maximal length in Swi is of the form [1, k1] ∩
(Swi)1 | [k1, k2] ∩ (Swi)2 | . . . [kl−1, kl] ∩ (Swi)l for some sequen
e 1 ≤ k1 ≤ . . . ≤ kl ≤ i.Using (2.4), formula (2.3) follows from these 
onsiderations. �2.5.3. GOGAm triangles. Sin
e the S
hützenberger involution 
onsists in reading aword ba
kwards and inverting the letters, we introdu
e the following de�nition.De�nition 7. A GOGAm triangle of size n is a Gelfand�Tsetlin triangle su
h that itsimage under the S
hützenberger involution is a Magog triangle of size n.Here is an example of a GOGAm triangle with n = 5:

1 2 3 3 5
2 3 3 5

3 3 5
3 5

5By Lemma 1, we 
an give a des
ription of GOGAm triangles.Proposition 1. Let X = (Xi,j) be a Gelfand�Tsetlin triangle. Then X is a GOGAmtriangle if and only if Xnn ≤ n and, for all 1 ≤ k ≤ n− 1, and all n = j0 > j1 > j2 >

. . . > jn−k ≥ 1, one has
(

n−k−1
∑

i=0

Xji+i,ji −Xji+1+i,ji+1

)

+Xjn−k+n−k,jn−k
≤ k.Proof. Immediate from Lemma 1. �2.5.4. GOGAm trapezoids. If a Magog triangle 
ontains a triangle of 1's forming its�rst leftmost diagonals, then this triangle remains invariant under all transformations

sk, and therefore also under the S
hützenberger involution. This justi�es the followingde�nition.De�nition 8. An (n, k) GOGAm trapezoid is a GOGAm triangle of size n su
h that
xi,j = 1 for i− j ≥ k. Equivalently, it is the image under the S
hützenberger involutionof an (n, k) Magog trapezoid.



8 HAYAT CHEBALLAH AND PHILIPPE BIANEHere is a (5, 2) GOGAm trapezoid:
1 1 1 2 4

1 1 2 4
1 2 4

1 4
32.6. Krattenthaler's 
onje
ture. Zeilberger [11℄ proved that there exists as many

(n, k) Gog trapezoids as (n, k) Magog trapezoids for all k ≤ n. Krattenthaler [7℄
onje
tures a re�ned equi-enumeration: a

ording to this 
onje
ture, there are as many
(n, k,m) Gog and Magog trapezoids. A
tually he also introdu
es two more statisti
son these trapezoids whi
h he 
onje
tures to 
oin
ide.In the remaining se
tions we shall give a bije
tion between (n, 2) Gog trapezoids and
(n, 2) GOGAm trapezoids, whi
h restri
ts to a bije
tion between (n, 1) Gog trapezoidsand (n, 1) GOGAm trapezoids. If we 
ompose with the S
hützenberger involution, weobtain a bije
tive proof of Zeilberger's result in this 
ase. We also give a natural statisti
on Gog trapezoids whi
h is transformed into a natural statisti
 on Magog trapezoidsby this bije
tion, see Se
tion 3.5.3. Our bije
tion also maps (n, 2, m) Gog trapezoidsto (n, 2, m) Magog trapezoids, however the two statisti
s of Krattenthaler on Gog andMagog trapezoids are not mapped to one another.2.7. Some motivation. The bije
tion presented below was found by �rst 
onsideringthe 
ases of (n, 2, 2) and (n, 3, 3) trapezoids, whi
h 
an be 
onsidered as integer poly-topes, and looking for pie
ewise linear bije
tions. The expli
it bije
tions found in thisway turned out to involve the S
hützenberger involution, whi
h motivated us to try thisfor larger trapezoids. During this study, two statisti
s on Magog triangles were used,one of them 
orresponding by the bije
tion to the position of the 1 in the bottom row ofthe ASM (see Se
tion 3.5.3), while the other, 
onje
turally, 
orresponds to the positionof the 1 in the righmost 
olumn of an ASM. More on these topi
s 
an be found in [3℄.3. (n, 2) Gog and Magog trapezoids3.1. Inversions.De�nition 9. An inversion in a Gog triangle is a pair (i, j) su
h that
xi,j = xi+1,j .For example, the following Gog triangle 
ontains three inversions, (2, 2), (3, 1), (4, 1),the respe
tive equalities being in red in this �gure:

1 2 3 4 5
1 3 4 5

1 4 5
2 4

3Remark 1. The number of inversions of a Gog triangle 
oin
ides with the number ofinversions of its asso
iated ASM as de�ned by Mills, Robbins, Rumsey [10℄ minus thenumber of −1s.



GOG, MAGOG, AND SCHÜTZENBERGER 9De�nition 10. Let X = (xi,j)n>i>j>1 be a Gog triangle and let (i, j) be su
h that
1 6 i 6 j 6 n.An inversion (k, l) 
overs (i, j) if i = k + p and j = l + p for 1 6 p 6 n− k.The entries (i, j) 
overed by an inversion are marked by ”+ ” in the following �gure:

◦ ◦ ◦ + ◦
◦ ◦ + ◦

◦ ◦ ◦
◦ ◦

◦The basi
 idea for our bije
tion is that, for any inversion in the Gog triangle, we shouldsubtra
t 1 from the entries 
overed by this inversion. This simple minded pro
edureworks for (n, 1) trapezoids, as we will show as a byprodu
t of our bije
tion for (n, 2)trapezoids. It is a good exer
ise to 
he
k this dire
tly. The pro
edure does not work for
(n, k) trapezoids with k > 1 but, by making some adequate adaptations, we will obtaina bije
tion for trapezoids of size (n, 2).3.2. (n, 2) trapezoids. Consider an (n, 2) Gog trapezoid. This is an array of the form

1 2 3 · · · · · · n− 2 n− 1 n

1 2
. . . . .

.
n− 3 b2 a1

1
. . . . .

.
n− 4 b3 a2

. . . 2 . .
.

. .
.

. .
.

1 2 bn−3 an−4

1 bn−2 an−3

bn−1 an−2

an−1We shall give an algorithm whi
h builds a GOGAm triangle from the Gog triangle bysu

essively adding NW-SE diagonals of in
reasing lengths, and making appropriate
hanges to the triangle. In the end we will obtain a triangle of the form
1 1 1 · · · · · · 1 β1 α0

1 1
. . . . .

.
1 β2 α1

1
. . . . .

.
. .
.

β3 α2

. . . 1 . .
.

. .
.

. .
.

1 1 βn−3 αn−4

1 βn−2 αn−3

βn−1 αn−2

αn−1By Proposition 1, su
h a triangle is a GOGAm triangle if and only if
α0 ≤ n

α0 − αi + βi ≤ n− 1 for 1 ≤ i ≤ n− 1,

α0 − αi + βi − βj + 1 ≤ j − 1 for 1 ≤ i < j ≤ n− 1.



10 HAYAT CHEBALLAH AND PHILIPPE BIANE3.3. The algorithm. First step: the rightmost NW-SE diagonal 
onsists of one entry
n and is not 
hanged, yielding the triangle of size 1 equal to X(1) = n.Se
ond step: The triangle formed by the two �rst diagonals is

n− 1 n

a1where a1 = n or n− 1. In the �rst 
ase, the algorithm yields the triangle
X(2) =

n− 1 n

nin the se
ond 
ase we have an inversion and a

ordingly subtra
t 1 from the upper rightentry, whi
h gives the triangle
X(2) =

n− 1 n− 1
n− 1Assume now that the �rst k diagonals have been treated and a triangle X(k) of size

k, of the form
n− k + 1 n− k + 1 · · · n− k + 1 v1 u0

. . .
. . . . .

.
v2 u1

. . . . .
.

. .
.

. .
.

n− k + 1 vk−2 uk−3

vk−1 uk−2

uk−1has been obtained.Furthermore assume that this triangle satis�es the inequalities
u0 ≤ n(3.1)

u0 − ui + vi ≤ n− 1 for 1 ≤ i ≤ k − 1,(3.2)
u0 − ui + vi − vj + 1 ≤ j − 1 for 1 ≤ i < j ≤ k − 1,(3.3)and that

uk−1 = ak−1.(3.4)Let us add, on the left of this triangle, the diagonal
n− k

n− k
. . .

n− k

vk
ukwith uk = ak, vk = bk. This yields a triangle Z(k) of size k + 1 (this triangle willnot, in general, be a Gelfand�Tsetlin triangle, be
ause the inequality vk ≤ vk−1 may bebroken). The algorithm will modify Z(k) to get a triangle X(k+1) of size k + 1. Firstwe 
onsider all the inversions 
reated by the entries of the left diagonal equal to n− k(ex
ept maybe those 
oming from uk and vk), and a

ordingly subtra
t ones from the



GOG, MAGOG, AND SCHÜTZENBERGER 11above triangle. This transforms the entries n − k + 1 in the upper left triangle into
n − k's. Then we treat the entries uk, vk, and the ones lying on the same SW-NEdiagonal, a

ording to the algorithm des
ribed below, whi
h will yield a triangle of theform

n− k n− k · · · · · · n− k v′1 u′
0

n− k
. . . . .

.
. .
.

v′2 u′
1

. . . . .
.

. .
.

. .
.

u′
2

. . . . .
.

. .
.

. .
.

n− k v′k−1 u′
k−2

v′k u′
k−1

u′
kWe will 
he
k that the new triangle is a Gelfand�Tsetlin triangle and that (3.1), . . . ,(3.4) are satis�ed for this new triangle. The modi�
ation will depend on the inversionpattern in the leftmost diagonal that we have added. In all 
ases, we will have

u′
k = uk,(3.5)the remaining entries being modi�ed as follows, a

ording to the four possibilities forthe inversions in the two bottom rows.

(i) The �rst 
ase is vk = n− k, uk = n− k, when there are two inversions. Then themodi�
ation 
onsists in subtra
ting 1 from ea
h of the entries of the previous triangle,that is, we put u′
i = ui − 1, v′i = vi − 1, for i ≤ k − 1, and v′k = vk = n− k.

(ii) The se
ond is the 
ase vk = n − k < uk. Then we put u′
i = ui, v′i = vi − 1, for

i ≤ k − 1, and v′k = vk = n− k.
(iii) The third 
ase is when n − k < vk = uk. We put u′

i = ui − 1 for i ≤ k − 1.Observe that vk = bk = uk < ak−1 = uk−1, therefore ui, 0 ≤ i ≤ k, is nonin
reasing.Two sub
ases o

ur:
(iiia) if the triangle we obtain is a Gelfand�Tsetlin triangle, then we keep it asthe modi�ed triangle, i.e., we put v′i = vi for i ≤ k.
(iiib) if the triangle is not Gelfand�Tsetlin, then there must exist j ≤ k − 1with vj = uj. In this 
ase, we put v′i = vi − 1, for i ≤ k − 1, and we put v′k = n− k.

(iv) Finally the last 
ase is when n− k < vk < uk. There are two possibilities.
(iva) if vk ≤ vk−1, then Z(k) is a Gelfand�Tsetlin triangle, and we do not modi�yit, i.e., we put u′

i = ui, v
′
i = vi for all i ≤ k, thus X(k+1) = Z(k).

(ivb) The last sub
ase is vk > vk−1. First we put u′
i = ui for all i. Let

l = max{i|vk−i ≤ vk − i}.(3.6)Sin
e vk−i is nonde
reasing and vk − i is de
reasing, one has l ≥ 1 and vk−i ≤ vk − ifor all i ≤ l. We put v′k = v′k−1 = . . . = v′k−l+1 = n− k and v′k−l = vk − l, all the otherentries being un
hanged: v′i = vi for i < k − l.



12 HAYAT CHEBALLAH AND PHILIPPE BIANERemark 2. Rules (i), (ii), (iiia), (iva) 
onsist just in subtra
ting 1 from entries 
overedby the inversions in the SE-NW diagonal whi
h has been added. The rules (iiib) and
(ivb) are more subtle.3.3.1. Proof of the algorithm, �rst part. Let us now 
he
k that, in ea
h 
ase, we obtaina Gelfand�Tsetlin triangle X(k) satisfying inequalities (3.1), (3.2), (3.3) (the identity(3.4) is immediate from (3.5)).We start with rules (i), (ii), (iiia), (iiib), (iva).

(i) Sin
e ak−1 = uk−1 > vk and vk−1 ≥ n−k+1, X(k+1) is a Gelfand�Tsetlin triangle.For 1 ≤ i < j ≤ k−1, one has u′
0−u′

i+v′i−v′j = u0−ui+vi−vj hen
e (3.3) is satis�edfor these values. Sin
e
u′
0 − u′

i + v′i − v′k = u0 − ui + vi − 1− (n− k) ≤ n− 1− 1− (n− k) = k − 2,we see that (3.3) is satis�ed for all values. Sin
e u′
0 = u0 − 1 ≤ n− 1 and u′

i ≥ v′i, onehas (3.2) and (3.1).
(ii) Again, X(k+1) is 
learly a Gelfand�Tsetlin triangle. For 1 ≤ i < j ≤ k, we 
he
k(3.3) as above, while (3.1) is 
lear. Finally u′

0 − u′
i + v′i = u0 − ui + vi − 1 ≤ n− 2, and

u′
0 − u′

k + v′k ≤ n− 1, sin
e −u′
k + v′k ≤ −1, whi
h gives (3.2).

(iiia) Sin
e ui > vi, one has u′
i ≥ v′i for i ≤ k, and the triangle X(k+1) is a Gelfand�Tsetlin triangle.One has

u′
0 = u0 − 1

u′
0 − u′

i + v′i = u0 − ui + vi i < k

u′
0 − u′

k + v′k = u0 − 1 ≤ n− 1

u′
0 − u′

i + v′i − v′j = u0 − ui + vi − vj i < j < k

u′
0 − u′

i + v′i − v′k < n− 1− (n− k) = k − 1 (sin
e v′k > n− k),from whi
h inequalities (3.1), (3.2), (3.3) follow.
(iiib) The new triangle is 
learly Gelfand�Tsetlin. Furthermore, one has

u′
0 = u0 − 1

u′
0 − u′

i + v′i = u0 − ui + vi − 1 i < k

u′
0 − u′

k + v′k < u′
0 ≤ n

u′
0 − u′

i + v′i − v′j = u0 − ui + vi − vj i < j < k

u′
0 − u′

i + v′i − v′k = u0 − ui + vi − 1− (n− k) ≤ k − 2,whi
h imply inequalities (3.1), (3.2), (3.3).
(iva) The fa
t that X(k+1) is Gelfand�Tsetlin is immediate. The inequalities arepreserved, indeed, all inequalities involving indi
es < k are immediate, and one has

u′
0 − u′

k + v′k ≤ u′
0 − 1 ≤ n− 1, sin
e u′

k > v′k,

u′
0 − u′

i + v′i − v′k ≤ n− 1− (n− k + 1) = k − 2, sin
e v′k > n− k.



GOG, MAGOG, AND SCHÜTZENBERGER 133.3.2. Proof of the algorithm, se
ond part. We now 
onsider the last rule, (ivb). This isthe most deli
ate part of the proof. We �rst gather some information on the algorithmwhi
h has been 
onstru
ted up to now.Lemma 2. Just after a step where rule (i) or (ii) is applied, rule (iiib) never applies.Proof. Suppose that rule (i) applies to Z(k), then n − k = bk = vk = ak = uk, and
n−k−1 < bk+1 = ak+1 is impossible sin
e this would yield bk+1 ≥ ak 
ontradi
ting theGog stri
t inequality for the original triangle. If rule (ii) applies to Z(k) then vi < ui in
X(k+1), for all i < k, therefore rule (iiib) 
annot be applied to Z(k+1). �Lemma 3. If rule (ivb) applies at step k, then ne
essarily at the previous step eitherrule (iiib) or (ivb) was applied.Proof. If one of the other rules had been applied at the previous step, one would have
vk−1 ≥ vk. �Lemma 4. If rule (ivb) is applied to the triangle Z(k), then to ea
h of the triangles
Z(k−l), Z(k−l+1), . . . , Z(k−1) either rule (iiib) or (ivb) was applied.Proof. Assume that at some step t < k in the algorithm we have applied rule (iiia) or
(iva) to Z(t). Then the entry v

(t+1)
t in the triangle X(t+1) (we emphasize the dependen
eon the step by adding a supers
ript) satis�es bt = v

(t+1)
t . At ea
h next step s, we willsubtra
t at most 1 from v

(s)
t , therefore, in the triangle Z(k),

v
(k)
t ≥ bt − (k − t− 1) ≥ bk − (k − t− 1) = v

(k)
k − (k − t− 1) > v

(k)
k + t− k.It follows that, in Z(k), one has l < k− t (where l is de�ned by (3.6). We 
on
lude that,to ea
h of the triangles Z(k−l), Z(k−l+1), . . . , Z(k−1) either rule (i), (ii), (iiib) or (ivb)was applied. But we have seen that rule (iiib) 
annot follow immediately rule (i) or

(ii) and that rule (ivb) always follows either rule (iiib) or (ivb), so that in fa
t only rule
(iiib) or (ivb) has been applied to ea
h of the triangles Z(k−l), Z(k−l+1), . . . , Z(k−1). �Lemma 5. If rule (ivb) is applied to the triangle Z(k), then one has

vk−1 = . . . = vk−l = n− k + 1.Proof. Sin
e n − k + 1 ≤ vk−1 ≤ . . . ≤ vk−l, it su�
es to prove that vk−l ≤ n − k + 1.By the pre
eding Lemma, either rule (iiib) or (ivb) has been applied to the triangles
Z(k−l), Z(k−l+1), . . . , Z(k−1). Let us look at the su

essive values of the entry v

(s)
k−l in thetriangle X(s) (or Z(s)). One has v(k−l+1)

k−l = n− k + l, sin
e rule (iiib) or (ivb) has beenapplied to Z(k−l). Ea
h time rule (iiib) is applied v
(s)
k−l is de
reased by 1. There are two
ases:(a) If only rule (iiib) is applied to Z(k−l), Z(k−l+1), . . . , Z(k−1), then one has v

(k)
k−l =

n− k + 1.(b) If not, let i be the least index l ≥ i ≥ 1 su
h that rule (ivb) is applied to Z(k−i),and let l′ = max{j|v
(k−i)
k−i − j ≥ v

(k−i)
k−i−j}. By rule (ivb), one has

v
(k−i+1)
k−l′−i = bk−i − l′, v

(k−i+1)
k−i−j = n− k + i, j = 0, 1, . . . , l′ − 1.



14 HAYAT CHEBALLAH AND PHILIPPE BIANESin
e rule (iiib) is applied to Z(k−i+1), . . . , Z(k−1), one has v(k)k−l′−i = bk−i− l′− i+1 and
v
(k)
k−p = n− k + 1, p = 1, 2, . . . , l′ + i− 1.(3.7)It follows that

v
(k)
k−l′−i = bk−i − l′ − i+ 1 ≥ bk − l′ − i+ 1 = v

(k)
k − l′ − i+ 1,hen
e, by (3.6),

v
(k)
k−l′−i > v

(k)
k − l′ − i.Consequently, we have l < l′ + i, and vk−l = n− k + 1 by (3.7). �Lemma 6. If rule (iiib) or (ivb) is applied to the triangle Z(k), then there exists some

i < k − l su
h that u′
i = v′i.Proof. For rule (iiib) this is easy to see.In the 
ase of rule (ivb), there exists some step before k, when rule (iiib) has beenapplied and then only rules (iiib) or (ivb) have been applied. If rule (iiib) is applied,there must exist an i with ui = vi, and then applying either rule (iiib) or (ivb) 
annotdestroy this pair ui = vi. This implies that there exists some i su
h that u′

i = v′i. Su
ha pair 
annot exist for i ≥ k − l by the pre
eding lemma, therefore i < k − l. �3.3.3. Proof of the algorithm, end. Assuming that rule (ivb) is applied to the triangle
Z(k), we 
an now 
he
k that our triangle X(k+1) satis�es all the required properties.Sin
e v′k−l = vk− l, and vk−l−1 > vk− l−1, by the de�nition of l, one has v′k−l−1 ≥ v′k−l.This implies that X(k+1) is a Gelfand�Tsetlin triangle, as is easily veri�ed.Let us 
he
k the inequalities (3.1), (3.2), (3.3).First, sin
e u′

0 = u0, (3.1) is 
lear. Consider u′
0 − u′

i + v′i. Sin
e u′
i = ui is un
hangedand v′i ≤ vi for all values of i, ex
ept v′k−l, in order to 
he
k (3.2) it su�
es to 
onsider

u′
0 − u′

k−l + v′k−l and u′
0 − u′

k + v′k. One has
u′
k−l = uk−l ≥ uk > vk − l = v′k−l,and therefore

u′
0 − u′

k−l + v′k−l ≤ n− 1.Sin
e u′
k > v′k, one has

u′
0 − u′

k + v′k ≤ n− 1.Consider u′
0 − u′

i + v′i − v′j, for i < j ≤ k.If j < k − l, then u′
0 − u′

i + v′i − v′j = u0 − ui + vi − vj , so (3.3) is preserved.If j = k − l, then u′
i = ui, v

′
i = vi, v

′
j ≥ vj, therefore the inequality is again true.If j > k − l > i, then v′j = n− k = vk−l − 1 (by Lemma 5), therefore

u′
0 − u′

i + v′i − v′j = u0 − ui + vi − vk−l + 1 ≤ k − l − 1 ≤ j − 2.If j > k − l = i then
u′
0 − u′

i + v′i − v′j = u0 − uk−l + vk − l − n+ k

= u0 − n + vk − uk−l − l + k ≤ k − l − 1 ≤ j − 2sin
e vk < uk−l.If k > j > i > k − l then v′i − v′j = vi − vj and u′
0 − u′

i = u0 − ui therefore
u′
0 − u′

i + v′i − v′j = u0 − ui + vi − vj ≤ j − 2.



GOG, MAGOG, AND SCHÜTZENBERGER 15Finally if k = j > i > k − l, then
u′
0 − u′

i + v′i − v′k = u0 − ui + vi − 1− (n− k) ≤ n− 1− 1− (n− k) = k − 2. �Applying the algorithm until we have treated all diagonals, we obtain thus an (n, 2)GOGAm trapezoid from our (n, 2) Gog trapezoid.3.3.4. Invertibility. We 
an infer from the leftmost SE-NW diagonal of X(k+1) whi
hrule was applied to Z(k). The only ambiguity is whether rule (ii), (iiib) or (ivb) hasbeen applied when n − k = v′k < u′
k. Rule (ii) has been applied if and only if one has

u′
i > v′i for all i < k. In order to distinguish between rules (iiib) and (ivb), we now statethe following lemma.Lemma 7. Assume X(k+1) is obtained from Z(k) by applying rule (iiib) or (ivb), andlet l = 1 +max{i|v′k−i = n− k}. Then(a) v′k−l + l < u′

k if rule (ivb) has been applied.(b) v′k−l + l ≥ u′
k if rule (iiib) has been applied.Proof. Part (a) is obvious from the statement of rule (ivb), sin
e v′k−l+l = vk < uk = u′

k.In order to prove part (b), note that in 
ase (iiib) is applied to Z(k), then by Lemma 2,to all the triangles Z(k−i) for 1 ≤ i ≤ l−1 either rule (iiib) or (ivb) has been applied. Ifonly rule (iiib) has been applied to Z(k−l+1), . . . , Z(k−1), then rule (iiia) or (iva) musthave been applied to Z(k−l), therefore v′k−l = bk−l − l whi
h implies v′k−l + l = bk−l ≥
bk = ak = u′

k.If rule (ivb) has been applied at some step t with k − l + 1 ≤ t ≤ k − 1, then let ibe the smallest number su
h that (ivb) has been applied to Z(k−i). By Lemma 5 thereexists an l′ ≥ 1 su
h that
v
(k−i+1)
k−i = . . . = v

(k−i+1)
k−i−l′+1 = n− k + i− 1and

v
(k−i+1)
k−i−l′ = bk−i − l′ > n− k + i− 1.Sin
e rule (iiib) is applied to Z(k−i+1), . . . , Z(k−1) it follows that

v′k = . . . = v′k−i−l′−1 = n− kand
v′k−i−l′ = bk−i − l′ − i+ 1 > n− k.Therefore l = l′ + i and v′k−l + l ≥ u′

k sin
e v′k−l + l = bk−i ≥ bk = ak = u′
k. �



16 HAYAT CHEBALLAH AND PHILIPPE BIANE3.4. The inverse map.3.4.1. The algorithm. We now prove that the map de�ned above has an inverse. Let
X be a (n, 2) GOGAm trapezoid of shape

1 1 1 · · · · · · 1 β1 α0

1 1
. . . . .

.
1 β2 α1

1
. . .

. . . . .
.

β3 α2

. . .
. . . . .

.
. .
.

. .
.

1 1 βn−3 αn−4

1 βn−2 αn−3

βn−1 αn−2

αn−1One has
α0 ≤ n,

α0 − αi + βi ≤ n− 1 for 1 ≤ i ≤ n− 1,

α0 − αi + βi − βj + 1 ≤ j − 1 for 1 ≤ i < j ≤ n− 1.We shall give an algorithm whi
h is the inverse of the one above.Let k be an integer de
reasing from k = n − 1 to k = 0. Let Y (n) be an empty set,and X(n) = X ; at ea
h step we will have a pair (Y (k+1), X(k+1)) where Y (k+1) is an array(non empty only for k < n− 1)
1 2 · · · n− k − 1

1 2
. . .

. . .

. . .
. . . . .

.
n− k − 1

. . .
. . . . .

.
bk+1

. . . 2 . .
.

ak+1

1 bn−2 . .
.

bn−1 an−2

an−1whi
h forms the leftmost NW-SE diagonals of a Gog triangle, and X(k+1) is a Gelfand�Tsetlin triangle:
n− k n− k · · · n− k v′1 u′

0

n− k n− k . .
.

v′2 u′
1

. . . . .
.

. .
.

. .
.

n− k v′k−1 u′
k−2

v′k u′
k−1

u′
k



GOG, MAGOG, AND SCHÜTZENBERGER 17satisfying the inequalities (3.1), (3.2), (3.3). Then we make a modi�
ation of the triangle
X(k+1), a

ording to the rules below, to get a triangle Z(k)

n− k n− k + 1 · · · n− k + 1 v1 u0

n− k
. . . . .

.
v2 u1

. . . . .
.

. .
.

. .
.

n− k vk−1 uk−2

vk uk−1

ukThen we add the leftmost NW-SE diagonal of this triangle to the right of Y (k+1) to get
Y (k) (thus bk = vk and ak = uk), and take the remaining triangle as X(k). We will provethat, at ea
h step, X(k) is a Gelfand�Tsetlin triangle whi
h satis�es the inequalities(3.1), (3.2), (3.3). Furthermore, we will prove that, at the next step of the algorithm,the entries ak−1, bk−1 satisfy

n− k + 1 ≤ bk−1, bk ≤ bk−1, bk < ak−1, bk ≤ ak ≤ ak−1 ≤ n,(3.8)whi
h imply that the triangle Y (0) is a Gog triangle.We will use the following notation: if v′k = n − k and there exists i < k su
h that
u′
i = v′i, then

l = 1 +max{j | v′k−j = n− k}.(3.9)Let us now des
ribe the modi�
ation map yielding triangle Z(k) from X(k+1) by theinverse algorithm, for whi
h we 
onsider several 
ases, inverse to the 
ases 
onsideredin the forward algorithm.
(i) n − k = v′k = u′

k, then we put ui = u′
i + 1, vi = v′i + 1 for i ≤ k − 1 and

vk = v′k, uk = u′
k.

(ii) The se
ond 
ase is n − k = v′k < u′
k, and v′i < u′

i for all i < k. Then we put
ui = u′

i, vi = v′i + 1, for i ≤ k − 1, and vk = v′k, uk = u′
k.

(iiia) n − k < v′k = u′
k, then we put ui = u′

i + 1, vi = v′i for i ≤ k − 1, and
vk = v′k, uk = u′

k.
(iiib) n − k = v′k < u′

k, there exists i < k su
h that u′
i = v′i, and v′k−l + l ≥ u′

k(re
all (3.9)), then we put ui = u′
i + 1, vi = v′i + 1, for i ≤ k − 1, and vk = uk = u′

k.
(iva) n− k < v′k < u′

k, then we put ui = u′
i, vi = v′i, i ≤ k.

(ivb) n− k = v′k < u′
k, there exists i < k su
h that u′

i = v′i, and v′k−l + l < u′
k,then we put ui = u′

i, for i ≤ k, vi = n− k + 1 for k − l ≤ i ≤ k − 1, vk = v′k−l + l, and
vi = v′i for all other i.Let us now 
he
k that this map is well de�ned. By Se
tion 3.3.4, it is an inverse ofour modi�
ation map. We 
onsider the 
ases (i),. . . ,(iv) above. First, by 
he
king the
ases one after the other, one sees that the sequen
e ai 
onstru
ted by the rules above isnonin
reasing (ai ≤ ai−1), and that bi ≥ n− i. The remaining inequalities in (3.8) will
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he
ked 
ase by 
ase. We also have to 
he
k that the triangles X(k) are Gelfand�Tsetlin, and that they satisfy (3.1), (3.2), (3.3). The equality (3.4) is immediate byinspe
tion.We start with an observation about rules (iiib) and (ivb).Lemma 8. If rule (iiib) or (ivb) has been applied to the triangle X(k+1) then in thetriangle X(k) there exists a pair ui = vi.Proof. This is immediate for rule (iiib), sin
e adding 1 to both u′
i and v′i does not destroythe equality u′

i = v′i.For rule (ivb) we noti
e that n − k = v′k < u′
k, and v′k−l + l < u′

k ≤ u′
k−l imply that

v′k−j < u′
k−j for j = 1, . . . , l, therefore the inequality u′

i = v′i must be realized for some
i < k − l, and then ui = u′

i = v′i = vi by rule (ivb). �3.4.2. Proof of the algorithm. We now 
he
k all rules of the inverse algorithm.
(i) It is 
lear that the triangle X(k) is Gelfand�Tsetlin.We have u′

0 = u′
0 − u′

k + v′k ≤ n− 1, this proves (3.1).Sin
e u0−1−ui+vi− (n−k) = u′
0−u′

i+v′i−v′k ≤ k−2 we have u0−ui+vi ≤ n−1.All other inequalities in (3.2), (3.3) involve di�eren
es like u0 − ui or vi − vj whi
hare not un
hanged by the repla
ement u′ → u, v′ → v.Moreover, the inequalities (3.8) are immediate.
(ii) Sin
e v′i < u′

i for all i, one has vi ≤ ui, hen
e X(k) is a Gelfand�Tsetlin triangle,and (3.1) is immediate sin
e u0 = u′
0.Sin
e u′

0 − u′
i + v′i − v′k ≤ k − 2, one has u0 − ui + vi ≤ n− 1, thus (3.2) holds.Finally (3.3) 
omes from u′

0 − u′
i = u0 − ui and v′i − v′j = vi − vj.The inequalities (3.8) at the next step are immediate.

(iiia) Again it is easy to see that X(k) is a Gelfand�Tsetlin triangle. Sin
e u′
0 − u′

k +
v′k ≤ n− 1 and u′

k = v′k we get u0 = u′
0 + 1 ≤ n, hen
e (3.1).The other inequalities (3.2), (3.3) are 
he
ked similarly.The inequalities (3.8) at the next step are immediate.

(iiib) The fa
t that X(k) is a Gelfand�Tsetlin triangle is immediate.Sin
e there exists j with u′
j = v′j , one has u′

0 = u′
0 − u′

j + v′j ≤ n − 1, thus u0 =
u′
0 + 1 ≤ n.Sin
e u′

0−u′
i+v′i−v′k ≤ k−2, it follows that u′

0−u′
i+v′i ≤ n−2 and u0−ui+vi ≤ n−1.The other inequalities are satis�ed sin
e u′

0 − u′
i + v′i − v′j = u0 − ui + vi − vj for

1 ≤ i < j ≤ k − 1.We now 
he
k the inequalities (3.8).One has bk = ak < ak−1 = u′
k−1 + 1.It remains to see that bk ≤ bk−1.If v′k−1 > n−k, then vk−1 = v′k−1+1 ≥ u′

k = ak = bk sin
e we are applying rule (iiib)to X(k+1) (in this 
ase, l = 1). At the next step, we will have bk−1 ≥ vk−1 ≥ bk.If v′k−1 = n − k, then one has l > 1, and by Lemma 8 either rule (iiib) or rule (ivb)applies to X(k). In either 
ase it is easy to see that bk ≤ bk−1.
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(iva) In this 
ase, the fa
t that X(k) is a Gelfand�Tsetlin, as well as the inequalities(3.1), (3.2), (3.3), is immediate. Also the inequalities (3.8) are immediate.
(ivb) Sin
e n− k < u′

k ≤ u′
i for i ≤ k − 1, it follows that ui ≥ n− k + 1 for all i. Itis then 
lear that X(k) is a Gelfand�Tsetlin triangle.Let us 
he
k the inequalities (3.1), (3.2), (3.3) for X(k).Sin
e u0 = u′

0, inequality (3.1) is obvious.One has u0 − ui + vi = u′
0 − u′

i + v′i ≤ n− 1 for i < k − l. For k > i ≥ k − l, one has
vi = n−k+1 ≤ vk−l+ l < uk ≤ ui, therefore −ui+ vi ≤ −1, and inequality (3.2) holds.Inequality u0 − ui + vi − vj + 1 = u′

0 − u′
i + v′i − v′j + 1 ≤ j − 1 holds if i < j < k − l.If i < k − l, one has

u0 − ui + vi − (n− k) + 1 = u′
0 − u′

i + v′i − v′k−l+1 + 1 ≤ k − l,hen
e
u0 − ui + vi − vk−l + 1 = u0 − ui + vi − (n− k + 1) + 1 ≤ k − l − 1,whi
h proves (3.3) for i < j = k − l.If i < k − l < j, then vi = v′i and vj ≥ v′j , therefore (3.3) holds as well.One has
u0 − uk−l + vk−l − vj + 1 ≤ u′

0 − u′
k−l + v′k−l − vj + 1 ≤ k − l − 1,proving (3.3) for i = k − l < j.If k − l < i < j, then vi = vj , and v′i = v′j. Consequently,

u0 − ui + vi − vj + 1 = u′
0 − u′

i + v′i − v′j + 1 ≤ j − 1.It remains to 
he
k inequalities (3.8).After rule (ivb) is applied, one has vk−1 = n− k+1 and, for some i < k− 1, ui = vi.Therefore rule (iiib) or (ivb) applies to the next step. In either 
ase one has bk < ak−1.Re
all that
bk = v′k−l + l < u′

k = akand
vk−1 = . . . = vk−l = n− k + 1.It follows that l′ = 1 +max{i|vk−1−i = n− k + 1} ≥ l.If vk−1−l′ + l′ < uk−1 then rule (ivb) applies to X(k−1) and

bk−1 = vk−1−l′ + l′ ≥ v′k−l + l = bk.If vk−1−l′ + l′ ≥ uk−1 then l = l′, uk = uk−1 and
bk−1 = vk−1−l′ + l′ = vk−1−l + l = uk−1 > bk.

�3.5. Some properties of the bije
tion.3.5.1. (n, 1) trapezoids. If one starts from an (n, 1) trapezoid, then only rules (i) and
(ii) apply, and it is easy to see that one gets in the end an (n, 1) GOGAm trapezoid,and that it is obtained by subtra
ting from any entry of the Gog trapezoid the numberof inversions whi
h 
over it. The same remark applies to the inverse map, so that ourbije
tion restri
ts to a bije
tion between (n, 1) trapezoids.
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an 
he
k that our bije
tion restri
ts to a bije
tionbetween (n, 2, m) Gog trapezoids and (n, 2, m) Magog trapezoids for all m ≤ n. Thisdoes not 
ause any di�
ulty, but is somewhat 
umbersome to write down, so we leavethis veri�
ation to the interested reader.3.5.3. A statisti
. For a Gog triangle X , the entry X11 gives the position of the 1 in thebottom row of the asso
iated alternating sign matrix. If X is an (n, 2) Gog triangle,it follows from our algorithm that the 11 entry of the GOGAm triangle has value X11.From Lemma 1 we 
on
lude that, for the (n, 2) Magog triangle T , asso
iated to X ,one has X11 =
∑n

i=1 Ti,n −
∑n−1

i=1 Ti,n−1. It is known that, more generally, these twostatisti
s on Gog and Magog triangles 
oin
ide (see, e.g., [5℄, where the 
orrespondingstatisti
s for ASM and TSSCPP are shown to 
oin
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