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ABSTRACT. It is shown that the manifold £(X, ¥ ) of all smooth embed-
dings from a manifold X in a manifold ¥ is a smooth principal Diff( X )-
bundle, where Diff( X) is the smooth Lie-group of all diffeomorphisms
of X.

This paper is a sequel to [9] which is again a sequel to [71; in
[7] ic was shown that the space C*( X, Y ) of all smooth mappings X - Y
for arbitrary non-compact smooth finite dimensional manifolds X and Y is
again a smooth manifold in a natural way, using the notion C:: = C: of
Keller [6]. In [9] it was shown that the open subset Diff(X)C C*(X,Y)
of all C®-diffeomorphisms is a smooth Lie group in the same notion of

differentiability C: . In this paper we show that the open subset
ErX,Y)c C™(X,Y)

of all smooth embeddings X » Y is a smooth principal Diff( X )-bundle
with base space U(X,Y)=E(X,Y)/Diff(X), the space of all «subma-
nifolds of Y of type X », which is again a smooth C;o-manifold, We remark
that all proofs of [7, 9] and this paper may easily be adapted to furnish
the results in the notion of differentiability Colg‘ used by Fischer, Gutk-
necht, Yamamuro, Omori and others. We prefer the notion C2 = C% for
esthetical reasons: it is only slightly weaker than the notion CF but much
simpler and it does not need fumbling around with explicit systems of semi-
noms on the model spaces of the manifolds.

The construction of the principal Diff( X )-bundle given here is ad-
apted from Binz and Fischer [1], who proved this result in case that X is

compact. [1] also contains some discussions about applications of the
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result to general relativity in the form of «hyperspace» or «superspace».
We refer the reader to this paper for references and information about this

application,

This paper contains Sections 9 and 10, continuing the counting of
[7] (1-4) and [9] (5-8). References like 6.3 refer to one of these papers

without further notice.

9. LOCAL ADDITIONS ON VECTOR BUNDLES.
9.1. We begin by repeating a definition (6.3 ; 3.3, 3.4):
DEFINITION. A local addition r on a locally compact smooth manifold
M is a mapping r: TM > M with the following properties :

(A1) (r,my): TM > MXM is a diffeomorphism onto an open neigh-
borhood of the diagonal in M XM , where my : TM > M is the projection.

(A2) 7(0,)=m, where 0, ¢ T, M is the zero element.

A local addition has the following ( weaker) property:
For any me M the mapping 7, =r|p p: T, M->M is a diffeomor-
m

phism onto an open neighborhood of m,

Local additions can be constructed by using exponential maps
(which are canonically associated to sprays) and pulling them back over
the whole tangent bundle, using a fibre respecting diffeomorphism of ™
on the appropriate neighborhood of the zero section. The notion of local
addition is more general than that of an exponential map: in general there

is no «local flow property along curvesn».

DEFINITION. Let L C M be a submanifold and let 7 be a local addition
on M. L is said to be additively closed with respect to r if 7| takes
its values in L (and so defines a local addition on L ). Compare with the

notion of a geodesically closed submanifold.

0.2. PROPOSITION. Let p: E~> B be a vector bundle. Then there exists
a local addition r : TE » E with the following properties:

Io B, identified with the zero section in E, is an additively closed

submanifold of E with respectto 7 .
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2 Each vector subspace of each fibre p~1(b), be B, is additively

closed with respect to r.

P ROOF. Let p’: E'> B be another vector bundle such that E@E"’ is tri-
vial (see [4], page 76, or [5], page 100), i.e. E@E' is isomorphic as
a vector bundle over B to B XR" for some n. Let r; be a local addition
on B and let r, be the affine local addition on R" | i.e. To: TR" -R"
is given by:
ro(v,)=x+wv, for v eT R".
Then
r; xrg: TBX TR"=T(BxR") > BXR"

is a local addition on BXR™ satisfying 1 and 2. Now transport 7 ; X7, back
to E@E"' via the isomorphism and restrict it to the subbundle £ of E@E".

This gives the desired local addition. QED

9.3, By a submanifold A of an infinite dimensional C: -manifold B we
mean of course a subset AC B such that for each a¢ A thereisachart
¢d:U-V centered at a (i.e. ¢p(a)=0 in V, where V is the complete
locally convex vector space modelling B near a ) and a topological linear

direct summand W in V with ¢~ I(W)=AnU.

9.4, COROLLARY. Let X, Y be smooth locally compact manifolds and let
L be a submanifold of Y. Then C*(X,L) is a CX-submanifold of
C(X,Y) via ¢%: C*(X,L)~> C*(X,Y), where i:LC_, Y is the
embedding.

PROOF. Let p: W~ L be a tubular neighborhood of L in Y, i.e. W is
an open neighborhood of L in ¥ and p: W~ L is a vector bundle whose
zero section is given by the embedding L C_, W. Let 7 be a local addition

on the vector bundle W satisfying 9.2.1 and 9.2.2. Let
feC¥(X,Y) with f(X)CL.

Choose the canonical chart of C* (X, W) centered at f coming from the

local addition 7 on W (cf. 6.3), i.e.
bp:Up > Df*TW) = Dif*TY)
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is given by

brle)(x)=ri g(x)=(r mp) (g, [)(x)
and

Up=tgeC(X, W) | (g, fUX)C e, ay )(TW), g~ f}.

The inverse (;S}sz[/f is given by (j,f(s) =ro 3.
Now if ge UfﬂC“’(X,L), then

Br(8)(%) =100 8(x) € T )L C Ty W,
since L is an additively closed submanifold of W by 9.2.1, so Qﬁf(g) is
in D(f*TL ). Clearly for each s« Drf*TL) the mapping Ye(s)=r1os
takes its values in L . So ¢;J(£D(f*TL))= UpnC™(X,L).
It remains to show that D(f*TL ) is a topological direct summand in

D([*TW). Since p: W~ L is a vector bundle we have

TWi; =TL@®W, so f*TW = TRl )=fXTL&W)=f*TL®f*W
and consequently D(f*TW) = Def*TL)xD(f*W) is a topological direct
sum,
So we have proved that C*(X,L ) is a C,’ -submanifold of C®(X, W),
which is again an open submanifold of C*(X,Y). QED

10. THE PRINCIPAL BUNDLE OF EMBEDDINGS.

10.1. Let X, ¥ be smooth locally compact manifolds ; neither is assumed
to be compact, but we assume that dimX < dimY . There are two spaces
of smooth embeddings X~ Y : let E(X, Y ) denote the space of all smooth
embeddings, which is an open subset of C™(X,Y) (see [5] page 37);
and let Epmp(X, Y) denote the space of all proper embeddings X » Y. It
is an open subset of E( X, Y ) since the set of proper maps is open (1.9).
The proper embeddings coincide with the closed embeddings, since a pro-
per map is closed if ¥ is locally compact ([3] page 47). The opensubsets
ErX,Y) and E (X,Y) thus inherit C:To-manifold structures from

prop
C¥(X,Y) (cf. 6.3 or 3.3, 3.4, 3.6).

10.2. We consider the following C::-mappings (7.2):
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o Difft X)XE(X, V)~ E(X,¥), p(g.i)=iog;
p: Diff(X)XEme(X, Y)- EPTOP(X, Y).
p stands for the right action of Diff(X) on E(X,Y) and Epmp(X, Y).
Each ge Diff(X) induces a C:-diffeomorphism p(g,.) on E(X,Y) and
E'PrOP(X, Y ) respectively; the inverse is given by p(g'l, . ). The injec-
tivity of the elements of E(X, Y ) implies that the right action p of Diff(X)
on E(X,Y) is free:
iog;=iog, implies g;= g, in Diff( X ).
Thus the mapping p(.,i): Diff(X )~ E(X,Y) gives a bijection of Diff(X)
onto the orbit 1o Diff(X ) of i ; if i is proper, then the whole orbit of i .

is contained in F (X,Y).We will see later on that p(.,1) is even a

prop
C:-diffeomorphism onto the orbit.

10.3. DEFINITION. Let U(X,Y)=E(X,Y)/Diff(X) denote the orbit
space, equipped with the quotient topology; let u: E(X,V)»U(X,Y)

denote the canonical quotient mapping.

U(X,Y) is, heuristically speaking, just the space of all submani-

folds of type X in Y.

10.4. PROPOSITION, Let i ¢ E(X,Y) and write L. =i(X).

Io The orbit io Diff( X) of i is the space Diff(X, L ).

2 The inclusion Diff(X,L)-E(X,Y) is a C:-submani;’old em-
bedding.

30 The mapping p(.,i): Diff(X) » io Diff(X)=Diff(X,L) isa
C7-diffeomorphism.

4 If i is proper, then the orbit of i is closed in Eprap(X7 Y).

50 If X has finitely many connected components, then

Diff( X, L) = Eprgp( X, L)

PROOF. 1 is clear. 2 follows from 9.4 since Diff(X,L ) is open in
C®(X,L) (cf. 5.2 or [5] page38)and C¥(X,L) is a C:To-submanifold
of C=(X,Y).

3 is clear by the Q-Lemma 3.7 or by 7.1.
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4. Let (g, ) be a net in Diff(X) such that io g, =p(g,t) converges
(X,Y). Then

ioga(X)= i(X) =L forall a,

to f, say, in Eprop

and since L is closed (i is closed) in Y, we concludethat f(X)C L.
Now let X]- be one of the connected components of X, so Xj is open and
closed in X, so f(X]-) is open in L (since { is an immersion) andclos-
ed in L. (since f is proper); thus f(X]-) is one of the connected compo-
nents of L . Now let L]- be one of the connected components of L. If a,
is big enough, then io g (X;)= L]- for some component X, of X and
all a>a,.80 [(X,)= L]- and f is surjective, thus fe Diff( X, L ).

5.Let X,,..., X} be the connected components of X, let fe E, (X,L).

As above one sees that f(X,),...,f(X,) are different connected comp-

rop

onents of L ; since L has as many components as X (for i: X»>L isa

diffeomorphism ), the assertion follows. CED

10.5. Fix i¢ E(X,Y) and denote ¢(X) by L. Let p;: W - L be a tu-
bular neighborhood of L in Y.

LEMMA. If je C*(X, W, ) is such that py ojeE(X,Y), then j is an
embedding with inverse

.l .
(ppei)olpply x)):i(X) » X.
Moreover for xe X:

(Toi )T X)® T o y(pr (pr j(x))) = Ty Wy = Tjpe)¥
PROOF. pyoj is injective so j: X~ W; is injective, so j: X > j(X) is
invertible with inverse (p o j)'] o(pg tj(X))‘ This inverse is conti-
nuous, so j is a topological embedding. For x ¢ X we have

(T, e pr T ) (T X) = Tolby o N(T X) =
T il = (Tipypr )Ty )W )s

SO

dim(Toj )T X )2 dimTy ol =dinT, X 2 dim(T _j) T X),

so j is an immersion, thus je E(X, W ). Now the kemel of
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Ty Ty )We > Top i)l
is Tj(x)(pll(pLj(x))), the tangent space to the fibre through j(x)

so the second assertion follows. CED

10.6. DEFINITION, In the setup of 10.5 let us denote
Q; =t jeC®(X,W; )| ppoj=1i and j~il
= (pp ¥ (i)nbjlj-it.
By 10.5 we see that Q; C E( X, W, ). Remember that
u: E(X,Y) > U(X,7Y)
denotes the quotient map.
LEMMA, Jo u'Q_: @, ~U(X,Y) isinjective,
1
20 Q;0V isopenin E(X,Y) if V isopenin Diff(X).
PROOF. 1o Let j, j'¢ Q; and suppose u(j)=u(j'), i.e. j=j'og for
some ge DifffX), then
i=ppoj=ppo(jlog)=icg,
so g =1Idy andj=j".
20 Let us first assume that
VclgeDifft(X)| g~ldy b,
the open subgroup of diffeomorphisms with compact support.
(pp )x:E(X,Wp)> C*(X,L) is continuous, o DifftX)=Diff (X, L)
is open in CT(X,L), p(.,i): Diff(X )~ Diff(X,L ) is homeomorphic
so we have in turn that p(.,i)( V) is open in Diff( X, L )andthat the set
(py )i (p(esi)(V)) is open in E(X, W) and in E(X,Y). Now, we
claim that
(pp )3 ol id(V))nlje E(X,Y)]| j~i}=0Q;0V
which proves the assertion in this special case: If
je(pp )& (p(.,i)(V)) and j-i,
then py ojeioV, sopyoj=iog forsome ge V with g ~Idy . But then

jog"IEE(X,WL) and pLo(jo g'l)'—"-io go g'1=i and]'og'j-i,
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so

jogleQ and j=(jog’)ogeQioV.
Now suppose conversely that je Q;, ge V. Then py oj =i, j=~i, so

pro(jog)=iogep(.,i)(V) and jog=-1,
hence

joge(py R (pl, i)(V)Ibjlj~il.

Now let ¥ be an arbitrary open subset of Diff(X). Decompose V into
the disjoint union of all nonempty intersections of V with the open equi-
valence classes of ~ in Diff(X ), which we call V, . For each g, take
8y € Vg » then Vo gl;l is an open subset of the subgroup ofdiffeomorphisms
with compact support, so ;o (¥, o g(;]) is open in E(X,Y) by the first

part of the proof. But then
Qo V, =p(g,, 0oV, 0g!))

is open too and thus Q; 0o V' =U ;0o V, is open. QED
a

10.7. COROLLARY. With the above notation, u(Q;) is open in the quo=
tient topology in U(X,Y )= E(X,Y)/Diff( X).

PROOF. By Lemma 10,6 (for V = Diff(X)) we see that Q; o Diff(X ),
the full inverse image of u(Q;) under u, is open in E(X, Y).Sou(Q;)
is open in U(X,Y ) in the quotient topology. QED

10.8. Asin10.5lecie E(X,Y), L =i(X) and let p; : W; > L be a tub-
ular neighborhood of L in Y ; furthermore let rp: TWy W; bealocal
addition for the vector bundle WL as constructed in 9.2. Since p WL - L
is a vector bundle, we may decompose it: TW; |, =TL @W, where we
have identified
(W, ),=pi(l) with Ty(p™(1)),

the tangent space to the fibre through I.

For reasons of clarity we will not identify as radically as we have
done above: Let V; > L denote the subbundle of TW; | consisting of
the vertical elements of TWy | , those tangent to the fibres of W . Then

the decomposition mentioned above may be written as Tw;, |, =TL®V, .
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By 9.2 we have the following:
Ll (VL= Ti(py (L)) > (W )y =pP (L)
is a diffeomorphism onto for each le¢ L . So r | v, * Vp - W, is a dif-

feomorphism onto.

10.9. PROPOSITION. In the setting of 10.8, the subset @, of 10.6 is a
C -submanifold of E(X,Y).
PROOF. We will show that (); is a C7-submanifold of the open subset
E(X,W; ) of E(X,Y). Let
iU, » DO*TW, ) =Di*(TW,| )
be the canonical chart coming from the local addition 7; on W, , ie.
Uy=tjeE(X, W )| (j.i)(X)C (TL,nWL)(TWL) and j~i} =
={jeE(X, W, )| j-i}
since 7 is onto W; by construction. So Q,C U, , and Q; carries a glo-
bal chart.
Now j ¢ ; means that j~i and p oj=1i, soj(x)ep;l(i(x)) and
bi(J() = (1 Vil (%)) el VL )i )
since the fibre p}}(i(x)) ts additively closed with respect to rr - By

the same reason we see that for any s ¢ (.D(L-*VL )
s)=yi(s)=rp0s¢0;.

So d)i!Q"’ Q- 9(i*VL) is a bijection, and fD(i*VL) is a topological

12
direct summand in @(i*(TWLIL )), since
ReixrWy L)) =D¢ixTLeV,))=D(i*TL Qi*V; )=

=Di*TL)xDi*v, )

(cf. 9.4). QED

10.10. Now we can show that u: E(X,Y )» U(X, Y ) is a principal Diff(X )

bundle. Let i¢ E(X,Y), denote i=u(i)eU(X,Y), then Q; =u(Q,;)

is an open neighborhood of " in U(X, Y ), which we will show to be tri-

vializing.
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le DEFINITION. Let s;: éi"’ E(X,Y) be given by s; = (u| Qi)-I R
which is well defined, since u| 0; is injective by 10.6.1.

20 The fibres of u: E(X,Y)>U(X,Y) (which are the Diff(X)-or-
bits ) over the points of é,— meet (J; at exactly one point each by construc-

tion; since moreover the action of Diff( X) is free we see that the mapping
PDiggex)x s DIFCX)xQ;» u™(Q;)

is bijective, so there is an inverse

(o] piggex xo,)t = (wir82): w™(Qu) - Diff( X)X ;.
So
wioul(Q,)-Diff(X), 8;:u71(Q;)~ Q;
and 8,(f)opu;(j)=] foreach jeu(Q;), furcherore
S;(j)-i and ppo;(j)=i.
30 We claim that g; is C:-differentiable:
iop;(j) = PL°5i(f)° uilj) = PL°f
( this implies that p; oj is defined too), so
wi(j)=p(ri)Tolpy )i
or
pi=p(ori) o py Jrs wl(Qy) =+ Diff(X).
By 10.4 and the Q-Lemma 3.7, we see that p; is C;-differentiable.
40 We claim that §; is C:-differentiable too :
8,(i)oui(i)=ir so 8;(i)=joui(i)?!
or
5i=P° (InvOp.i,ld); u.l(éi) i Qi-
By 10.2 and 8.1 we see that §; is C:-differentiable.
50 So p: Diff(X)xQ, »ul(Q;) is a CJ-diffeomorphism. This will

6° We claim that s;: Q; » ¢, (from 1) is continuous (so éi is homeo-
morphic to ¢J;): For y¢ @i we have { Si(y)f = Bi(u'l(gf)) by construc-
tion. Let V be open in (;, then B;I(V) is open in u'l(Qi) by 4, u'I(Qi)
is itself open in E(X,Y), so

provide the trivializing map.
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wlesilov))=wliu(v))=6;1(v)
is open in E(X, Y ). This implies that sZI(V) is open in U(X,Y) in
the quotient topology.
10.11. We have proved the following theorem :

THEOREM. u: E(X,Y)-U(X,Y) is a topological principal Diff( X
bundle, trivial over the open neighborhood Q; of i in U(X,Y) for each
ie E( X,Y), atrivializing map being given by:

DifftX)x Q;» wl(Q), (g,y) b s;(y)og.
10.12. THEOREM. U (X, Y) is a C7-manifold.

PROOF. For each i ¢ E(X,Y) the open neighborhood éi is homeomor-
phic to the submanifold ¢; of E (X, Y) (cf. 10.10.6 and 10.9) so we only

have to check that these «fit together nicely». In other words, we use the
mappings :

(bs1g) 0 s Qs+ Di*Vy)
as charts. We have to check whether the chart-change is C -differentiable.
Let i, ke E(X,Y) be such that @;nQ,  #@ in U(X,Y). Let us first
assume that { and %k lie on the same Diff( X )-orbit, then there is some

ge Diff(X) with i =ko g. Then wehave L =i(X)=k(X)and
Qi=ljeE(X, W) prej=i, j-i}
={jeE(X,W, )|pyoj=kog, j-kog}
={jogl|ljeE(X,W, ), ppoj=k, j-k}
=Qog=p(g,- Q).
So Q; and Q, are translates of each other, Q; = 0, and
((p; Qk)o sp)o ((¢’iIQi)°si)-I =(¢,k|0k)osko s;lo(¢i|oi)-1
=(d)klok)o(p(g,.)'1| 0,)° (810"
=(ilg,)o(plg7su)lg Vo (8,197,
which is a C; -diffeomorphism by 10.2 and 10.9.
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So let us now suppose that i, ke E(X,Y) with @iﬂ@k # @, but that i
and % do not lie on the same orbit. Let L =ifX), K =k(X). Then

sk (0004 ) = sy Q) (Q;) = 0w (Q;).
For je Q; wehave pgoj =k and j-k, so
j=rgot =y, (t) for some te D(k*Vy ).
If moreover je u”!((),), then
J=0,(j)ow(j) for 5 (j)eQ; and g (j)e Diff(X).
Soif teldylg )os, (0,10, )C D(k*Vy J, then
(gidg) oo lo Vos ()= ailg ) os o5t olsylo ! (1)
=(gilg ) o souli) =19 s(7))
:(¢i|0i)(5i(j))=(¢i |Qi)05io(¢>k[()k)-1 (t),

where we have used again the argument of 10.10.6. This last mapping is

C:To-differentiable in ¢t by 10.10.4and 10.9. QED
10.13. PROPOSITION. u: E(X,Y)~» U(AX,Y) is a submersion, i.e., for
each i¢ E(X,Y), the mapping
Tou: T,E(X,Y)=D(i*TY) > TUX,Y)=D(i*V,)
is surjective, a topological quotient map, and the kernel
ker T,u = T;(ioDiff(X))=9(i*TL)
is a linear and topological direct summand.

PROOF. That the kernel of T;u is splitting has been proved in 10.9; that

T;u is a quotient map follows directly from the construction of the charts

for U7 X,Y). QED

10.14. THEOREM. u: E(X,Y )-U(X,Y) is e C:—differentiable principal
Diff( X }bundle, trivial over the open neighborhoods @i of £ in UrX,Y)
for each t e E(X,Y ), atrivializing map being given by:

Diff(X)xQ, > w(Q,), (g, y) b s;(¥)og.

PROOF. s;: Q;» Q; is a C -diffeomorphism by the construction of the
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charts for U(X, Y ). QED

10.15. Let Upmp(X, Y) denote the space of all proper orbits, i.e. (cf.
(X,Y)=u(E (X,Y)).

10.1, 10.2, 10.4) U orop
(X,Y) is a smooth principal

prop
COROLLARY. u:E, (X,Y)> Uy,
Diff( X }bundle. Eprop

(X,Y)ZE(X,Y)[U (X,Y ) the restriction of
prop 7’
the bundle E(X,Y )~ U(X,Y) to the open subset Uprop(X’ Y) ofE('X,Y).
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