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REMARKS ON THE SCHOUTEN-NIJENHUIS BRACKET

Peter W. Michor

In 1940 Schouten introduced the differential invariant of two purely contravariant
tensor fields. In 1955 Nijenhuis showed that for skew symmetric contravariant
tensor fields (also called skew multivector fields) this concomitant satisfies the
Jacobi identity and gives a structure of a graded Lie algebra to the space of all
multivector fields. The same is true for the symmetric multivector fields.

In 1974 Tuleczyjew gave a coordinate free treatment of the bracket for skew multi-
vector fields and clarified its relation to certain differential operators on the
space of differential forms, which are simiiar to those of the better known and
more important Fralicher-Ni jenhuis bracket for tangent bundle valued differential
forms. The Schouten-Nijenhuis bracket can be used to express integrability
properties (1.3) and its vanishing is also the condition on a 2-vector field to
define a Poisson bracket for-functions (a coordinate free proof of this is in 1.4).
Recently Koszul explained some relations of this bracket to lie algebra cohomoloqy.
The Schouten-Nijenhuis bracket for symmetric multivector fields is well known to
coincide with the Poisson bracket of the associated functions on the cotangent
bundle, which are polynomial along the fibres. It will not be treated in this

paper - similar results as those treated in this paper are true far it.

In this paper we introduce the schouten-Ni jenhuis bracket for skew multivector
fields as extension of the Lie bracket for vector fields satisfying certain
properties. We scetch its uses and we rederive the formulas of Tulezy jew
concerning the Lie differentials of forms ending up with the definition Tulezy jew
started with. Note that the bracket defined here differs in sign from the usual
one. In the second part we show that the Schouten-Nijenhuis bracket is natural
with respect to f~dependence of multivector fields, and finally, that it is (up
to @ multiplicative constant) the unigue natural concomitant mapping a p-field and
a g-field to a p+g-1 - field.

I want to thank 1. Kolal, H. Urbantke and K. Wegenkittl for valuable hints.

This paper is in final form and no version of it will appear elsewhere.
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1. The Schouten-Nijenhuis bracket for skew multivector fields.

1.1. Let M be a smooth manifold, finite dimensional and paracompact. Then the Lie

algebra ¥(M) = T(TM) of vector fields on M is a module over the commutative alge-

bra Em(M) of smooth functions on M, and ¥(M) acts on Cm(M) as Lie algebra of

derivations, via 8: X(M) ~ Der(Cw(M)). This is sometimes called a Lie-module.

Let us now consider T(ATM), the graded commutative algebra of (skew) multivector

fields on M. It coincides with ACw(M)r(TM)’ the space of skew elements in

® (M) I(TM), the C%(M)-tensor algebra generated by the C®(M)-module T(TM). .

1.2. Theorem: The following bracket is well defined on I'(ATM) and gives a graded
{ie algebra structure with grading (r¢atmy, [, ])p = F(Ap+lTM):
[XlA...AXp, YlA...AYq] =

o yp-ii-l N AN

= % (-1) xl/\... Xy ...AXpA[Xi,Yj]AYlA... YJ. .../\Yq
_ l+J S I

= 7 (-1) [Xi,YJ.]AXlA... Xi ...AXpAYlA... Y;i .../\Yq ’

[F,U] =-(df)U for f in C*(M) and U in T(ATM).
We also have [U, VAW] = [U,VIAW + (--J.)(u_l)V VA [U,W], so that
ad: (T(ATM), [, 1) »Der(T(ATM), A ) is a homomorphism of graded Lie

algebras.

Proof: For vector fields X, and Y, and f in C™(M) the following is easily seen to
hold: [XlA...AXp, YlA...Af.YjA..I\Yq] = f. [xl/\.../\xp, YlA...l\Yq] +
+ (—l)p—l T(df)(XlA...AXp)AYlA...AYq , where 1(df) is the insertion operator,
a derivation of degree -1.
The formula given in the theorem defines a priori a bilinear mapping
Py x Aoy » PHEr(m). IF we map it into Ap+q‘lcw(m (M) = (P9 L)
then by the formula above and by antisymmetry it factors over r(PTM) x r( hTm).
So it is well defined. Then one has to check the graded Jacobi-identity. This is

an elementary but very tedious calculation. The last property is rather easily

checked. ged.

Remark: The bracket defined in the theorem is the universal extension of the

c“(M)-Lie module X(M) to a graded version.

1.3. Integrability lemma: Let FCTM be a 2-dimensional sub vector bundle
(a distribution or 2-plane field). Let U in T(AZTM) be a (local) "basis"
for it ((so X €F iff X AU = 0). Then F is integrable if and only if.

[u,ul = 0.
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Proof: Let X, Y be laocal vector fields spanning F. We may assume that U = XAY.
Then [ XAY,XAY] = 2 Xa[X,Y]AY by 1.2, which is zero iff [X,Y) is in F. qed.

1.4. Characterisation of Poisson structures: Let P be in F(AZTM). Then the skew

symmetric product {f,q} ;= <ded@, P> on dm(M) satisfies the Jacobi identity
if and only if [P, P] = 0.

Proof: {f,g}t = <dfadg, P> = <dg, I(df)P> = <1,~I(dg)[Ff,P)> = [q,[F,r]].

So {f,{g,n}} = [[h,[q,P]],[f,P]]. Now a straightforward computation involving gra-
ded Jacobi identity and skew symmetry of the Schouten-Nijenhuis bracket gives:
[h,lg,lf,[P,P]11]= —2(iF,{g,h}} + {g,{n,f}} + (h,{f,g}}).

Since [h,[g,[F,[P,P]]]]: <dfadgadh, [P,P]k the result follows. ged.

Our next aim is to study two actions of T(ATM) on the space 2(M) of differential
forms and to express the Schouten-Nijenhuis bracket by them.

1.5. We have already used the ¢ (M)-bilinear (fibrewise) pairing

<, 2 (M) x T(ATM) » €™(M), given by <UJ1/\...A(U , le‘.../‘X > = det(wi(XJ.)).
For each C¥(M)-linear (tensorial) mapping F: QP () = 29(M) we have an adjoint
F*:T(A91M) > T(APTM) and conversely. For @ in P(M) consider the C®(M)-linear
mapping L(@): QX(M) > Q*P(M), wW)¥ = wAb . Tt's adjoint willbe denoted by

Tw) = u@)*: T M) -~ T(AW‘DTM). Likewise for U in I'(APTM) consider the £2(M)-
linear mapping H(U): F(AkTM) - F(Ak+pTM), T(UV = UAV. Its adjoint is denoted
by i(U) := p()*: ™M) + @™ P(M). Other common notations for these two mappings
are Udw = i(Ww , wdU = iW)U.

1.6. Lemma: Let U be in T(APTM). Then i(U): QM) > %(M) is a homogeneous C7(M)-
module homomorphism of degree -p, the graded commutator [i(U), i(W)] = 0,
i(U) is a graded derivation of (M) if and only if the degree of U is 1.
For w in Ql(M) and ¥ in £(M) we have: i(U)(wadb) = i(I(@MV¥ + (~1)Pwai(u)y,
that is [i(U), nw)] = i(TW)U) in End(2(M)).
Finally i(UAV) = i(V)ei(U).

Proof: Put U = XlA...AXp, apply 1(U) to wlA"'Awq , evaluate at ZlA...AZq_p and
expand the determinant by the first line. Then i(U){wAd) = i(I(w)U)V + (=1)PwAi(U)y

follows. The rest is easy. qed.

1.7. The Lie differential operator: For U in T(ADTM) we define B(U): (M) »~ Q(M)
by ©(U) := [i(U),d] = i{U)d - (-1)Pdi(U). Then ©(U) is homogeneous of degree l-p
and is called Lhe Lie differential operator along U. It is a derivation if and only

if U is a vector field. Note that [©(U), d] = O by the graded Jacobi identity.
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1.8. Lemma: N for U in F(AUTM) and V in T(AVTM) we have
BUAY) = i(V)a) + (1Y o(W)i).
) j-1 . . o .
2. 0XpA.AX ) = £ (1) 1(xp)...1(xj+l>e(xj)1(xj_l)...1(xl>.
3. 0(F) = [i(f),d] = [u(f),d] = - uldf).

H

Proof: 1 follows from 1.6 and the definition. 2 follows by induction on p.

3 is clear. ged.

1.9. Theorem: For U in T(AYTM) and V in T(AYTM) we have:
1. o), i = 0 DO 5y vy 2 iv,uD.
2. [ow), o)1 = (DY DD o0y vy 2 oe-[v,uD).

Proof: Using the graded Jacobi identity the following formula is easy to check:
ey, i1 = DV HEW), o)1 = - PP e, 1.
Then 1 can be proved by induction on u+v, using (3).and all the results above,

in partieular 1.8.1. 2 follows also by induction on u+v. ged.

1.10. Let U be in TOAYTM), V in T(AYTM) and © in &*Y72(M). Then we have
o(-[v,ul) = [e(),ov)] = e(ulew) - 1) D =Deyyau).

e(e(Ww = (L(U)d - («DYi(WIEW - (-1)Ydi(V)w = i(U)di(V)dw + 0.
<di (V)dw, U> .

Similarly we get O(V)O(U)w = <di(U)dw, V> .

o V,uw = i(-[V,UDdw - (DY lgi(-v,uDe = <dw, -[V,ul> .

Putting everything together, we have the following

Lemma: For U in T(A'TM), V in T(AYTM) and w in QP+V_2(M) we have:

<dw,-[V,U]> = <di(V)dw, U> - (—1)(U'l)(v_l)<di(u)dw, V>,

This formula suffices to compute fu,v] in coordipates, and it remains valid,
if we insert any closed form ¥ in §P+V_1(M) instead of duw.

This formula is the starting point of Tulczyjew, who considers the bracket

[U,\/]TU1 = -[,u] = (—l)(u—l)(v_l)[U,V]. The coordinate version of it boils down

to the definition of Schouten.

2. Naturality of the Schouten-Nijenbuis bracket for skew fields.

2.1. Let f: M ~ N be a smooth mapping between manifolds. We say that U in F(AUTM)
and U'in T(AYTN) are f-related or f-dependent, if AUTF.U = U'e f holds.
- L
o ATTE > AUTN
tu T

M —> N
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2.2, Proposition: 1, U and U' as above are f-related if and only if
iU)e = e i(UT): QIN) > 0(M).
2. U and U' are f-telated if and only if g(U)e f¥ = f¥o(U'): Q(N) » a(M).
3, If Ui and Ui’ are f-related for i = 1,2, then also the Schouten-Nijenhuis
brackets [Ul, Uz] and [U!, Ué] are f-related.

Proof: 1. Ltet V in T'(ATM) and w in (M) be such that degU+ degV = degw . Then
<i) o, V> o= <(Fﬁ»)x, U AV > = <wr(xy71TXF, U AV > =

= <wf(x)’ ATXF.UXA ATXF.UX> =< wf(x)’ U%(X)A\ATXf.VX> <(i(U')m)r(x), ATXF.UX>
<(f* iU, , V> = i) w, V>

2. If U and U' are f-related then €(U) f* = [i(U),d] f* * [i(U*),d] by 1.

For the converse let w in 0" 1(N). Then we have O(U) f* w = i(U) F* do  and
o) w = F*¥ i(U') dw . Since the du , w in Qu_l(N), generate QY(N) over C¥(NY,
we have i(lU) f*|oQU(N) = f* i(U")] @"(N). This implies, using the proaof of 1 for

V = 1, that U and U' are f-related.

3. This follows immediately from 2 and 1.9.2. ged.

2.3. For a vector Field X on M let Flz denote the local flow of X. For a multi-

vector field let the Lie derivative of U along X be given by @(X)U = SE|JF1:)*U.

Lemma: O{X)U = (Fli)*lJ = [X,u].

dd
This result and the "right" signs in 1.2 convinced me to change the sign of the
Schouten-Ni jenhuis bracket.

Proof: It suffices to take U = XIA...AX , 5ince they generate locally T(ATM)

p
over R. But then e(x)(x A AX ) { (Fl Y(xX [heAX ) =
g X p’ ~ dlo P
= gl FIpTx A A(Fl X, = XA .ALX,Xj]A...AXp = [X, Xpaeax 1 . qed.

2.4, &n ihmediate Coﬁsequence of the last two results is, that the Schouten-Nijen-
huis bracket commutes with Li. derivatives along vector fields: ©O(X)LU,V] =

= [e(X,V] + [U,0(X)V]. By 2.3 this is just a special case of the graded Jacobi
identity.

2.5. Now we want to determine all natural concomitants of the Schduten—Nijenhuis
type. S0 let us consider, for each n-dimensional manifold M, a R -bilinear
operator 8.: T(APTM) x T(A9TM) > T(ATTM) such that for each local diffeomorphism
f:M > N we have f*BN u,v) = BM(F*U,f*V), where {f*U)(x) = (ADTXF)"lU(F(x)).
Then each BM is a local operator, and by the bilinear version of Peetre's
theorem (see [1]) or the nonlinear version of it (see [11]) By is a bilinear
differential operator. So we may dlfferentlate through B = BM- glven any vector

field X on M we have O(X)B(U,V) = | (Fl Y*B(UL,V) = I B((Fl Y u, (F1 ) *) =
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= Bl (X)U,V) + B(U,0(X}V). In view of 2.3 this looks like:
X, 8(U,V) 71 =B(IX,uL,V) + B, X,vD.

By nmaturality it suffices to determine B on R".

2.7. Lemma: Llet I = E xi(a/axi) be the identity vector field on R' .
1. If U is a constant p-vector field on R", then {I,U] = -p.U.
2. For any U in TCAPTR™) we have [1,U03(0) = -p.U(0D).
3. Let U in T(APT]fj) be a p-vector field which is homogeneous of degree k,
then [I,U] = (k-p)U.

Proof: 2. If U = X is vector field this is easily checked. But then
(r, XlA...AXp](O) = (2 XlA...A[I,XélA...AXp)(U) = —p.(XlA...AXp)(O).
3. Let first U = X be a k-homogeneous vector field. The flow of 1 is given by
Fli(x) = e".x . S0 (Fli)*x(x) = T(Fli)—loonlg (x) = e_t.X(et.x) = e(k_l)t.X(x).
Thus [I,X] = &(I)X = ELI (Fll)*x = 9—} e(k~l) X = (k-1)X. Now suppuse that

dt'y t dtg
U= XlA...AXp where Xl is k-homogeneous and the other Xi are constant. Then

I, XlA...AXp] = I XlA...AfIin]A...AXp = (k-p) XlA...AXp by 1. qed.

2.8. Now let U in I'{APTR" ) be homogeneous of degree k and let V in r(AITR™ ) be
homogeneous of degree m. Then we have by 2.7 and 2.6:

-r.B(U,v)(0) = [I, B(U,v)](a) = BC[I,ul,V)(0) + B, [I,v])(D) =

B((k-p)U,v)(0) + B(U, (m-qIV)(0) = (k+m-p-q)B(U,V)(0).

From this the following result is immediate.

Corollary: If 8: I(APTM) x T(A9TM) + T(A"TM) is a natural bilinear concomitant,
then B is a bilinear differential operator which is homogeneous of totatl
order p+q-r. So B is 0 if p+g-r <U, is algebraic (tensorial) if p+q = r,
and is of total order Lif p+g-1-= r (this is our case: so on R" we may

write B(U,V) = Bl(dU,V) + BZ(U,dV), where Bi are tensorial).

2.9. Theorem: Any natural bilinear concomitant r(APTM) x T(A9TH) - T(Ap+q_lTM)

is a constant multiple of the Schouten-Nijenhuis bracket.

Remark: A look at the proof will show that any natural bilinear concomitant
r(aPTM) x T(A%TM) > T(AP*HTM) is a constant multiple of (U,V) » Ua V. I have not
looked at the concomitants into T(AFTM), if r <p+g-1. But the method applied

here can be used to determine them all.

Proof: Following the method of Kolar [ 4] we have to determine all bilinear
GLz(n,]?) -equivariant mappings APRTx R™ x AYRT o Ap+q-an

counterparts with the role of U and Y exchanged. These mappings then induce

and their
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the jet-expressions of the looked for concomitants between the associated bundles
bf the second order frame bundle of M. FEquivalently we have to find all GL (n,R) -

equivariant linear mappings in the first line of the following diagram:

(1) PR @ R™ g AIR" > pPra-lgn
f T Alt x ALt x Alt T
P q p+g-1
®R'®@R™" ® ® R s ® R'.

Since the vertical mappings in this diagram (where Alt stands for the appropriate
alternator) are all GLz(n,}Z)~equivariant it suffices to determine all GL“(n,R) -
equivariant mappings in the lower line. The action of
GLz(n,R) = GL{n,R) §9L§ym(n,n) on és.Rn is given by the tranformation law
__Q'-l ...Ol.p 8 -..Bp —Otl a)—(@p
(2) U = U g7 e g
dx 1 ax P
and the action on (g Rr" ® RN* | the space of the first order partial derivatives,

is given by the tramformation law

’ ' x P 9%
X UBI"'Bp (az;al 3 8502 B 352p L. BQQl___aziaP 3" )
axMaPl axk axf2 T aPp axP1 " TaxMaBp  azK

The GLZ(n,IQ)—equivariant mappings are in particular GL(n,R)-equivariant,
stemming from the embedding GL{(n,R) < GLZ(n,R) , see (3) with all second
partial derivatives 0. According to the theory of invariant tensors, as explained
in Dieudonné-Carrell, the GL(n,R) -equivariant mappings are given by all
permutations of the indices, all contractions and tensorizing with the identity.
Permutations of indices do not play a role since we take alternator afterwards,
the identity cannot appear since the result is purely contravariant., 5o we may
just contract the derivation entry of U into the vector part of U or into V,

and the same with U and V interchanged. So we have the following 4-parameter
Family, where U = U3, V = vBaB, du = UOL’J. 3, ® @, B(U,V) = BYa

We do not indicate alternation in the upper indices, and we wrlte a, B for any

kind of multivector index, so y = {(a,B) etc.

(@) 87 = a u™ V& b VB L e g™
,m ,m N ,n

But the mapping B is dlSO equivariant with respect to the abelian normal subgroup

{1d} x Léym(n,n)"+ GL (n,R ). The action of an element (Id,S5) = (Id, S )

P n P n N .
on ® R is the identity, on ® R @ R it is given by (using (3)):

-0 tag...0p O] ap...o(p-F cop
(5) U KT U 't u Stie * et u p Sl -

So the expression (4) has to be invariant under the action of {Id} X Liym(n,n)

on the right hard side. This 1s equivalent to the following equation:
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_ Lo om mta .oy mat o B
(6) 0 =a (U Stm + U Stm + ... + U Stﬁ YT o+
ta oo at .o mp
+b (U Stm + ...+ U Stﬁ YV o+
o tB on ntB <82 nBt. B
+c U (Vv Stn + V Stn + ee. + V Stg )

ne tB Bz Bt B
+d U (V Sgp toeer ¥V Stﬁ ).
This can be simplified after taking alternation:

M o=at™st vBopp sy o st WL g g ™ sPL B
mt mn nt mn

Now we can compare coefficients and get the following relations:
a=0, pb+ (1P lqd=0c=0.
So there is only one parameter surviving and we get

BY = c.( g U . V™ (C1)P p ™ P L) =clqu? N T

’ ] m N
c.lu,v].

The comparison of coefficients is valid if these tensors are really independent.

If p+qz dim M some expressions are 0. Since they may be viewed as linear mappings
in S5, they are linearly independent as long as they are nonzero. And if a summand

in (7) becomes 0, the corresponding crne in (4) is zero also. ged.
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