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GOG AND MAGOG TRIANGLES, AND THE SCHUTZENBERGER
INVOLUTION

HAYAT CHEBALLAH AND PHILIPPE BIANE

ABSTRACT. We describe an approach to finding a bijection between Alternating Sign
Matrices and Totally Symmetric Self-Complementary Plane Partitions, which is based
on the Schiitzenberger involution. In particular, we give an explicit bijection between
Gog and Magog trapezoids with two diagonals.

1. INTRODUCTION

1.1. Alternating Sign Matrices. An alternating sign matriz (ASM) is a square ma-
trix with entries in {—1,0,+1} such that, along each line and along each column, the
non-zero entries alternate in sign, the sum of the entries in each line and in each column
being equal to 1. The number of such matrices of size n is

3j+
1.1 —1,2,7,42,429,...

as proved by Zeilberger [11] and Kuperberg [8]. More of this story can be found in [2].
There have been still other proofs since then, e.g., [4].

It has been known for a long time (see [1]|) that the numbers A,, also count the number
of Totally Symmetric Self-Complementary Plane Partitions (TSSCPP), however no
explicit bijection between these classes of objects has been constructed, and finding
one is a major open problem in combinatorics.

In this paper we propose an approach to this question which is based on the Schiitzen-
berger involution. More precisely, we consider Gog and Magog triangles (in the termi-
nology of Zeilberger), which are triangular arrays of positive integers, satisfying some
growth conditions, in simple bijection with ASMs and TSSCPPs, respectively. The ba-
sic idea underlying our approach is that these triangles are examples of Gelfand—Tsetlin
patterns to which one can apply some known transformations, such as the Schiitzen-
berger involution. In fact we conjecture the existence of a bijection between Gog and
Magog triangles which can be obtained in two steps: first by making a “modification”
of a Gog triangle, based on its inversion pattern, then by applying the Schiitzenberger
involution. This bijection should also preserve trapezoids, which are particular classes
of triangles, and which are equi-enumerous, due to Zeilberger’s result [11]. As a first
step towards a full bijection we construct here a bijection between (n,2) Gog and Magog
trapezoids (the terminology is explained below).

The paper is organized as follows. In Section 2 we introduce the definitions of
Gelfand—Tsetlin triangles, the Gog and Magog triangles and trapezoids, and the Schiit-
zenberger involution. In Section 3 we give a bijection between (n,2) Gog and Magog
trapezoids.
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We thank the referees of this paper for their constructive comments leading to im-
provements in the presentation.

2. GOG AND MAGOG TRIANGLES AND TRAPEZOIDS
2.1. Gelfand-Tsetlin.

Definition 1. A Gelfand-Tsetlin triangle of size n is a triangular array X = (2; j)n>i>j>1
of positive integers

xn,l xn,2 o xn,nfl xn,n
Tn—-1,1 Tn-1,2 . Tn—1n—1

T21 X2.2
T11

such that, whenever the entries belong to the array, one has
Tig1,j S Tij < Tigp1j41-

In other words, the triangle is made of n diagonals in the Northwest-Southeast (NW-
SE) direction, of lengths n,n—1,...,2,1 (from left to right), and it is weakly increasing
in the SE and in the NE directions. For example,

2

is a Gelfand—Tsetlin triangle of size 5.
Gog and Magog triangles will be obtained from Gelfand-Tsetlin triangles by imposing
further conditions on the entries.

2.2. Gog.

2.2.1. Triangles.

Definition 2. A Gog triangle of size n is a Gelfand—Tsetlin triangle such that
(1) Tij < Tij+1, j<i<n-—1
in other words, such that its rows are strictly increasing, and such that

(i) Ty =7, 1<j<n

Here is an example with n = 5:

There is a simple bijection between Gog triangles and alternating sign matrices (see,

e.g., [2]). If (Mij)i<ij<n is an ASM of size n, then the matrix AM;; = > . M;; has

7
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exactly ¢ — 1 entries 0 and n — ¢ + 1 entries 1 in row 4. Let (z;);=1,.,; be the indices
(in increasing order) of the columns containing an entry 1 in row n — i + 1 of M. The
triangle X = (z;;)n>i>j>1 is the Gog triangle corresponding to M.

For example, the above Gog triangle corresponds to the following alternating sign
matrix

0 1 0 00
0 0 1 00
1 -1 0 01
0 1 -1 10
0 0 1 00

2.2.2. Trapezoids.

Definition 3. An (n,k) Gog trapezoid (for k& < n) is a Gog triangle of size n, X =
(xi,j)n2i2j21 such that

Below is a (5, 2) Gog trapezoid.

The entries outside the box are frozen by condition (2.1).
2.3. Magog.

2.3.1. Triangles.
Definition 4. A Magog triangle of size n is a Gelfand—Tsetlin triangle such that

The set of Magog triangles of size n is in simple bijection with the set of Totally
Symmetric Self Complementary Plane Partitions (see [2]).

2.3.2. Trapezoids.

Definition 5. An (n,k) Magog trapezoid (with & < n) is a Magog triangle X =
(@i j)n>izj>1, such that x; ; =1 for i — j > k.

Below is a (5, 2) Magog trapezoid.

Again, the entries outside the box are frozen.
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2.4. Remark. Our definitions of trapezoids differ from Zeilberger’s [11] definitions in
that we chop off the last diagonals instead of the first ones. One can add a parameter
m to the definition; thus, an (n,k, m) Gog (respectively Magog) trapezoid will be an
(n, k) Gog (respectively Magog) trapezoid such that

x;; = max(J, Tpm—jri) form<i<j+k—1

(respectively x; ; = 1 for j <mn —m).
Here is a (5,2, 3) Gog trapezoid:

This is the smallest (entrywise) Gog triangle containing the boxed entries.
On the other hand, here is a (5,2, 3) Magog trapezoid:

1 1 1

These trapezoids are in one-to-one correspondence with the trapezoids defined by Krat-
tenthaler in [7]; more precisely, if a;; is an (m, n, k) Gog trapezoid according to Krat-
tenthaler’s definition, then the numbers m +n + 1 — a;;, suitably reindexed, form the
nonfrozen entries of an (n + m,n, k) Gog trapezoid according to our definition, and
similarly the b;; entries of an (m,n, k) Magog trapezoid according to Krattenthaler’s
definition correspond to the nonfrozen entries of an (n + m,n, k) Magog trapezoid ac-
cording to our definition.

2.5. Schiitzenberger involution.

2.5.1. Gelfand-Tsetlin triangles label bases of irreducible representations of general lin-
ear groups. As such, they are in simple bijection with semi-standard Young tableaux
(SSYT). It follows that the Schiitzenberger involution, which is defined on SSYTs, can
be transferred to Gelfand—Tsetlin triangles. The following description of this involution
has been studied by Berenstein and Kirillov [6].

First define operators s, for £ < n—1, acting on the set of Gelfand—Tsetlin triangles
of size n. If X = (2;;)n>i>j>1 is such a triangle, the action of s; on X is given by
sk X = (Tij)nzizj>1 with

ji,j = Tij, if ¢ §£ ]{Z,
Tpy = mMax(Tpq1j, Tr—1,—1) + MIN(Tpp1 j41, Tho1,5) — Tij-
It is understood that max(a,b) = max(b,a) = a and min(a,b) = min(b,a) = a if the

entry b of the triangle is not defined. The geometric meaning of the transformation of
an entry is the following: in row k, any entry wxj; is surrounded by four (or less if it is
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on the boundary) numbers, increasing from left to right:

Th+1,5 Lh+1,j+1
xkhj
Tk—1,j-1 Tk—1,5

These four numbers determine a smallest interval containing xy, ;, namely

[maX($k+1,j7 'kal,jfl)a miﬂ(l’kﬂ,jﬂ, xkfl,j)] )

and the transformation maps x ; to its mirror image with respect to the center of this
interval.
Define W; = 5851+ S5251.

Definition 6. The Schiitzenberger involution, acting on Gelfand-Tsetlin triangles of
size n, is given by the formula

S = wiwy - Wpy_1.

It is a non trivial result that S is an involution (see [6]), and it coincides with the
Schiitzenberger involution when transferred to SSYTs. Note that the s, do not satisfy
the braid relations.

Below, we give an example of the action of the Schiitzenberger involution S =
Wiwows = §15251535951 on a Gelfand—Tsetlin triangle of size 4, the entries to be changed
being in red:
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2.5.2. One can compute the rightmost diagonal of SX.

Lemma 1. Let X = (X, ;) be a Gelfand-Tsetlin triangle and Y = SX its image under
the Schitzenberger involution. Then

(2.2) Yo =X

n—k—1
(2'3) Yir = mnax [( Z X'Hri,ji - Xj¢+1+i7j¢+1> + X'nkJrnk,jnk]
=0

n=jo>j1>j2>..>jp_>1
for 1<k <n.

Proof. We recall the description of the Schiitzenberger involution in terms of words
and the Robinson—Schensted correspondence. To the Gelfand-Tsetlin triangle X let us
associate the semi-standard Young tableau, with entries in [1,n], such that the shape
of the tableau formed with letters u < is the partition X;;,j = 1,...,7. For example,
our Gelfand—Tsetlin triangle

—_
\&}
[\
ot

corresponds to the tableau (in French notation)

HMOJ»-&OT‘
DN | Lo Ot

11]2]4]5]
To such a tableau we associate the word w obtained by reading the tableau from top
to bottom and from left to right. In our example, this is

w="5]45|33|225|111245.

Then we perform the Schiitzenberger involution on the word: we read it backwards and
replace each letter ¢ by n + 1 — ¢ to yield a word Sw. In our example, we obtain

Sw=124555[144|33|12|1.

This word is a concatenation of nondecreasing words (Sw);|(Sw)s|... corresponding
to the successive rows of the tableau read from bottom to top and from right to left.

It is easy to verify that these nondecreasing words, viewed as partitions, are the
partitions conjugate to the successive SW-NE diagonals of the original Gelfand—Tsetlin
triangle (starting from the rightmost one). E.g., in our example (Sw), is the word 144
which is the partition conjugate to 3222, the second rightmost SW-NE diagonal of the
triangle. It follows that, for 1 <i < j < k,

(2.4) X k—it1 — Xjj—i+1 is the number of letters of (Sw); which
belong to [n —k+ 1,n — j].
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Looking again at our example, withi = 2,5 =4,k = 5, one has X5 4,— X, 3 = 3—-2 =1,
the number of 1’s in the word (Sw), = 144.

Applying the Robinson—Schensted algorithm to the word Sw yields an insertion
tableau which is the image of our tableau under the Schiitzenberger involution. The
shape of the insertion tableau is the same as that of the original tableau, therefore
the top row of the Gelfand—Tsetlin triangle is unchanged (this follows also easily from
Definition 6). This yields (2.2).

By a fundamental property of the Robinson—Schensted algorithm, the largest element
of the i*" row (from bottom) in the Gelfand—Tstelin triangle is equal to the length of
the longest nondecreasing subsequence of the subword Sw? of Sw made of the numbers
<.

A nondecreasing subsequence of maximal length in Sw’ is of the form [1,k;] N
(Sw')y | [k1, ko] N (Swh)a | ... [ki_1, k] N (Sw?); for some sequence 1 < ky < ... <k <.
Using (2.4), formula (2.3) follows from these considerations. O

2.5.3. GOGAm triangles. Since the Schiitzenberger involution consists in reading a
word backwards and inverting the letters, we introduce the following definition.

Definition 7. A GOGAm triangle of size n is a Gelfand—Tsetlin triangle such that its
image under the Schiitzenberger involution is a Magog triangle of size n.

Here is an example of a GOGAm triangle with n = 5:

1 2 3 3 3

By Lemma 1, we can give a description of GOGAm triangles.

Proposition 1. Let X = (X, ;) be a Gelfand-Tsetlin triangle. Then X is a GOGAm
triangle if and only if X,,, < n and, for oll 1 <k <n—1, and alln = jo > j1 > js >
coe> Jnk > 1, one has

Proof. Immediate from Lemma 1. O

1
X'Hr@ji - in+1+i7j¢+1> + Xjnfk‘f’n*kvjnfk <k.

2.5.4. GOGAm trapezoids. If a Magog triangle contains a triangle of 1’s forming its
first leftmost diagonals, then this triangle remains invariant under all transformations
sk, and therefore also under the Schiitzenberger involution. This justifies the following
definition.

Definition 8. An (n,k) GOGAm trapezoid is a GOGAm triangle of size n such that
x;; = 1 for i —j > k. Equivalently, it is the image under the Schiitzenberger involution
of an (n, k) Magog trapezoid.
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Here is a (5,2) GOGAm trapezoid:
1 1

2.6. Krattenthaler’s conjecture. Zeilberger [11] proved that there exists as many
(n,k) Gog trapezoids as (n,k) Magog trapezoids for all k& < n. Krattenthaler [7]
conjectures a refined equi-enumeration: according to this conjecture, there are as many
(n,k,m) Gog and Magog trapezoids. Actually he also introduces two more statistics
on these trapezoids which he conjectures to coincide.

In the remaining sections we shall give a bijection between (n,2) Gog trapezoids and
(n,2) GOGAm trapezoids, which restricts to a bijection between (n, 1) Gog trapezoids
and (n,1) GOGAm trapezoids. If we compose with the Schiitzenberger involution, we
obtain a bijective proof of Zeilberger’s result in this case. We also give a natural statistic
on Gog trapezoids which is transformed into a natural statistic on Magog trapezoids
by this bijection, see Section 3.5.3. Our bijection also maps (n,2,m) Gog trapezoids
to (n,2,m) Magog trapezoids, however the two statistics of Krattenthaler on Gog and
Magog trapezoids are not mapped to one another.

2.7. Some motivation. The bijection presented below was found by first considering
the cases of (n,2,2) and (n, 3,3) trapezoids, which can be considered as integer poly-
topes, and looking for piecewise linear bijections. The explicit bijections found in this
way turned out to involve the Schiitzenberger involution, which motivated us to try this
for larger trapezoids. During this study, two statistics on Magog triangles were used,
one of them corresponding by the bijection to the position of the 1 in the bottom row of
the ASM (see Section 3.5.3), while the other, conjecturally, corresponds to the position
of the 1 in the righmost column of an ASM. More on these topics can be found in [3].

3. (n,2) GOG AND MAGOG TRAPEZOIDS

3.1. Inversions.
Definition 9. An inversion in a Gog triangle is a pair (7, j) such that
Tij = Tit1j-

For example, the following Gog triangle contains three inversions, (2,2), (3,1), (4,1),
the respective equalities being in red in this figure:

1
ANERE
ARG

2 3 4 5
5

3

Remark 1. The number of inversions of a Gog triangle coincides with the number of
inversions of its associated ASM as defined by Mills, Robbins, Rumsey [10] minus the
number of —1s.
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Definition 10. Let X = (z;,)n>i>j>1 be a Gog triangle and let (4,j) be such that
I<i<y<n
An inversion (k, 1) covers (i,5) ifi=k+pand j=1l+pfor 1 <p<n—k.

The entries (i, j) covered by an inversion are marked by ” +” in the following figure:

o o ¢} -+ ¢}

The basic idea for our bijection is that, for any inversion in the Gog triangle, we should
subtract 1 from the entries covered by this inversion. This simple minded procedure
works for (n, 1) trapezoids, as we will show as a byproduct of our bijection for (n,2)
trapezoids. It is a good exercise to check this directly. The procedure does not work for
(n, k) trapezoids with & > 1 but, by making some adequate adaptations, we will obtain
a bijection for trapezoids of size (n,2).

3.2. (n,2) trapezoids. Consider an (n,2) Gog trapezoid. This is an array of the form

1 2 3 ce ce n—2 n—1 n
1 2 R o n—3 b2 ay
1 n—4 bg a9
2
1 2 bnf?; Qp—4
1 bn—2 an73
bnfl Qp—2
Ap—1

We shall give an algorithm which builds a GOGAm triangle from the Gog triangle by
successively adding NW-SE diagonals of increasing lengths, and making appropriate
changes to the triangle. In the end we will obtain a triangle of the form

1 1 1 Ce e 1 61 Qp
1 1 . o 1 ﬁg aq
1 By as
1
1 1 B3 Qp—q
1 Bn72 Qp—3
anl Qp—2
Q1

By Proposition 1, such a triangle is a GOGAm triangle if and only if
ag < n
ag—a; +6; <n-—1 for1<i<n-—1,
ag—o; +6 =B +1<j5-1 for1<i<j<n-—1
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3.3. The algorithm. First step: the rightmost NW-SE diagonal consists of one entry
n and is not changed, yielding the triangle of size 1 equal to X" = n.
Second step: The triangle formed by the two first diagonals is
n—1 n
ai

where a; = n or n — 1. In the first case, the algorithm yields the triangle
n—1 n

n

X2 —

in the second case we have an inversion and accordingly subtract 1 from the upper right
entry, which gives the triangle

X(Q): n—1 n—1
n—1

Assume now that the first & diagonals have been treated and a triangle X*) of size
k, of the form

n—k+1 n—k+1 n—k+1 U1 Ug

V2 Uy

n—k+1 V9 Up_3
Vk—1 Ug—2
Uk—1
has been obtained.
Furthermore assume that this triangle satisfies the inequalities

(3.1) uy < n
(3.2) g —u; +v; <n—1 for1 <i<k-—1,
(3.3) uw —u+v—v;+1<j5-1 forl1<i<j<k-1,
and that
(3.4) Up—1 = Af—1.
Let us add, on the left of this triangle, the diagonal
n—=k
n—=k
n—=k
Uk

Uy,

with up = ag, vy = bx. This yields a triangle Z®) of size k + 1 (this triangle will
not, in general, be a Gelfand—Tsetlin triangle, because the inequality vx < vp_; may be
broken). The algorithm will modify Z*) to get a triangle X*+1 of size k + 1. First
we consider all the inversions created by the entries of the left diagonal equal to n — &
(except maybe those coming from wu; and v), and accordingly subtract ones from the
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above triangle. This transforms the entries n — k 4+ 1 in the upper left triangle into
n — k’s. Then we treat the entries uy, vy, and the ones lying on the same SW-NE
diagonal, according to the algorithm described below, which will yield a triangle of the
form

We will check that the new triangle is a Gelfand—Tsetlin triangle and that (3.1), ...,
(3.4) are satisfied for this new triangle. The modification will depend on the inversion
pattern in the leftmost diagonal that we have added. In all cases, we will have

(3.5) uy, = ug,

the remaining entries being modified as follows, according to the four possibilities for
the inversions in the two bottom rows.

(1) The first case is v, = n — k,uy = n — k, when there are two inversions. Then the
modification consists in subtracting 1 from each of the entries of the previous triangle,
that is, we put v, =u; — 1, v, =v; — 1, for: <k — 1, and v, = vy =n — k.

(17) The second is the case v, = n — k < uy. Then we put u, = u;, v = v; — 1, for
i<k—1and v, = vy =n—k.

(77i) The third case is when n — k < v, = u,. We put u; = u; — 1 for i < k — 1.
Observe that v, = b, = up < ap_1 = ug_1, therefore u;,;0 < ¢ < k, is nonincreasing.
Two subcases occur:

(ziia) if the triangle we obtain is a Gelfand—Tsetlin triangle, then we keep it as
the modified triangle, i.e., we put v} = v; for i < k.

(27ib) if the triangle is not Gelfand-Tsetlin, then there must exist j < k — 1
with v; = u;. In this case, we put v; =v; — 1, for i < k — 1, and we put v, =n — k.
(1v) Finally the last case is when n — k < v, < ug. There are two possibilities.

(1wa) if vy, < vg_q, then Z®) is a Gelfand-Tsetlin triangle, and we do not modifiy
it, i.e., we put u; = u;,v] = v; for all i < k, thus X*+1) = Z(k),

(1vb) The last subcase is vy > vi_1. First we put ] = w; for all 4. Let
(3.6) [ = max{i|vg_; < v —i}.

Since vy_; is nondecreasing and v, — ¢ is decreasing, one has [ > 1 and vp_; < v, — @
forall t <I. We put v, =v,_, = ... =v,_; ., =n —k and v;_; = v; — [, all the other
entries being unchanged: v, = v; for i < k — [.
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Remark 2. Rules (i), (ii), (itia), (iva) consist just in subtracting 1 from entries covered
by the inversions in the SE-NW diagonal which has been added. The rules (iiib) and
(1vb) are more subtle.

3.3.1. Proof of the algorithm, first part. Let us now check that, in each case, we obtain
a Gelfand-Tsetlin triangle X*) satisfying inequalities (3.1), (3.2), (3.3) (the identity
(3.4) is immediate from (3.5)).

We start with rules (i), (i7), (iiia), (iiib), (iva).

(1) Since aj_; = up_1 > vy and vp_; > n—k+1, X*+1 is a Gelfand-Tsetlin triangle.
For 1 <i < j < k-1, one has uy — uj +v; — v} = up —u; +v; —v; hence (3.3) is satisfied
for these values. Since

up— Ui+ vl —vp=ug—u;+v;,—1—(n—k)<n—-1-1—(n—k)=k—2,

we see that (3.3) is satisfied for all values. Since uf = up — 1 <n —1 and u} > v}, one
has (3.2) and (3.1).

(ii) Again, X **V is clearly a Gelfand—Tsetlin triangle. For 1 < i < j < k, we check
(3.3) as above, while (3.1) is clear. Finally uj — u} 4+ v} = ug —u; +v; —1 <n — 2, and
uy — up, + v, <n—1, since —uj 4+ v, < —1, which gives (3.2).

(iiia) Since u; > v;, one has u} > v} for i < k, and the triangle X *+1) is a Gelfand—
Tsetlin triangle.

One has
uy = ug — 1
ug — UL+ vl =ug —u; +v; i<k
ug —up+ v, =ug—1<n—1
Uy — Uy + v =V =ug —u; Fvg—v; i< j<k
ug—u;+vi—v,<n—1—(n—k)=k—1 (since vy, > n — k),

from which inequalities (3.1), (3.2), (3.3) follow.
(77ib) The new triangle is clearly Gelfand-Tsetlin. Furthermore, one has
uy = ug — 1
ug—u, v =ug—u; +v; — 1 i<k
up — up + vy, <ug<n
ug—u§+v£—v;:uo—ui+vi—vj 1<) <k
Uy —u, + v — v, =ug—u; +v;, —1—(n—k) < k-2,
which imply inequalities (3.1), (3.2), (3.3).
(iva) The fact that X*+1 is Gelfand—Tsetlin is immediate. The inequalities are
preserved, indeed, all inequalities involving indices < k are immediate, and one has
uy —up, + vy <ug—1<n-—1, since uy > vy,

ug—u+ v, —vy<n—1—(n—k+1)=k—2, sincev, >n—k.
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3.3.2. Proof of the algorithm, second part. We now consider the last rule, (ivb). This is
the most delicate part of the proof. We first gather some information on the algorithm
which has been constructed up to now.

Lemma 2. Just after a step where rule (i) or (ii) is applied, rule (iiib) never applies.

Proof. Suppose that rule (i) applies to Z*), then n — k = b, = v, = ax = ug, and
n—k—1 < by = agyq is impossible since this would yield by > a; contradicting the
Gog strict inequality for the original triangle. If rule (i7) applies to Z*) then v; < u; in
X+ for all i < k, therefore rule (ii4b) cannot be applied to Z®*+1), O

Lemma 3. If rule (ivb) applies at step k, then necessarily at the previous step either
rule (ii1b) or (ivb) was applied.

Proof. If one of the other rules had been applied at the previous step, one would have
Vg—1 = V. O

Lemma 4. If rule (ivb) is applied to the triangle Z*), then to each of the triangles
ZWk=0 Z=t) - 726 either rule (i4b) or (ivb) was applied.

Proof. Assume that at some step ¢ < k in the algorithm we have applied rule (iiia) or

(iva) to Z®). Then the entry v\ in the triangle X *+1 (we emphasize the dependence

t+1

on the step by adding a superscript) satisfies b, = v§ ). At each next step s, we will

subtract at most 1 from v\*, therefore, in the triangle Z®*),

oV > —(k—t—1)>b—(k—t—1) =0 —(k—t—1) > 0" 4t — k.

It follows that, in Z®), one has [ < k—t (where [ is defined by (3.6). We conclude that,
to each of the triangles Z(+=0 Zk=1+0) " 7(¢-=1) either rule (i), (1), (#iib) or (ivb)
was applied. But we have seen that rule (4iib) cannot follow immediately rule (i) or

(77) and that rule (ivb) always follows either rule (iiib) or (ivb), so that in fact only rule
(4iib) or (ivb) has been applied to each of the triangles Z(*+=0 Zk=+D  7k=1)

Lemma 5. If rule (ivb) is applied to the triangle Z™®, then one has
’kalz...:Uk,lIn—k—Fl.

Proof. Since n — k+1 < wv,_1 < ... < w_y, it suffices to prove that v,_; < n —k + 1.

By the preceding Lemma, either rule (iiib) or (ivb) has been applied to the triangles

ZE=0 ZG=n) - Z(k=1) | Let us look at the successive values of the entry v,(f_)l in the

triangle X (or Z()). One has v,(;:lﬂ) =n — k + [, since rule (7itb) or (ivb) has been

applied to Z*~D. Each time rule (iib) is applied v,(;)l is decreased by 1. There are two
cases:

(a) If only rule (iiib) is applied to Z*=0 ZGk=+1) " 7k=1 then one has v](f_)l -
n—k+1.

(b) If not, let i be the least index [ >4 > 1 such that rule (ivb) is applied to Z*~,

and let I! = max{j|v,(f_7) -7 > v,gli;i)]} By rule (ivb), one has
et == S =k i j=0,1 0 L
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Since rule (744b) is applied to Z*=+D  Z(¢+= one has v,(f_)l,_i =bp_i—1U'—i+1and
(3.7) o =n—k+1, p=12.. 0 +i-1
It follows that

(k) _b ‘_ll_' R A . (k)_/_

Uy = br— i+1>2b0 -0l —i+1=v" -1 —i+1,

hence, by (3.6),
v,(f_)l,_i > v,(f) - —i.

Consequently, we have [ < I’ + i, and vy_; =n —k+ 1 by (3.7). O

Lemma 6. If rule (iiib) or (ivb) is applied to the triangle Z®), then there exists some
i < k—1 such that u = vj.

Proof. For rule (iiib) this is easy to see.

In the case of rule (ivb), there exists some step before k, when rule (iiib) has been
applied and then only rules (iiib) or (ivb) have been applied. If rule (iiib) is applied,
there must exist an ¢ with u; = v;, and then applying either rule (iiib) or (ivb) cannot

/

destroy this pair u; = v;. This implies that there exists some ¢ such that «, = v]. Such

a pair cannot exist for ¢ > k — [ by the preceding lemma, therefore : < k — [. 0

3.3.3. Proof of the algorithm, end. Assuming that rule (ivb) is applied to the triangle
Z®) we can now check that our triangle X **1 satisfies all the required properties.
Since vj,_; = vy — [, and vi_;_1 > vy — [ — 1, by the definition of /, one has v;_, ; > v}_,.
This implies that X*+1) is a Gelfand-Tsetlin triangle, as is easily verified.

Let us check the inequalities (3.1), (3.2), (3.3).

First, since uy = uy, (3.1) is clear. Consider uj — u; 4 v}. Since u, = u; is unchanged
and v, < wv; for all values of 4, except v},_;, in order to check (3.2) it suffices to consider
uy — uy_; + v, and ug — uj, + vy One has

Up_p = Up—y > U, > Vp — | = vy,
and therefore
uy — w_ + v, <n—1
Since uj, > vj,, one has
up — up + v, <n—1.
Consider uy — u; + v; — v}, for i < j < k.

If j <k —1, then ug — uj + v; — vj = up — u; +v; — vj, so (3.3) is preserved.

If j =k — [, then uj = u;, v] = v;, v; > v;, therefore the inequality is again true.

If j >k—1>i, then vj=n—k=wv,; — 1 (by Lemma 5), therefore

ug—u§+v£—v;:uo—ui+vi—vk—l+1Sk—l—lgj—Q.

If j >k —1=1ithen

I J—

/ / /
ug —u; v — vy =ug — U v —l—n+k

:uo—n+vk—uk_l—l+k§k:—l—1§j—2
since v < Up_;.
Ifk>j>i>k—1then v — v =v; —v; and uy — u; = ug — u; therefore

/ / / r .
Uy — U+ U —v; = U — U+ v — v < - 2
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Finally if k =57 >4 >k — [, then

ug—ui v —vp=ug—u;+v;,—1—(n—k)<n—-1-1—(n—k)=k—-2. O

Applying the algorithm until we have treated all diagonals, we obtain thus an (n,2)
GOGAm trapezoid from our (n,2) Gog trapezoid.

3.3.4. Invertibility. We can infer from the leftmost SE-NW diagonal of X*+1) which
rule was applied to Z*). The only ambiguity is whether rule (i), (iiib) or (ivb) has
been applied when n — k = v}, < ). Rule (i7) has been applied if and only if one has
u; > v} for all i < k. In order to distinguish between rules (i7ib) and (ivb), we now state
the following lemma.

Lemma 7. Assume XV is obtained from Z*) by applying rule (iiib) or (ivb), and
let | =1+ max{i|lv,_, =n—k}. Then

(a) v,_, + 1 < ) if rule (ivb) has been applied.

(b) vy, + 1 > u} if rule (iiib) has been applied.

Proof. Part (a) is obvious from the statement of rule (ivb), since vj_,+1 = v < ug = uj.

In order to prove part (b), note that in case (i4ib) is applied to Z(*), then by Lemma 2,
to all the triangles Z*~9 for 1 < i < [—1 either rule (iiib) or (ivb) has been applied. If
only rule (#iib) has been applied to Z*=+1  Z(k=1)"then rule (iiia) or (iva) must
have been applied to Z®*~Y therefore v},_, = by_; — | which implies v} _, + 1 = by_; >
bk = Q) = 'LL;g

If rule (ivd) has been applied at some step ¢ with k — 14+ 1 < ¢ < k — 1, then let ¢
be the smallest number such that (ivb) has been applied to Z*~. By Lemma 5 there
exists an !’ > 1 such that

vg:iﬂ) =...= v,(f_zlj,lll =n—k+i—-1

and
o) U > —k+i— 1,
Since rule (iiib) is applied to Z*=+1  ZE=1) it follows that
V,=...=V_; y,=n—k
and

U];_Z_l/:bkfz_ll_l+1>n_k

Therefore [ =1+ i and vj,_, + 1 > u}, since vj_, + 1 = by_; > by, = a, = u}. O
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3.4. The inverse map.

3.4.1. The algorithm. We now prove that the map defined above has an inverse. Let
X be a (n,2) GOGAm trapezoid of shape

1 1 1 Ce Ce 1 61 o
1 1 . o 1 ﬁg aq
1 B3 Qo
1 1 ﬁn—S Op—4
1 Bn—Q 0511*3
anl Qp—2
Q1
One has
Qp S n7

ag—a; +6;<n—1 for1<i<n-—1,
ao—ai+ﬁi—ﬁj+1§j—1 fOI'lSZ<]§’rL—1
We shall give an algorithm which is the inverse of the one above.
Let k be an integer decreasing from k =n — 1 to k = 0. Let Y be an empty set,
and X (™ = X at each step we will have a pair (Y *+1) X+ where Y #+1 is an array
(non empty only for k <n —1)

1 2 e n—k—1
1 2
n—k—1
br+1
2 k41
1 bn_o
bn—1 an—2

Gp—1
which forms the leftmost NW-SE diagonals of a Gog triangle, and X **1) is a Gelfand—
Tsetlin triangle:

n—~k n—~k n—k V) Ug
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satisfying the inequalities (3.1), (3.2), (3.3). Then we make a modification of the triangle
X &+ " according to the rules below, to get a triangle Z*)

n—=k n—k+1 n—k+1 vy U

n—k Vp—1 Ug—2
U Uk -1
U

Then we add the leftmost NW-SE diagonal of this triangle to the right of Y*+1 to get
Y *) (thus b, = vj, and a, = uy), and take the remaining triangle as X*). We will prove
that, at each step, X is a Gelfand-Tsetlin triangle which satisfies the inequalities
(3.1), (3.2), (3.3). Furthermore, we will prove that, at the next step of the algorithm,
the entries aj_1, by_1 satisfy

(3.8) n—k+1<0by1, by < by, b < ap—1, by <ap <ap—1 <n,

which imply that the triangle Y(© is a Gog triangle.
We will use the following notation: if v; = n — k and there exists i < k such that
u; = v}, then

(3.9) I =14 max{j|v,_ ; =n—k}.

Let us now describe the modification map yielding triangle Z®*) from X®**1 by the
inverse algorithm, for which we consider several cases, inverse to the cases considered
in the forward algorithm.
(1) n — k = v, = uj, then we put u; = w, + 1,v; = v +1 fori < k—1 and
) o

(77) The second case is n — k = v, < uj, and v, < w} for all i < k. Then we put
w; =ul,v; =vl+ 1, fori <k —1, and vy = v}, up, = uj.

(idia) n — k < v, = uj, then we put u; = v, + 1,v; = v} for i < k —1, and
/ /

(i1ib) n — k = v}, < uj, there exists ¢ < k such that v} = v/, and v;_, +1 > u},
(recall (3.9)), then we put u; = u, + 1,v; = v, + 1, for i <k — 1, and v = ug, = u}.
(tva) n — k < v, < uy, then we put u; = uj,v; = v, i < k.

(3]

(ivb) n — k = v, < uj, there exists ¢ < k such that u; = v}, and vj_, + 1 < uy,
then we put u; =u}, fori <k, v, =n—k+1fork—1<i<k—1,v,=v,_,+1, and
v; = v, for all other .

Let us now check that this map is well defined. By Section 3.3.4, it is an inverse of
our modification map. We consider the cases (i),...,(iv) above. First, by checking the
cases one after the other, one sees that the sequence a; constructed by the rules above is
nonincreasing (a; < a;_1), and that b; > n — 7. The remaining inequalities in (3.8) will
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be checked case by case. We also have to check that the triangles X*) are Gelfand—-
Tsetlin, and that they satisfy (3.1), (3.2), (3.3). The equality (3.4) is immediate by
inspection.

We start with an observation about rules (iiib) and (ivb).

Lemma 8. If rule (iiib) or (ivb) has been applied to the triangle X*+Y) then in the
triangle X*) there exists a pair u; = v;.

Proof. This is immediate for rule (i7ib), since adding 1 to both w, and v} does not destroy
the equality u, = v..

For rule (ivb) we notice that n — k = v, < uy, and vj_, + 1 < u), < u)_, imply that
Vp_j < uy_; for j =1,...,1, therefore the inequality u; = v; must be realized for some
i < k — I, and then u; = u; = v} = v; by rule (ivb). O

3.4.2. Proof of the algorithm. We now check all rules of the inverse algorithm.
(1) Tt is clear that the triangle X*) is Gelfand-Tsetlin.
We have uy = uj — uj, + v;, < n — 1, this proves (3.1).
Since ug — 1 —u; +v; — (n—k) = uy — u} +v; — v, < k—2 we have ug —u; +v; <n—1.
All other inequalities in (3.2), (3.3) involve differences like ug — w; or v; — v; which
are not unchanged by the replacement v’ — u, v’ — v.
Moreover, the inequalities (3.8) are immediate.

(41) Since v, < u/ for all 4, one has v; < u;, hence X*® is a Gelfand-Tsetlin triangle,
and (3.1) is immediate since ug = uy.

Since uf — uj + v, — v, < k — 2, one has ug — u; + v; < n — 1, thus (3.2) holds.

Finally (3.3) comes from uy — uj = up — u; and v; — v} = v; — v;.

The inequalities (3.8) at the next step are immediate.

(i4ia) Again it is easy to see that X ¥) is a Gelfand—Tsetlin triangle. Since uj — u}, +
v, <n—1and uj, = v, we get ug = uj+ 1 < n, hence (3.1).

The other inequalities (3.2), (3.3) are checked similarly.

The inequalities (3.8) at the next step are immediate.

(44ib) The fact that X*) is a Gelfand-Tsetlin triangle is immediate.

Since there exists j with v} = v}, one has uy = uy — u; +v; < n — 1, thus uy =
uy + 1 <n.

Since u(—u;+v;—v, < k—2, it follows that uj—u}+v, < n—2and uo—u;+v; < n—1.

The other inequalities are satisfied since uy — uj + v — vj = up — w; + v; — v; for
1<i<j<k-1

We now check the inequalities (3.8).

One has b, = a, < a1 =uj,_, + 1.

It remains to see that b, < by_.

If v,_; >n—k, then vy_y = v;,_; +1 > uj = a; = by since we are applying rule (#7ib)
to X 1) (in this case, | = 1). At the next step, we will have by_; > vp_; > by.

If vj,_; = n — k, then one has [ > 1, and by Lemma 8 either rule (i7ib) or rule (ivd)
applies to X*)_ In either case it is easy to see that b, < by_1.
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iva) In this case, the fact that X*) is a Gelfand-Tsetlin, as well as the inequalities
(3.1), (3.2), (3.3), is immediate. Also the inequalities (3.8) are immediate.

(1vb) Since n — k < up, < u), for i < k — 1, it follows that u; > n — k + 1 for all 7. It
is then clear that X*) is a Gelfand-Tsetlin triangle.

Let us check the inequalities (3.1), (3.2), (3.3) for X®).

Since ug = uy, inequality (3.1) is obvious.

One has ug —u; +v; = uy —u, + v, <n—1fori < k—1[. For k >1i>Fk—1, one has
vi=n—k+1<wve;+1<u <y, therefore —u; +v; < —1, and inequality (3.2) holds.

Inequality ug —u; +v;i —v; + 1 =ug —u;+vi —v; +1 < j—1holdsifi < j<k—I

If + <k —1, one has

up—u+vi—(n—k)+1l=uj—uj+v,—vy_, 4 +1<k—1
hence
w— Ui+ v —vp+l=uw—u+v;,—(n—k+1)+1<k—-101-1,

which proves (3.3) fori < j =k — .

Ifi <k—1<j,then v; = v; and v; > v}, therefore (3.3) holds as well.

One has

Up — Uy + Vg —v; + 1 <wug—up_, +0,_,—v;+1<k—1-1,
proving (3.3) fori =k — [ < j.
If k=1 <i<j,then v; = v;, and v; = v;. Consequently,
ug — U +v; — v+ 1 =ug —up+ v —vj+1 <51
It remains to check inequalities (3.8).
After rule (ivb) is applied, one has vy_; = n —k+ 1 and, for some i < k — 1, u; = v;,.
Therefore rule (iiib) or (ivb) applies to the next step. In either case one has by < aj_1.
Recall that
b, = v, + 1 < uj, = ay
and
vk_lz...:vk_l:n—k+1.
It follows that I’ = 1 + max{ilvg_1_; =n—k+1} > .
If vg_1_p + I' < up_; then rule (ivb) applies to X*~1) and
bp_1 = Vp_1_p + 4 > ’U];fl + 1 = by,
Ifvg_1_p +1U >up_q then I =1, up = up_; and

b1 = Vg1—v + U = Vg1 + 1 = g1 > by

3.5. Some properties of the bijection.

3.5.1. (n,1) trapezoids. If one starts from an (n,1) trapezoid, then only rules (i) and
(#7) apply, and it is easy to see that one gets in the end an (n,1) GOGAm trapezoid,
and that it is obtained by subtracting from any entry of the Gog trapezoid the number
of inversions which cover it. The same remark applies to the inverse map, so that our
bijection restricts to a bijection between (n, 1) trapezoids.
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3.5.2. (n,2,m) trapezoids. One can check that our bijection restricts to a bijection
between (n,2,m) Gog trapezoids and (n,2,m) Magog trapezoids for all m < n. This
does not cause any difficulty, but is somewhat cumbersome to write down, so we leave
this verification to the interested reader.

3.5.3. A statistic. For a Gog triangle X, the entry Xi; gives the position of the 1 in the
bottom row of the associated alternating sign matrix. If X is an (n,2) Gog triangle,
it follows from our algorithm that the 11 entry of the GOGAm triangle has value X1;.
From Lemma 1 we conclude that, for the (n,2) Magog triangle T, associated to X,
one has Xyy = > T — Z;:ll T;pn—1- It is known that, more generally, these two
statistics on Gog and Magog triangles coincide (see, e.g., [5], where the corresponding
statistics for ASM and TSSCPP are shown to coincide).
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