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SuNTO. — Si studia il problema della stabilita del b-bordo di una varieta, nel con-
testo dello spazio delle connessioni principali sul fibrato dei riferimenti. Alcuni nuovi
risultati nella geometria degli spazi di connessioni, che generalizzano risultati ottenuti
in un articolo precedente [4), permettono di descrivere una situazione generale in cui
la b-incompletezza & conservata nel cambio della connessione data. Questi risultati sembra-
no adatti per ottenere vari tipi di teoremi di stabilita. In effetti. una conseguenza &
che la stabilita, nella topologia C' di Whitney, pud essere dimostrata in modo piuttosto
semplice per punti del cosiddetto “bordo essenziale”.

1. - Introduction.

The b-completion is usually considered as the main tool for the
study of the geometry of space-time singularities. This construction
can be done whenever a principal connection on the frame bundle LM
of a manifold M is given. In fact, the connection induces a riemannian
metric on LM; the metric completion of LM can be quotiented by
the group action, and M is dense in this quotient, which is exactly
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the b-completion. We say that M is b-complete, with respect to the
given connection; if it' coincides with its b-completion. This concept
is a generalization of that of geodesic completeness, and also of that
of metric completeness for riemannian manifolds. If M is b-incomplete,
then the b-completion is the union of M with the b-boundary, which
may be thought of as the set of endpoints of b-bounded curves (i.e.
curves with bounded horizontal lift in LM) with no endpoint in M.

Thus, a space-time singularity can be seen as a point in the
b-boundary generated by the Levi-Civita connection associated to the
Lorentz metric (see [1, 5, 9] for detailed information and discussion).
In other terms, the existence of a singularity is related to the b-incom-
pleteness of M. It is then clear that stability problems concerning b-in-
completeness and completeness have great interest in relation to the
very existence of physical singularities, both from classical and quan-
tistic point of view (for example, see [2, 3, 8, 9]).

The setting of the stability problem requires essentially two things:
first, a decision about what a gravitational field is, that is, of which
space it is a point (or of which bundle it is a section); second, the
assignment of a precise 'meaning to the idea of ‘“‘small change” of
it. Though the most usual choice for the field is a Lorentz metric,
also the connection is an important candidate. as it is suggested by
the framework of gauge theories and by that of metric-affine theories
of gravitation [6]. The interest for this approach is stimulated also
from the theory of the systems of connections [10]). This framework
seems promising, and in fact we are able to prove a result which
can be interpreted as a kind of b-incompleteness stability, since it says
that if M is b-incomplete with respect to a connection, then it is also
b-incomplete with respect to a new connection, which approaches the
former in a certain sense. This result, which is an improvement of
a previous version [4], may be not so expressive from an intuitive
point of view, but it is rather general and seems a good startpoint
for the study of the problem, since it may produce various interesting
consequences.

In fact, one such consequence is obtained, in the last section,
in a framework which is quite natural for stability problems, i.e. that
of the Whitney topology on the space of sections of a bundle, in our
case the bundle of principal connections of the frame bundle. We shall
say that any property depending on the connection is stable if the
set of all connections which have the property is open in this topology.
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Thus, we are concerned with the study of b-incompleteness stability
in this context.

However, only a part of the b-boundary is usally considered as
representing the physical singularities, that is the so-called ‘“essential
boundary”, constituted by limit points of not (partially) trapped curves.
Now, the final result of this paper is precisely that stability, in the
sense of the Whitney topology, holds at least for these points.

There are still many open problems. For example, note that the
choice of a different space of sections (for example Lorentz metrics)
as representing the possible gravitational field might give completely
different results; in fact the map ‘‘riemannian connection” from the
space of metrics to that of principal connections is not continuous.
It would be important to study which.is the largest possible modifica-
tion of the field which preserves the existence of singularities. This
could relate our approach to others in which coarser topologies are
used and some kind of instability arises (see [14, 15]). Indeed, many
people think that the soundest approach from a physical viewpoint
would be the unexplored one.based on the space of solutions of a
given field equation.

2. - Preliminaries.

This section contains a brief review of basic concepts. For details,
see [7, 10, 12].

By p: E—M we shall indicate a fibred manifold of finite dimen-
sion. Then, p is a differentiable surjection of maximal rank. T, T*,
V and J are respectively the tangent, cotangent, vertical and first-jet
functors. We have the fibered structures Tp: TE—TM, =g : TE—E,
pe : JE—E.

We shall deal with the fibered product ot two fibered manifolds
p:E—M and q:F—M. This has three different fibered structures:

m:ExuF—E, m:ExuyF—F, pom=qom:ExuwF—M.

The reciprocal image of a section s: M—FE is
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g*s=(so q, idf) : F—E xmF.

A connection on E—M is a section T : E—JE; the assignment
of T is equivalent to that of a l-form on TE with values in VE,
wr: E—T*E ®¢ VE, called connection form, which is an affine mor-
phism TE—VE over = : E xy TM—E and, restricted to VE, is the
identity.

The space of all sections M—E will be denoted by Sec (E— M).
Given a topology on this space, a property depending on the section
is called stable if the set of all sections which have the property is
open. We shall use the W?° topology (or Whitney or wholly open C°
topology): a basis of this topology is constituted by the family of subsets:

E(U) = [s€8ec(E—M):s(M) C U},

where U is an open submanifold of E.

A sustem of commections in constituted by a fibered manifold
7 :C—M, together with a fibered morphism v :C xy E—JE. Any
section T' : M—C determines a connection ' = v o (p*I’). We remark
that we cannot obtain all possible connections of E—M with this
procedure, unless we take C to be infinite-dimensional. However, finite-
dimensional systems of connections arise in important situations, like
in the case of principal connections. By space of connections we mean
the (infinite-dimensional) space Se (C—M).

Given a system of connections, there is a canonical connection
A on the fibered manifold K = C xmME—C; its connection form is
characterized by the relation

(@a, X) = (11 (X), (wr, T72 (X)) € C xm VE C C xy TE = VK,

where T' is any connection such that I° (x o m (X)) = m (X).

Given a principal bundle (P, p. M; G). the action of the group G
on P can be naturally extended to an action on JP, and a principal
connection is exactly a section P—JP which is invariant with respect
to this action. Thus, principal connections arise from a finite-dimensional
system, where C = JP/G. This bundle can be shown to be affine, with
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associated vector bundle T*M ®wm VP/G. Moreover, if P admits a global
section or G is abelian, then VP/G is isomorphic, though in general
not canonically, to M x G, where G is the Lie algebra of G.

3. - The frame bundle and related structures.

This section is a summary of some further preliminary results;
some of these were established in [4], and the others can be found
in [1, 5, 9]. Henceforth K = (JP/G) xMP = C xmP and P = LM, the
frame bundle with projection p onto M (then K = JP). We recall that any
principal connection I' determines a riemannian metric on TLM— LM
(independently discovered by Schmidt [13] and Marathe [10]), and that
the b-completeness of M is equivalent to the metric completeness of
LM. This metric is defined by:

gr:TLM xxm TLM — R : (X, Y) ~— 60(X)+ 60 (Y) + or (X) » wr(Y)

where:

6: TLM—R™: X ~— ((mum (X))*, Tp (X)) is the canonical 1-form,
(mim (X))* is the dual basis of wim (X);

wr: TLM—G = R™ is the connection form, when we take into ac-
count the natural isomorphism VLM = LM x G;

+ is the standard inner product in R™ and R™.

Now, the canonical 1-form can be extended to a 1-form on TK—K,
denoted by the same symbol, by putting 6 (W) = 6 o T, (W); thus
we can define a symmetric bilinear form:

S TK xxTK— R:(W,Z) = 6(W) +0(Z) + wr (W) + wp (2).

This form vanishes on m,-vertical vectors, and is then degenerate.
It can be proved that the assignment of a connection on C—M,
A: C—JC, induces naturally a riemannian metric g» on TK— K, whose
restriction to w;-vertical vectors coincides with f
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If ' :M—C = JLM/IG is a section, then p*I' : LM—K is a sec-
tion, and the submanifold Sy = p*T' (LM) C K is diffeomorphic to LM.
Moreover, the restriction Jr of f to Sr is a riemannian metric, and
p*l is an isometry between (LM, gr) and (Sr, fr). Thus, metric com-
pleteness of (LM, gr), and consequently b-completeness of M with respect
to T', can be studied on Sr.

We shall indicate by ZMr the metric completion of LM with respect
to gr, and we shall put arLM = LMr-LM; then, Mr = LMi/G and
orM = Mr—M = 3rLMIG are the b-completion and the b-boundary of
M respectively.

Thus, drLM can be identified with“aSr, the Jr-boundary of Sr.
If there exists a connection A:C—JC such that the immersion
(Sr, fr) = (K, ga) is uniformly continuous, then 3Sr can be also iden-
‘tified with a subspace of 9,K, the ga-boundary of K; for example,
this is the case when ' is A-horizontal.

Next, we recall that Mr is not, in general, a Hausdorff space,
and that this fact is related to the existence of (partially) trapped curves
¢:[0,1)—M with endpoint in drM. In other terms, if é: [0, 1)—LM
is a curve with endpoint in.drLM, its projection ¢ = poé:[0,1)—M
may have the property that there exists a compact set H C M such
that, for all X € [0, 1), there is \ € (\, 1) such that ¢ (N\) € H. As a conse-
quence, ¢ is not a proper map.

Then we define the essential boundary of M as the portion of
orM constituted by those points which are endpoints of at least one
not trapped curve. Such curve is then proper (however, note that a
point of the essential boundary can be also the endpoint of a trapped
curve). We shall call essential completeness (incompleteness) the property
of a manifold of having empty (not empty) essential boundary.

3. - f-bounded open submanifolds of K.

The concept of fbounded open submanifold of K was used in
[4]. In this section we give a more precise definition, and prove the
existence of such sets directly by showing one possible construction.
This is important for the interpretation of the preliminar result of
§ 4 as a kind of generalized stability, and also for the proof of the
last proposition about Whitney stability.
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DEFINITION. - An open submanifold V C K is f-bounded if V N Sr
is fr-bounded for all I': M—C such that (VN Sr) = m (V).

LEMMA. - A connected open submanifold V C K 1is f-bounded if
the following properties hold:

a) There exists R € R* such that f (w, w)/f (v,v) < R for all u,ve TV
such that T2 (w) = Tz (V).

b) There exists one ' : M—C such that 73 (SrN V) = 2 (V), and w2 (V)
18 gr-bounded. .

PROOF. - Since = (V) is gr-bounded, there exists e € R* such
that, for any two points a, b € x; (V), there is a curve c: [0, 1]— =2 (V)
of length not greater than ¢ and such that ¢(0) = a, ¢ (1) = b.

Let B:M—C, a,be€ m(VNSs) = m (V).

Then fg (dc, dc) < Rfr (de, dc), and then the fg-length of ¢ is lesser
then Rp. (u]

LEMMA. - Let T': M—C be a connection and A C LM a gr-bound-
ed open submanifold.

Then, there exists an f-bounded open submanifold V C K such that
p*T4) c V.

PROOF. - We shall construct one such V.

For each a € LM, let S (a) = {u € T.LM : gr (u, u) = 1} be the unit
gr-sphere at a, and for any d € (72)"'(a) put U (@) = T:K N (Tm2)"'(U (a)).

For all 4 € U (d) we put q (&) = f (&, @)/ gr (u, u), where u = T, (%).

Since § is compact, it is clear that for all d € () '(a) there
exists Q (d) = max [g (&) : % € U (d)}; moreover Q : ¢ — Q (d) is a con-
tinuous function on (m2)"'(LM), and Q (Sr) = {1].

Now, let 1 < R€R*; we put V = [d € () "(4): UR < Q(d) < R)}.
We must show that V is open and fbounded.

First, let 4 € V. Since Q is continuous and Q (d) < R, there is
an open neighbourhood W; of @ in K such that Q (W:) C (R, 1/R).
Wan ((r2)7'(A)) is then an open neighbourhood of d contained in V.
Thus V is open.

Now, let w, w’ € TV be such that Tr; (w) = Tm (W), & = 7k (w),
@' = mx (w’). Then, w = Mi, w’ = M, where A € R, @ € U (d), @’ € U (@).

We then have:
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[, w) = Nf @, @) f@,w)=Nf@,a).

fw w ! f @, w)=f@a)/f@&)<RE.

Since A = m (V) is gr-bounded, V is fbounded by virtue of the
previous lemma. (u]

COROLLARY. - Let T': M—C be a section. Let a € drLM. Then,
there exist a curve ¢ :[0, 1)—LM with endpoint d, and an f-bounded
open submanifold V C K such that (p*T o ¢)([0,1)) C V.

PROOF. - Since LM is Hausdorff, there exist a gr-bounded open
submanifold A ¢ LM and a curve c: [0, 1)—A with endpoint @; thus
we can construct V as in the proof of the previous lemma. o

4. - Stability of b-boundary points.

PROPOSITION. - Let ' : M—C be a section such that M is b-in-
complete with respect to T.

Let ¢:[0,1)—LM be a curve with endpoint in orLM.

Let V C K be an fbounded open submanifold, such that (p*T) o
ocl0,1)C V.

Then, M is b-incomplete with respect to any connection B such
that (p*B) o ¢[0,1) C V, since ¢ has finite gs-lenght.

PROOF. - Essentially the same of the first proposition in § 4 of [4].

We observe that, in a sense, the previous proposition may be
thought as establishing a stability property for b-incompleteness, since
it says that if M is b-incomplete with respect to I', then it is also
b-incomplete with respect to a new connection B which approaches T’
sufficiently well in a certain sense. It is also noticeable that the behaviour
of B far away from the singularity has no influence (this statement
has meaning at least in LM, whose completion in Hausdorff). In fact,
the last corollary of the previous section enables us to construct the
manifold V over any gr-bounded neighbourhood of the singularity in LM.
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This result seems suitable for obtaining various kinds of stability
properties. In fact we shall use it, together with those of the previous
section, for establishing a particularly expressive stability theorem: the
stability of essential incompleteness in the Whitney topology.

PROPOSITION. - Essential incompleteness is a stable property in the
C° Whitney topology on the space of principal connections of LM—M.

PROOF. - Let a € drLM be such that its projection onto arM is
in the essential boundary. Then, we have a curve ¢: [0, 1)—LM with
endpoint @, such that p o ¢:[0, 1)—M is proper. Let A C LM be the
interior of the ball in LMr of centre d and radius ¢ € R. Then c(\) € A
for \ sufficiently close to 1, and then, after a possible affine reparame-
trization, we have c:[0, 1)—A.

Let V C K be the fbounded open ‘submanifold constructed as in
the second lemma of the previous section.

Since p o ¢:[0,1)—M is a proper map, the map
Sec (C—M) — C°((0,1),C) : B — Bopoc
is W'continuous [12]). Thus, also the map
®: S (C—M)— V =C°(0,1), V):Be——(,Bopoc)=(p*B)oC

is WOcontinuous. Thus &' (V) is W°open in Se (C—M).
If Bed ' (V), then & (B)€ Vv, which means that

(p*Byoc(0,) C V.

Then, by virtue of the previous proposition, ¢ has finite gs-length and,
being not partially trapped, defines a point in the essential boundary
of M with respect to B. n]
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