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Abstract. We study completeness properties of reparametrization in-
variant Sobolev metrics of order 𝑛 ≥ 2 on the space of manifold valued
open and closed immersed curves. In particular, for several important
cases of metrics, we show that Sobolev immersions are metrically and
geodesically complete (thus the geodesic equation is globally well-posed).
These results were previously known only for closed curves with values
in Euclidean space. For the class of constant coefficient Sobolev met-
rics on open curves, we show that they are metrically incomplete, and
that this incompleteness only arises from curves that vanish completely
(unlike ”local” failures that occur in lower order metrics).
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1. Introduction and main results

1.1. Background. In recent years Riemannian geometry on the space of
curves has been an area of active research. The motivation for these in-
vestigations can be found in the area of shape analysis, where the space of
geometric curves plays an important role: closed planar curves are used to
encode the outlines (shapes) of planar objects, and elastic (reparametriza-
tion invariant) Riemannian metrics have been successfully used to compare
these objects in a variety of different applications [32, 33, 38, 39]. More
recently, curves with values in a manifold have emerged as a topic of in-
terest in shape analysis as well. Examples include the study of trajectories
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on the earth [34, 35], of computer animations [18], or of brain connectivity
data [19]. Here the brain connectivity of a patient over time is represented
as a path in the space of positive, symmetric matrices. Motivated by these
applications several of the numerical algorithms, as originally developed for
planar curves, have been generalized to this more complicated situation.

In this article we are interested in the mathematical properties of these
Riemannian metrics and in particular in questions related to completeness
of the corresponding geodesic equations. These investigations build up on
classical questions related to diffeomorphism groups, as reparametrization
invariant metrics on spaces of immersions can be viewed as generalizations
of right-invariant metrics on diffeomorphism groups. These have been in the
focus of intense research due to their relations to many prominent PDEs via
Arnold’s approach to hydrodynamics [1, 2, 36]. Local well-posedness in this
setup was established for a wide variety of invariant metrics, typically using
an Ebin-Marsden type analysis [20, 29, 23, 28, 7]. The focus of this article
is geodesic and metric completeness, which is well understood for strong
enough metrics in the case of diffeomorphism groups [39, 30, 29, 16, 5], but is
mostly open for spaces of immersions. For closed, regular curves with values
in Euclidean space, a series of completeness results both on the space of
parametrized and unparametrized curves has been obtained, beginning with
Bruveris, Michor and Mumford [14], see also [12, 15, 8]. The goal of this
article is to generalize these results to the case of open and closed, regular
curves with values in a Riemannian manifold. While the manifold structure
of the target space is of little relevance for the local results mentioned before,
it significantely complicates the analysis for the global results studied in
the present article. We will comment on the differences to the Euclidean
situation in Section 1.4 below; first we describe the main contributions of
the present article.

1.2. Main Result. To formulate our main result we first introduce the
manifold of regular curves and the class of Riemannian metrics, that we
will consider in this article. For 𝑛 ≥ 2, we consider the space of Sobolev
immersions from a one-dimensional parameter space 𝐷 with values in a
complete Riemannian manifold with bounded geometry (𝒩 , 𝑔):

(1.1) ℐ𝑛(𝐷,𝒩 ) =
{︀
𝑐 ∈ 𝐻𝑛(𝐷,𝒩 ) : 𝑐′(𝜃) ̸= 0, ∀𝜃 ∈ 𝐷

}︀
.

Here 𝐷 = [0, 2𝜋] for open curves and 𝐷 = 𝑆1 for closed curves. The Sobolev
space𝐻𝑛(𝐷,𝒩 ) is defined in more detail in Section 2; note that𝐻𝑛(𝐷,𝒩 ) ⊂
𝐶1(𝐷,𝒩 ), hence the condition 𝑐′(𝜃) ̸= 0 is well defined. On this space we
can consider reparametrization invariant (elastic) Sobolev metrics of order
𝑛. The class we focus on in this paper is given by

𝐺𝑐(ℎ, 𝑘) =

𝑛∑︁
𝑖=0

𝑎𝑖(ℓ𝑐)

∫︁
𝐷
𝑔(∇𝑖

𝜕𝑠ℎ,∇
𝑖
𝜕𝑠𝑘) d𝑠,(1.2)

where 𝑎𝑖 ∈ 𝐶∞((0,∞), [0,∞)), ∇ is the covariant derivative in 𝒩 , 𝑠 = |𝑐′|
is the norm of 𝑐′ with respect to the Riemannian metric 𝑔. Furthermore,
d𝑠 = |𝑐′| d𝜃 is the arc length one form, 𝜕𝑠 = 1

|𝑐′|𝜕𝜃 is the arc length vector

field along the curve, and ℓ𝑐 =
∫︀
𝐷 d𝑠 is the length of the curve. The two

most important sub-families of these type are
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(1) the constant coefficient Sobolev metrics, where 𝑎𝑖(ℓ𝑐) = 𝐶𝑖 ≥ 0 are
constants and do not depend on the length ℓ𝑐;

(2) the family of scale invariant Sobolev metrics where 𝑎𝑖(ℓ𝑐) = 𝐶𝑖ℓ
2𝑛−3
𝑐

with 𝐶𝑖 ≥ 0 being again constants. In this case, when the target
manifold 𝒩 is the Euclidean space, composition with rescaling 𝑥 ↦→
𝛼𝑥 of the target manifold is an isometry of (𝐼𝑛(𝐷,𝒩 ), 𝐺), for each
𝛼 > 0.

In both cases we assume that 𝐶0 and 𝐶𝑛 are strictly positive, to avoid degen-
eracy. The main focus of the present article lies on completeness properties
of these Riemannian metrics. In a slightly simplified version our main results
can be summarized as follows:

Theorem (Main Theorem). Let 𝐷 = [0, 2𝜋] or 𝐷 = 𝑆1, and let 𝐺 be
the scale invariant Sobolev metric (1.2) of order 𝑛 ≥ 2. The following
completeness properties hold:

(1) (ℐ𝑛(𝐷,𝒩 ),dist𝐺) is a complete metric space.
(2) (ℐ𝑛(𝐷,𝒩 ), 𝐺) is geodesically complete
(3) Any two immersions in the same connected component of (ℐ𝑛(𝐷,𝒩 ), 𝐺)

can be joined by a minimizing geodesic.

For 𝐷 = 𝑆1 the results continue to hold for the family of constant coefficient
Sobolev metrics.

Previously this result was only known for closed curves in Euclidean space
(see [12] for constant coefficients and [16] for a wider class that includes
scale invariant ones), and thus the results of the present article generalize
these previous works in two important directions (open curves and curves
with values in a manifold). In fact, we will prove these statements for a
wider class of metrics, see Theorems 5.1–5.3. Note that in this infinite
dimensional situation the theorem of Hopf-Rinow is not valid [3] and thus
item (3) does not follow directly from the metric completeness, but has to
be proven separately.

1.3. Further contributions of the article. In the following we describe
several further key contributions of the current article:

∙ Completeness in the smooth setting: In the main theorem
above, we have formulated the results only in the Sobolev cate-
gory. Using an Ebin-Marsden type no-loss-no-gain result [20], we
show that geodesic completeness (i.e., global existence of geodesics)
extends to the space of smooth, closed curves (Corollary 5.13). For
open curves, we only obtain regularity in the interior of the curve,
as explained in Section 5.6.

∙ Metric incompleteness of constant coefficient metrics on
open curves: In [4] it was observed that the space of open curves,
with respect to constant coefficient Sobolev metrics, is metrically in-
complete; indeed, in the same paper the authors constructed a path
of immersed curves, whose lengths tend to zero after finite time. In
Section 6 we elaborate on this example, and show that vanishing of
the entire curve is the only way a path (or a sequence) of immersed
curves can leave the space of immersions ℐ𝑛([0, 2𝜋],𝒩 ) in finite time
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(Theorem 6.3). That is, a path cannot leave the space by some ”lo-
cal” failure, say, by losing the immersion property at a point (such
a failure of completeness can occur in lower-order metrics, e.g., in
shockwaves in the inviscid Burgers equation). We give some evi-
dence that the completion of the space of open curves in this case
is a one-point completion, where the additional point represents all
the Cauchy sequences converging to vanishing length curves.

∙ Existence of minimizing geodesics for constant coefficient
metrics on open curves: We show that if the distance between
two open curves is lower than some explicit threshold depending
only on their lengths, then they can be connected by a minimiz-
ing geodesic (Theorem 6.7). We note, however, that this threshold
is not necessarily sharp; in fact, in view of the rather rigid way in
which curves can leave the space, we cannot rule out that a mini-
mizing geodesic exists between any two immersions. We also do not
know whether geodesics (unlike general paths of finite length) may
cease to exist after finite time, that is, we do not know if the space
is geodesically incomplete (only that it is metrically incomplete).
These questions will be considered in future works.

∙ Local well-posedness: Our completeness results are only valid for
metrics of order 𝑛 ≥ 2, and it can be shown that metrics of lower
order can never have these properties. Nevertheless, using an Ebin-
Marsden type approach, we show local well-posedness for all smooth
metrics of the type (1.2) of order 𝑛 ≥ 1, see Theorem 3.8. This
result was previously known for closed curves and the case of open
curves requires some additional considerations for dealing with the
boundary terms that appear in the geodesic equation.

∙ Completeness of the intrinsic metric on 𝐻𝑛(𝐷,𝒩 ): It is well
known that 𝐻𝑛(𝐷,𝒩 ), for 𝑛 > dim𝐷/2, is a Hilbert manifold, and
that its topology coincides with the one induced via the inclusion
𝐻𝑛(𝐷,𝒩 ) ⊂ 𝐻𝑛(𝐷,R𝑚) that is defined by a closed isometric em-
bedding 𝜄 : 𝒩 → R𝑚. This inclusion also induces a complete metric
space structure on 𝐻𝑛(𝐷,𝒩 ). As part of the proof of the main
theorem, we show the natural Riemannian metric on 𝐻𝑛(𝐷,𝒩 ),

(1.3) ℋ𝑐(ℎ, 𝑘) :=

∫︁
𝐷
𝑔𝑐(ℎ, 𝑘) + 𝑔𝑐(∇𝑛

𝜕𝜃
ℎ,∇𝑛

𝜕𝜃
𝑘) d𝜃,

is also metrically complete (Proposition 2.2), thus defining a com-
plete metric space structure that is intrinsic (independent of an iso-
metric embedding). We study these different definitions and equiv-
alence of 𝐻𝑛(𝐷,𝒩 ), in Section 2.

1.4. Main ideas in the proof and structure of the article. The tech-
niques used in the proof of our main theorem, Theorems 5.1–5.3, expand
upon the ones used to study completeness of Euclidean curves [12]. The
main difficulties arise from taking into account the more complicated struc-
ture of the space ℐ𝑛(𝐷,𝒩 ) and the effects of the curvature of 𝒩 on various
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estimates (in particular, on the behavior of some Sobolev interpolation in-
equalities). To give the reader a first glimpse, we will outline the strategy
and main steps below
Local well-posedness. As a basis to the rest of the analysis, we first study
the metric 𝐺 (as in (1.2)) in Section 3, and prove that it is a smooth,
strong metric on ℐ𝑛(𝐷,𝒩 ).1 In this section we also give some details on the
associated geodesic equation and formulate the local well-posedness result
(as this theorem is not the focus of the present article, we postpone its proof
to the appendix A.2).
Metric and geodesic completeness. The space of Sobolev immersions
ℐ𝑛(𝐷,𝒩 ) is an open subset of 𝐻𝑛(𝐷,𝒩 ), which is metrically complete with
respect to the metric ℋ, defined in (1.3); this is established in Section 2.
Note that for 𝒩 = R𝑑 this is trivial, as 𝐻𝑛(𝐷,𝒩 ) is a Hilbert space in this
case.

Since (𝐻𝑛(𝐷,𝒩 ), distℋ) is a complete metric space, showing metric com-
pleteness of (ℐ𝑛(𝐷,𝒩 ), dist𝐺) can be reduced to showing that 𝐺 and ℋ are
equivalent metrics, uniformly on every dist𝐺-ball in ℐ𝑛(𝐷,𝒩 ), and that the
speed |𝑐′| of an immersion 𝑐 ∈ ℐ𝑛(𝐷,𝒩 ) is bounded away from zero on every
dist𝐺-ball. This reduction is done in detail in Section 5.1.

In order to obtain the uniform equivalence of 𝐺 andℋ on metric balls, one
needs to obtain bounds on the length ℓ𝑐 of the curve, and on certain norms
of the velocity 𝑐′, uniformly for all immersions 𝑐 in a metric ball. This is
done in Section 5.2, and the proof of metric completeness is then concluded
in Sections 5.3–5.4. As metric completeness implies geodesic completeness of
strong Riemannian metrics also in infinite dimensions, see [24, VIII, Propo-
sition 6.5], this also concludes the proof of geodesic completeness.

The main technical tool for establishing the bounds on ℓ𝑐 and 𝑐′ are
Sobolev interpolation inequalities on the tangent space 𝑇𝑐ℐ𝑛(𝐷,𝒩 ), with
explicit dependence of the inequalities constants on the length of the base
curve 𝑐. In the case of closed curves, there is non-trivial holonomy along the
curves, hence we need to control the holonomy along a curve in terms of its
length, and apply these estimates to the interpolation inequalities (this is
one of the main technical differences from the Euclidean case). These are
done in Section 4, though some of the geometric estimates are postponed to
Appendix B.
Existence of minimal geodesics. To prove existence of minimal geodesics
between two immersions 𝑐0 and 𝑐1, we consider the energy of paths 𝑐𝑡 :
[0, 1] → ℐ𝑛(𝐷,𝒩 ) between 𝑐0 and 𝑐1 (defined by the metric 𝐺), and use
the direct methods of the calculus of variations to prove that a minimizing
sequence of paths converges, in an appropriate sense, to an energy minimizer
(which is, by definition, a geodesic). This is done in Section 5.5. Since
this approach relies heavily on weak convergence of paths, and the weak
topology is not readily available on the Hilbert manifold ℐ𝑛(𝐷,𝒩 ), we first

1A Riemannian metric 𝐺 on a manifold ℳ is a section of non-degenerate bilinear forms
on the tangent bundle. A strong Riemmanian metric also satisfies that for each 𝑥 ∈ ℳ,
the topology induced by 𝐺𝑥 on 𝑇𝑥ℳ coincides with the original topology (induced by the
manifold structure) on 𝑇𝑥ℳ. If dimℳ < ∞, every metric is a strong one, but in infinite
dimensions this is not the case.
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embed it into the Hilbert space 𝐻𝑛(𝐷,R𝑚) via a closed isometric embedding
𝜄 : 𝒩 → R𝑚. The analysis then combines the same type of bounds that are
used to prove metric completeness, with bounds that relate the metric on
𝐻𝑛(𝐷,R𝑚) to the metric 𝐺 on ℐ𝑛(𝐷,𝒩 ) (similar bounds are also used in
proving the completeness of 𝐻𝑛(𝐷,𝒩 ) with respect to the distℋ metric in
Section 2).

Acknowledgements. We would like to thank to Martins Bruveris, FX
Vialard and Amitai Yuval for various discussions during the work on this
paper.

2. Spaces of manifold valued functions and immersions

Let (𝒩 , 𝑔) be a (possibly non-compact) complete Riemannian manifold
with bounded geometry, where the induced norm of the Riemannian metric
will be denoted by | · | =

√︀
𝑔(·, ·). We will denote its covariant derivative by

∇, or, where ambiguity might arise, by ∇𝒩 . With a slight abuse of notation,
we will also use it as the covariant derivative on pullbacks of 𝑇𝒩 .

We consider the space of (closed or open) regular curves with values in
𝒩 , which we denote by

(2.1) Imm(𝐷,𝒩 ) =
{︀
𝑐 ∈ 𝐶∞(𝐷,𝒩 ) : 𝑐′(𝜃) ̸= 0, ∀𝜃 ∈ 𝐷

}︀
.

Here 𝐷 = 𝑆1 for closed curves and 𝐷 = [0, 2𝜋] for open curves. This space
is an infinite dimensional manifold, whose tangent space at a curve 𝑐 is the
space of vector fields along 𝑐:

(2.2) 𝑇𝑐 Imm(𝐷,𝒩 ) = {ℎ ∈ 𝐶∞(𝐷,𝑇𝒩 ) : 𝜋(ℎ) = 𝑐} ,

where 𝜋 denotes the foot point projection from 𝑇𝒩 to 𝒩 .
To obtain the desired completeness and well-posedness results we need

to consider a larger space metric of Sobolev immersions ℐ𝑛(𝐷,𝒩 ) ⊃
Imm(𝐷,𝒩 ), for 𝑛 ≥ 2, which we define below.

Definition 2.1. Let𝒩 be a Riemannian manifold as above, and fix a proper,
smooth, isometric embedding 𝜄 : 𝒩 → R𝑚, for large enough 𝑚 ∈ N. For
𝑛 ≥ 2, we define the Sobolev space 𝐻𝑛(𝐷,𝒩 ) and the space of Sobolev
immersions ℐ𝑛(𝐷,𝒩 ) as follows:

(1) 𝐻𝑛(𝐷,𝒩 ) consists of all maps 𝑐 : 𝐷 → 𝒩 such that 𝜄∘𝑐 ∈ 𝐻𝑛(𝐷;R𝑚).
(2) ℐ𝑛(𝐷,𝒩 ) consists of all 𝑐 ∈ 𝐻𝑛(𝐷,𝒩 ) such that 𝑐′(𝜃) ̸= 0, ∀𝜃 ∈ 𝐷.

With this (extrinsic) definition of 𝐻𝑛(𝐷,𝒩 ), it inherits the metric struc-
ture of 𝐻𝑛(𝐷;R𝑚), which we denote by distext; since convergence in the
space 𝐻𝑛(𝐷;R𝑚) implies uniform convergence, we have that 𝐻𝑛(𝐷,𝒩 ) is a
closed subset of 𝐻𝑛(𝐷;R𝑚), hence a complete metric space with respect to
distext. We are interested in characterizing 𝐻𝑛(𝐷,𝒩 ) as an infinite dimen-
sional Riemannian manifold. The main goal of this section is to prove the
following:

Proposition 2.2. The space 𝐻𝑛(𝐷,𝒩 ), 2 ≤ 𝑛 ∈ N is a Hilbert manifold
whose tangent space at 𝑐 is 𝐻𝑛(𝐷; 𝑐*𝑇𝒩 ). Moreover, it is a complete met-
ric space with respect to the distance function distℋ induced by the smooth
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Riemannian metric (1.3):

ℋ𝑐(ℎ, 𝑘) :=

∫︁
𝐷
𝑔𝑐(ℎ, 𝑘) + 𝑔𝑐(∇𝑛

𝜕𝜃
ℎ,∇𝑛

𝜕𝜃
𝑘) d𝜃.

Finally, the space of Sobolev immersions ℐ𝑛(𝐷,𝒩 ) is an open subset of
𝐻𝑛(𝐷,𝒩 ) and in particular is a Hilbert manifold with the same tangent
space.

Henceforth, we will always associate 𝐻𝑛(𝐷,𝒩 ) with the metric distℋ

(rather than distext). Note that, in general, distℋ and distext need not to be
equivalent metrics. Note also that for ℎ ∈ 𝑇𝑐ℐ𝑛(𝐷,𝒩 ) there are two natural
𝐿2 metrics: in one we integrate with respect to d𝜃, and in the other with
respect to arc length d𝑠 = |𝑐′|d𝜃; we denote the first one by 𝐿2( d𝜃) and the
second by 𝐿2( d𝑠).

Proposition 2.2 holds for much more general manifold domain 𝐷: namely,
the Hilbert manifold structure exists whenever 2𝑛 > dim𝐷, and the open-
ness of ℐ𝑛(𝐷,𝒩 ) in 𝐻𝑛(𝐷,𝒩 ) holds whenever 2(𝑛 − 1) > dim𝐷. These
are known results and we describe their proofs below for completeness. To
the best of our knowledge, the completeness of (𝐻𝑛(𝐷,𝒩 ), distℋ) has not
been considered before; we expect it to hold, again, whenever 2𝑛 > dim𝐷,
virtually with the same proof as the one below (using Hölder inequalities
instead of uniform bounds).

We start by proving a technical lemma that shows the local equivalence
of the ℋ𝑐 norm and the restriction of the standard 𝐻𝑛(𝐷;R𝑚) norm. This
lemma will be used both in the proof of Proposition 2.2, and also later,
when we prove existence of minimizing geodesics between immersions in
Section 5.5.

Lemma 2.3. Let 𝜄 : 𝒩 → R𝑚 be an isometric embedding, and let 𝑛 ≥ 2.
Let 𝐾 ⊂ 𝒩 be a compact set, and let 𝑐 ∈ 𝐻𝑛(𝐷,𝒩 ) be a curve whose image
lies in 𝐾. Let 𝐶 > 0 be such that

‖∇𝑘
𝜕𝜃
𝑐′‖𝐿2( d𝜃) < 𝐶, 𝑘 = 0, . . . , 𝑛− 1.

For ℎ ∈ 𝐻𝑛(𝐷; 𝑐*𝑇𝒩 ), denote by 𝜄*ℎ ∈ 𝐻𝑛(𝐷;R𝑚) the image of ℎ under
the embedding. The extrinsic norm of ℎ is then defined by

‖ℎ‖2𝐻𝑛(𝜄) := ‖𝜄*ℎ‖2𝐻𝑛(𝐷;R𝑚) =

∫︁ 2𝜋

0
|𝜄*ℎ|2 + |𝜕𝑛

𝜃 𝜄*ℎ|2 d𝜃,

where | · | is the norm in R𝑚, and 𝜕𝜃 = ∇R𝑁

𝑐′ is the standard derivative on
R𝑚. Then, there exists a constant 𝛽 > 0, depending only on 𝜄, 𝐾 and 𝐶
such that for every ℎ ∈ 𝐻𝑛(𝐷; 𝑐*𝑇𝒩 ),

𝛽−1‖ℎ‖𝐻𝑛(𝜄) ≤ ‖ℎ‖ℋ𝑐 ≤ 𝛽‖ℎ‖𝐻𝑛(𝜄).

Throughout the proof we will use standard Sobolev embedding results
of the space 𝐻𝑛−1(𝐷, 𝑐*𝑇𝒩 ); these estimates can be found in any stan-
dard book on Sobolev spaces, e.g., [25], and the adaptation from real-valued
functions to vector-bundle-valued functions is straightforward using parallel
transport along the curve to a single tangent space. For completion, the
estimates and their reduction to the real-valued case appear in Lemma 4.1
below.
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Proof. First, note that 𝑐′ ∈ 𝐻𝑛−1(𝐷, 𝑐*𝑇𝒩 ), so the fact that there exists
a bound on the 𝐿2 norms of ∇𝑘

𝜕𝜃
𝑐′ for 𝑘 = 0, . . . , 𝑛 − 1 is not an addi-

tional assumption. Also, by standard Sobolev estimates, 𝐻𝑘−1(𝐷, 𝑐*𝑇𝒩 )
continuously embeds into 𝐶𝑘−2(𝐷, 𝑐*𝑇𝒩 ), that is

‖ · ‖𝐶𝑘−2(𝐷,𝑐*𝑇𝒩 ) ≤ 𝐶𝑘,𝑛,dim𝒩 ‖ · ‖𝐻𝑘−1(𝐷,𝑐*𝑇𝒩 ),

where the constant 𝐶𝑘,𝑛,dim𝒩 depends only on 𝑘, 𝑛 and the dimension of 𝒩 .

Therefore, we have that our bounds on ‖∇𝑘
𝜕𝜃
𝑐′‖𝐿2( d𝜃) imply that

‖∇𝑘
𝜕𝜃
𝑐′‖∞ < 𝐶, 𝑘 = 0, . . . , 𝑛− 2,

by possibly enlarging the constant 𝐶.
Next, note that ‖ℎ‖𝐿2(𝜄) = ‖ℎ‖𝐿2( d𝜃), since 𝜄 is an isometric embedding

|𝜄*ℎ| = |ℎ| pointwise for every 𝜃 (here, the R𝑚-norm appears on the left-hand
side, the 𝑇𝒩 -norm on the right-hand side).

Denote by II the second fundamental form of 𝒩 in R𝑚, that is, for 𝑣, 𝑤 ∈
𝑇𝑥𝒩 , we have

II(𝑣, 𝑤) = ∇R𝑚

𝑣 𝑤 −∇𝒩
𝑣 𝑤.

In a coordinate patch on a tubular neighborhood of 𝒩 , with coordinates
(𝑥𝑖)

𝑚
𝑖=1 such (𝑥𝑎)

𝑑
𝑎=1, where 𝑑 = dim𝒩 are coordinate on 𝒩 and 𝜕𝑥𝛼 ⊥ 𝜕𝑥𝑎

for 𝑎 = 1, . . . , 𝑑, 𝛼 = 𝑑+ 1, . . . ,𝑚, we have

II(𝑣, 𝑤) = Γ𝛼
𝑎𝑏(𝑥)𝑣

𝑎𝑤𝑏𝜕𝛼,

where Γ𝑘
𝑖𝑗 are the Christoffel symbols of ∇R𝑚

in these coordinates. Since

∇𝒩
𝑣 𝑤 ⊥ II(𝑣, 𝑤), we have

|𝜕𝜃𝜄*ℎ|2 = |∇𝒩
𝜕𝜃
ℎ|2 + |II(𝑐′, ℎ)|2 ≤ |∇𝒩

𝜕𝜃
ℎ|2 + 𝐶2|II|2|ℎ|2

≤ |∇𝒩
𝜕𝜃
ℎ|2 + 𝐶 ′|ℎ|2,

(2.3)

where 𝐶 ′ = 𝐶2 sup𝑥∈𝐾 |II|2. Integrating, we obtain

‖∇𝒩
𝜕𝜃
ℎ‖2𝐿2( d𝜃) ≤ ‖𝜕𝜃𝜄*ℎ‖2𝐿2( d𝜃) ≤ ‖∇𝒩

𝜕𝜃
ℎ‖2𝐿2( d𝜃) + 𝐶 ′‖ℎ‖2𝐿2( d𝜃) ≲ ‖ℎ‖2𝐻1( d𝜃).

Here and in the following we use the notation ≲ to indicate that there exists
a constant, which does not depend on ℎ, such that the inequality holds. For
the second order terms we calculate

𝜕2
𝜃 𝜄*ℎ = 𝜕𝜃∇𝒩

𝜕𝜃
ℎ+ 𝜕𝜃(II(𝑐

′, ℎ)) = (∇𝒩
𝜕𝜃
)2ℎ+ II(𝑐′,∇𝒩

𝜕𝜃
ℎ) + 𝜕𝜃(II(𝑐

′, ℎ)),

(2.4)

Since II and its derivatives are bounded on the compact set 𝐾, we have

|𝜕2
𝜃 𝜄*ℎ| ≲ |(∇𝒩

𝜕𝜃
)2ℎ|+ |𝑐′||∇𝒩

𝜕𝜃
ℎ|+ |𝑐′||ℎ|+ |𝜕𝜃𝑐′||ℎ|+ |𝑐′||𝜕𝜃ℎ|

≲ |(∇𝒩
𝜕𝜃
)2ℎ|+ |𝑐′||∇𝒩

𝜕𝜃
ℎ|+ |𝑐′|(1 + |𝑐′|)|ℎ|+ |∇𝒩

𝜕𝜃
𝑐′||ℎ|.

where we used (2.3) when changing 𝜕𝜃 to∇𝒩
𝜕𝜃

(applied to 𝑐′ and ℎ). Since 𝑛 ≥
2, we use again the Sobolev embedding𝐻𝑛−1(𝐷, 𝑐*𝑇𝒩 ) ⊂ 𝐶𝑛−2(𝐷, 𝑐*𝑇𝒩 ) ⊂
𝐶0(𝐷, 𝑐*𝑇𝒩 ) to obtain that |𝑐′| < 𝐶 and ‖ℎ‖𝐿∞ ≤ 𝐶2‖ℎ‖ℋ𝑐 for some 𝐶2 > 0
depending only on the dimension. We therefore have

|𝜕2
𝜃 𝜄*ℎ| ≲ |(∇𝒩

𝜕𝜃
)2ℎ|+ |∇𝒩

𝜕𝜃
ℎ|+ |ℎ|+ ‖ℎ‖ℋ𝑐 |∇𝒩

𝜕𝜃
𝑐′|.

Squaring and integrating, and using that ‖∇𝒩
𝜕𝜃
𝑐′‖𝐿2 < 𝐶, we obtain that,

‖𝜕2
𝜃 𝜄*ℎ‖𝐿2 ≲ ‖(∇𝒩

𝜕𝜃
)2ℎ‖𝐿2 + ‖∇𝒩

𝜕𝜃
ℎ‖𝐿2 + ‖ℎ‖𝐿2 + ‖ℎ‖ℋ𝑐 ≲ ‖ℎ‖ℋ𝑐 ,
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and therefore

‖ℎ‖𝐻2(𝜄) ≲ ‖ℎ‖ℋ𝑐 .

The converse inequality follows in a similar manner, by using (2.4), to bound
|(∇𝒩

𝜕𝜃
)2ℎ| with |𝜕2

𝜃 𝜄*ℎ| and lower order terms.
For 𝑛 > 2 the proof proceeds inductively in the same way — writing

𝜕𝑛
𝜃 𝜄*ℎ in terms of (∇𝒩

𝜕𝜃
)𝑛ℎ and lower order terms that involve the second

fundamental form and its derivatives (as in (2.4)), and bounding the lower
order terms in a similar manner. □

Proof of Proposition 2.2. Part I: Smooth structure and topology An
alternative characterization of 𝐻𝑛(𝐷,𝒩 ) is

𝐻𝑛(𝐷,𝒩 ) =
{︁
𝑐 ∈ 𝐶(𝐷,𝒩 ) : 𝑐 = exp𝑠(𝑉 )

for some 𝑠 ∈ 𝐶∞(𝐷,𝒩 ), 𝑉 ∈ 𝐻𝑛(𝐷; 𝑠*𝑇𝒩 )
}︁
,

where exp is the exponential map with respect to the Riemannian metric 𝑔
on 𝒩 (see, e.g., [37, Lemma B.5]). This characterization induces a smooth
structure on 𝐻𝑛(𝐷,𝒩 ), where the charts, modeled on 𝐻𝑛(𝐷; 𝑠*𝑇𝒩 ), are
given by exp𝑠 for 𝑠 ∈ 𝐶∞(𝐷,𝒩 ). The tangent space at 𝑐 is 𝐻𝑛(𝐷; 𝑐*𝑇𝒩 ).
See [27, 5.3–5.8] for details. This smooth structure is described in detail in
[22, Section 3] (it is denoted there by 𝒜𝑠

𝑔). In [22, Proposition 3.7] it is shown
that this smooth structure coincides with the one induced by considering
local charts on 𝐷 and 𝒩 (which provides yet another characterization to
𝐻𝑛(𝐷,𝒩 )).

Next, note that the topology induced by this smooth structure is equiva-
lent to the topology induced on 𝐻𝑛(𝐷,𝒩 ) by distext [37, Lemma B.7]. The
inner product ℋ𝑐 describes the Hilbert space topology on the tangent space
𝑇𝑐𝐻

𝑛(𝐷,𝒩 ) = 𝐻𝑛(𝐷; 𝑐*𝑇𝒩 ). Since these are also the modeling spaces for
the natural chart construction, ℋ is a strong Riemannian metric. Thus the
distance function distℋ induced by ℋ induces the topology of 𝐻𝑛(𝐷,𝒩 ).
Part II: Openness of ℐ𝑛(𝐷,𝒩 ) in 𝐻𝑛(𝐷,𝒩 ) Taking again the extrinsic
point of view ℐ𝑛(𝐷,𝒩 ) is the intersection of 𝐻𝑛(𝐷,𝒩 ) with all the maps
𝑐 ∈ 𝐻𝑛(𝐷;R𝑚) such that 𝑐′ ̸= 0. By the Sobolev embedding ‖𝑐′‖𝐿∞(𝐷;R𝑚) ≤
𝐶‖𝑐‖𝐻𝑛(𝐷;R𝑚), which holds since 𝑛 ≥ 2, it is immediate that 𝑐′ ̸= 0 is an
open condition in 𝐻𝑛(𝐷;R𝑚), and hence ℐ𝑛(𝐷,𝒩 ) is open in 𝐻𝑛(𝐷,𝒩 ).
Part III: Completeness of (𝐻𝑛(𝐷,𝒩 ), distℋ) Let 𝑐𝑗 ∈ 𝐻𝑛(𝐷,𝒩 ) be a

Cauchy sequence with respect to distℋ. We aim to show that 𝑐𝑗 is also a
Cauchy sequence with respect to distext. Then, since (𝐻𝑛(𝐷,𝒩 ), distext)
is complete, we will obtain that the sequence converges to some 𝑐∞ ∈
𝐻𝑛(𝐷,𝒩 ); since the topologies induced by distext and distℋ coincide, we
will obtain that (𝐻𝑛(𝐷,𝒩 ),distℋ) is complete as well.

Since (𝑐𝑗)𝑗∈N is a distℋ-Cauchy sequence, it lies inside some distℋ-ball 𝐵
of radius 𝑟 > 0 centered at some 𝑐0 ∈ 𝐻𝑛(𝐷,𝒩 ). By taking a slightly larger 𝑟
we can also assume that for every 𝑗 ≤ 𝑘 ∈ 𝒩 there exists a path 𝑐𝑗𝑘 : [0, 1] →
𝐻𝑛(𝐷,𝒩 ) connecting 𝑐𝑗 and 𝑐𝑘 (that is, 𝑐𝑗𝑘(0) = 𝑐𝑗 and 𝑐𝑗𝑘(1) = 𝑐𝑘), such

that 𝑐𝑗𝑘(𝑡) ∈ 𝐵 for every 𝑡 ∈ [0, 1] and 𝐿ℋ(𝑐𝑗𝑘) < distℋ(𝑐𝑗 , 𝑐𝑘) +
1
𝑗 , where

𝐿ℋ is the length of 𝑐𝑗𝑘 with respect to the metric ℋ.
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We now show that all the curves in 𝐵 lie inside a compact subset of 𝒩 ;
moreover, we show that for some 𝐶 > 0, all curves 𝑐 ∈ 𝐵 satisfy

‖∇𝑘
𝜕𝜃
𝑐′‖𝐿2(𝑑𝜃) < 𝐶, 𝑘 = 0, . . . , 𝑛− 1.

It then follows by Lemma 2.3 that there exists a constant 𝛽 > 0, such that
for every 𝑐 ∈ 𝐵 and every ℎ ∈ 𝐻𝑛(𝐷; 𝑐*𝑇𝒩 ),

‖𝜄*ℎ‖𝐻𝑛(𝐷;R𝑚) ≤ 𝛽‖ℎ‖ℋ𝑐 ,

where 𝜄*ℎ ∈ 𝐻𝑛(𝐷;R𝑚) is the image of ℎ under the embedding, and where
‖·‖𝐻𝑛(𝐷;R𝑚) is the standard norm in𝐻𝑛(𝐷;R𝑚) (see Lemma 2.3). Therefore,
for every 𝑗 ≤ 𝑘 ∈ 𝒩 ,

distext(𝑐𝑗 , 𝑐𝑘) ≤ 𝐿ext(𝑐𝑗𝑘) ≤ 𝛽𝐿ℋ(𝑐𝑗𝑘) < 𝛽

(︂
distℋ(𝑐𝑗 , 𝑐𝑘) +

1

𝑗

)︂
,

where 𝐿ext is the length with respect to the external structure. Thus (𝑐𝑗)𝑗∈N
is a distext-Cauchy sequence and the proof is complete.

It remains to verify the assumptions of Lemma 2.3. Let now 𝑐 ∈ 𝐵 =
𝐵(𝑐0, 𝑟). By definition, there exists a path 𝑐 : [0, 1] → 𝐻𝑛(𝐷,𝒩 ), with
𝑐(0) = 𝑐0 and 𝑐(1) = 𝑐 such that 𝐿ℋ(𝑐) < 𝑟. Now, for every 𝜃0 ∈ 𝐷, we have

dist𝒩 (𝑐0(𝜃0), 𝑐(𝜃0)) ≤
∫︁ 1

0
|𝜕𝑡𝑐(𝑡, 𝜃0)| d𝑡 ≤

∫︁ 1

0
‖𝜕𝑡𝑐‖𝐿∞ ≤ 𝐶

∫︁ 1

0
‖𝜕𝑡𝑐𝑡‖ℋ𝑐

= 𝐶𝐿ℋ(𝑐) < 𝐶𝑟,

where we used the Sobolev embedding on vector bundles 𝐻𝑛−1(𝐷, 𝑐*𝑇𝒩 ) ⊂
𝐶𝑛−2(𝐷, 𝑐*𝑇𝒩 ) ⊂ 𝐶0(𝐷, 𝑐*𝑇𝒩 ) as in the proof of Lemma 2.3. It follows
that the images of all the curves in 𝐵 lie in a compact subset of 𝒩 (namely
a neighborhood of radius 𝐶𝑟 around the image of 𝑐0).

Now, let 𝑘 = 0, . . . , 𝑛− 1, then

‖∇𝑘
𝜕𝜃
𝑐′‖𝐿2( d𝜃) − ‖∇𝑘

𝜕𝜃
𝑐′0‖𝐿2( d𝜃) =

∫︁ 1

0
𝜕𝑡

(︂∫︁
𝐷
|∇𝑘

𝜕𝜃
𝑐′|2 d𝜃

)︂1/2

d𝑡

=

∫︁ 1

0

∫︀
𝐷 𝑔(∇𝑘

𝜕𝜃
𝑐′,∇𝑘

𝜕𝜃
𝜕𝑡𝑐

′) d𝜃(︁∫︀
𝐷 |∇𝑘

𝜕𝜃
𝑐′|2 d𝜃

)︁1/2 d𝑡

≤
∫︁ 1

0

(︂∫︁
𝐷
|∇𝑘

𝜕𝜃
𝜕𝑡𝑐

′|2 d𝜃

)︂1/2

𝑑𝑡

≤
∫︁ 1

0
‖𝜕𝑡𝑐‖ℋ𝑐 d𝑡 = 𝐿ℋ(𝑐) < 𝑟,

where we used again that the 𝐿2 norms of ∇𝑘
𝜕𝜃
ℎ for 𝑘 = 0, . . . , 𝑛 are con-

trolled by ‖ℎ‖ℋ𝑐 (again, we refer to Lemma 4.1 for an exact statement).
The uniform bound on ‖∇𝑘

𝜕𝜃
𝑐′‖𝐿2( d𝜃) immediately follows, and thus the as-

sumptions of Lemma 2.3 are fulfilled, uniformly on 𝐵. □

3. Reparametrization invariant Sobolev metrics on spaces of
curves

3.1. The metric and geodesic equation in the smooth category. As
detailed in the introduction, we are interested in reparametrization invariant



SOBOLEV METRICS ON SPACES OF MANIFOLD VALUED CURVES 11

Sobolev metrics on the above defined spaces Imm(𝐷,𝒩 ) and ℐ𝑛(𝐷,𝒩 ), and,
more accurately, in metrics of the type (1.2):

𝐺𝑐(ℎ, 𝑘) =

𝑛∑︁
𝑖=0

𝑎𝑖(ℓ𝑐)

∫︁
𝐷
𝑔(∇𝑖

𝜕𝑠ℎ,∇
𝑖
𝜕𝑠𝑘) d𝑠,

𝑎𝑖 ∈ 𝐶∞((0,∞), [0,∞)), for 𝑖 = 0, . . . , 𝑛 and 𝑎0, 𝑎𝑛 > 0,

We now calculate the geodesic equation associated with 𝐺𝑐 in smooth
settings; in the next subsection we extend the treatment to Sobolev settings.
To derive the geodesic equation it will be more convenient to write the metric
using the so-called inertia operator, i.e., use integration by parts to write 𝐺
as

(3.1) 𝐺𝑐(ℎ, 𝑘) =

∫︁
𝐷
𝑔(𝐴𝑐ℎ, 𝑘) d𝑠+𝐵𝑐(ℎ, 𝑘).

Here

(3.2) 𝐴𝑐 : 𝑇𝑐 Imm(𝐷,𝒩 ) → 𝑇𝑐 Imm(𝐷,𝒩 ),

is called the inertia operator of the metric 𝐺 and 𝐵𝑐(ℎ, 𝑘) depends solely on
the boundary of 𝐷 and stems from the integration by parts process. Thus
for closed curves the operator 𝐵 is not present.

Lemma 3.1. The inertia operator of the metric (1.2) takes the form:

(3.3) 𝐴𝑐(ℎ) =

𝑛∑︁
𝑖=0

(−1)𝑖𝑎𝑖(ℓ𝑐)∇2𝑖
𝜕𝑠ℎ,

For open curves, i.e. 𝐷 = [0, 2𝜋], the boundary operator 𝐵 is given by:

(3.4) 𝐵𝑐(ℎ, 𝑘) =

𝑛∑︁
𝑖=1

𝑎𝑖(ℓ𝑐)

𝑖−1∑︁
𝑗=0

(−1)𝑖+𝑗−1𝑔(∇𝑖+𝑗
𝜕𝑠

ℎ,∇𝑖−𝑗−1
𝜕𝑠

𝑘)
⃒⃒⃒2𝜋
0

.

Proof. These formulas follow directly from the integration by parts formula

(3.5)

∫︁
𝐷
𝑔(ℎ,∇𝜕𝑠𝑘) d𝑠 = 𝑔(ℎ, 𝑘)|𝜕𝐷 −

∫︁
𝐷
𝑔(∇𝜕𝑠ℎ, 𝑘) d𝑠 .

Note that for closed curves we have 𝐷 = 𝑆1 and thus 𝜕𝐷 = ∅. □

Before we calculate the geodesic equation we will collect variational for-
mulas of several quantities that appear in the metric. In the following we
will denote the variation of a quantity in direction ℎ ∈ 𝑇𝑐 Imm(𝐷,𝒩 ) by
𝐷𝑐,ℎ.

Lemma 3.2. Let 𝑐 ∈ Imm(𝐷,𝒩 ) and ℎ ∈ 𝑇𝑐 Imm(𝐷,𝒩 ). Then

𝐷𝑐,ℎ|𝑐′| = 𝑔(𝑣,∇𝜕𝑠ℎ)|𝑐′|(3.6)

𝐷𝑐,ℎ d𝑠 = 𝑔(𝑣,∇𝜕𝑠ℎ) d𝑠(3.7)

𝐷𝑐,ℎℓ𝑐 =

∫︁
𝐷
𝑔(𝑣,∇𝜕𝑠ℎ) d𝑠(3.8)

where 𝑣 = 𝑐′/|𝑐′| denotes the unit length tangent vector to the curve 𝑐. Ex-
tending the connection, as described in [9, Section 3], we can also calcu-
late the variation of the covariant derivtive ∇𝜕𝑠 applied to a tangent vector
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𝑘 ∈ 𝑇𝑐 Imm(𝐷,𝒩 ):

∇ℎ∇𝜕𝑠𝑘 = −𝑔(𝑣,∇𝜕𝑠ℎ)∇𝜕𝑠𝑘 +∇𝜕𝑠∇ℎ𝑘 +ℛ(𝑣, ℎ)𝑘;(3.9)

where ℛ denotes the (Riemannian) curvature of (𝒩 , 𝑔).

Proof. The first three formulas follow by straight-forward calculations, sim-
ilar as for curves with values in Euclidean spaces, see, e.g., [28, 12]. For the
last formula we follow the more general presentation in [9], where the varia-
tion of the Laplacian for 𝐷 being a compact manifold of arbitrary dimension
has been derived. Using the formula

∇ℎ∇𝜕𝜃𝑘 = ∇𝜕𝜃∇ℎ𝑘 +ℛ(ℎ, 𝑐′)𝑘(3.10)

for swapping covariant derivatives, see e.g. [9, Section 3.8], we obtain

∇ℎ∇𝜕𝑠𝑘 = 𝐷𝑓,ℎ

(︀
|𝑐′|−1

)︀
∇𝜕𝜃𝑘 + |𝑐′|−1∇ℎ∇𝜕𝜃𝑘

= −𝑔(∇𝜕𝑠ℎ, 𝑣)∇𝜕𝑠𝑘 + |𝑐′|−1∇𝜕𝜃∇ℎ𝑘 + |𝑐′|−1ℛ(ℎ, 𝑐′)𝑘

which concludes the proof since 𝑣 = |𝑐′|−1𝑐′. □

We are now able to calculate the geodesic equation. In the following cal-
culation we will restrict to first order metrics, for which the exact form of the
geodesic spray will be of importance in the proof of the local well-posedness
result. For higher order metrics the existence and well-posedness of the ge-
odesic equation will follow from general principles on strong metrics and we
will thus not include these cumbersome calculations. The interested reader
can consult the related calculations in [9], where the geodesic equations are
derived for general higher order metrics (under the assumption that 𝐷 has
no boundary). The geodesic equation for constant coefficient metrics on
closed curves in Euclidean space also appears in [14, Theorem 1.1].

Lemma 3.3. The geodesic equation of the first order Sobolev type metric,
as defined in (1.2) for 𝑛 = 1, is given by the set of equations:

∇𝜕𝑡(𝐴𝑐𝑐𝑡) = −𝑔(𝑣,∇𝜕𝑠𝑐𝑡)𝐴𝑐𝑐𝑡 −
1

2
Ψ𝑐(𝑐𝑡, 𝑐𝑡)∇𝜕𝑠𝑣 − 𝑔(∇𝜕𝑠𝑐𝑡, 𝐴𝑐𝑐𝑡)𝑣

+ 𝑎1(ℓ𝑐)ℛ(𝑐𝑡,∇𝜕𝑠𝑐𝑡)𝑣,

where the quadratic form Ψ𝑐(𝑐𝑡, 𝑐𝑡) is given by

Ψ𝑐(𝑐𝑡, 𝑐𝑡) = 𝑎0(ℓ𝑐)𝑔(𝑐𝑡, 𝑐𝑡) + 𝑎′0(ℓ𝑐)

∫︁
𝐷
𝑔(𝑐𝑡, 𝑐𝑡) d𝑠

− 𝑎1(ℓ𝑐)𝑔(∇𝜕𝑠𝑐𝑡,∇𝜕𝑠𝑐𝑡) + 𝑎′1(ℓ𝑐)

∫︁
𝐷
𝑔(∇𝜕𝑠𝑐𝑡,∇𝜕𝑠𝑐𝑡) d𝑠

For open curves, 𝐷 = [0, 2𝜋], we get the following boundary conditions:(︁
− 2∇𝜕𝑡 (𝑎1(ℓ𝑐)∇𝜕𝑠𝑐𝑡) + Ψ𝑐(𝑐𝑡, 𝑐𝑡)𝑣

)︁⃒⃒⃒⃒
𝜃=0,2𝜋

= 0 .

The proof of this result is postponed to Appendix A.1.
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3.2. The induced metric on Sobolev immersions. To obtain the de-
sired completeness and well-posedness results we consider the extension of
the metric 𝐺 (of order 𝑛) on the Banach manifolds ℐ𝑞(𝐷,𝒩 ) ⊃ Imm(𝐷,𝒩 ),
for 𝑞 ≥ max{𝑛, 2}, as defined in Definition 2.1 above.

Our aim in the rest of the section is to show the smoothness of the metrics
𝐺 on ℐ𝑞(𝐷,𝒩 ) (assuming 𝑞 ≥ 𝑛). First, we need to introduce some mixed
order spaces:

Definition 3.4. Let 𝑞 ≥ 2 and 𝑞 ≥ 𝑘 ≥ 0. We define the function space:

𝐻𝑘
ℐ𝑞(𝐷,𝑇𝒩 ) =

{︁
ℎ ∈ 𝐻𝑘(𝐷,𝑇𝒩 ) : 𝜋 ∘ ℎ ∈ ℐ𝑞(𝐷,𝒩 )

}︁
.

We have the following result concerning their manifold structure and the
operator ∇𝜕𝜃 :

Lemma 3.5. The spaces 𝐻𝑘
ℐ𝑞(𝐷,𝑇𝒩 ) are smooth Hilbert manifolds for any

𝑞 ≥ 2 and 𝑞 ≥ 𝑘 ≥ 0. The mapping

(3.11) ∇𝜕𝜃 : 𝐻𝑘
ℐ𝑞(𝐷,𝑇𝒩 ) → 𝐻𝑘−1

ℐ𝑞 (𝐷,𝑇𝒩 )

is a bounded linear mapping for 1 ≤ 𝑘 ≤ 𝑞.

Proof. The first part of this result can be found in [10, Theorem 2.4], while
the second part follows directly from the definition of the space𝐻𝑘

ℐ𝑞(𝐷,𝑇𝒩 ).
□

Note that 𝐻𝑞
ℐ𝑞(𝐷,𝑇𝒩 ) = 𝑇ℐ𝑞(𝐷,𝒩 ). If 𝑘 < 𝑞 then 𝐻𝑘

ℐ𝑞(𝐷,𝑇𝒩 ) is the

the robust fiber completion of the weak Riemannian manifold (ℐ𝑞(𝐷,𝑇𝒩 ), 𝐺𝑘)
with the Sobolev metric 𝐺𝑘 from (1.2) in the sense described in [26]. These
spaces will appear, when we repeatedly apply ∇𝜕𝑠 to a vector field ℎ along
an 𝐻𝑛-immersion (∇𝜕𝑠 will reduce the order of the vector field, but not of
its foot point). To show the smoothness of the metric we need the following
result:

Lemma 3.6. Let 𝑞 ≥ 2. Then the mapping

𝐻𝑘+1
ℐ𝑞 (𝐷,𝑇𝒩 ) → 𝐻𝑘

ℐ𝑞(𝐷,𝑇𝒩 )(3.12)

ℎ ↦→ ∇𝜕𝑠ℎ =
1

|𝜋(ℎ)|
∇𝜕𝜃ℎ(3.13)

is smooth for any 𝑘 ≥ 0.

Proof. The mapping

𝐻𝑘+1
ℐ𝑞 (𝐷,𝑇𝒩 ) → 𝐻𝑘

ℐ𝑞(𝐷,𝑇𝒩 )(3.14)

ℎ ↦→ ∇𝜕𝜃ℎ(3.15)

is smooth by Lemma 3.5. By the module properties of Sobolev spaces mul-
tiplication 𝐻𝑞(𝐷,R)×𝐻𝑘

ℐ𝑞(𝐷,𝑇𝒩 ) → 𝐻𝑘
ℐ𝑞(𝐷,𝑇𝒩 ) is smooth for 𝑞 ≥ 2 and

𝑘 ≥ 0. Thus the result follows since |𝜋(ℎ)| ∈ 𝐻𝑞(𝐷,R). □

Using this lemma we immediately obtain the smoothness of the metric:

Theorem 3.7. Let 𝑞 ≥ 2. Consider the Sobolev metric 𝐺 on Imm(𝐷,𝒩 )
of order 𝑛 ≤ 𝑞 of the form (1.2). Then 𝐺 extends to a smooth Riemannian
metric on ℐ𝑞(𝐷,𝒩 ). For 𝑞 = 𝑛 the metric 𝐺 is a strong Riemannian metric
on ℐ𝑛(𝐷,𝒩 ).
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Proof. Iterating Lemma 3.6 we have that

(3.16) ∇𝑖
𝜕𝑠 : 𝑇ℐ

𝑞(𝐷,𝒩 ) = 𝐻𝑞
ℐ𝑞(𝐷,𝑇𝒩 ) → 𝐻𝑞−𝑖

ℐ𝑞 (𝐷,𝑇𝒩 ) ⊂ 𝐿2
ℐ𝑞(𝐷,𝑇𝒩 )

is smooth for 0 ≤ 𝑖 ≤ 𝑛. Thus the mapping

𝑇ℐ𝑞(𝐷,𝒩 )×ℐ𝑞 𝑇ℐ𝑞(𝐷,𝒩 ) → 𝐿1(𝐷,R)

(ℎ, 𝑘) ↦→ 𝑔𝑐(∇𝑖
𝜕𝑠ℎ,∇

𝑖
𝜕𝑠𝑘)|𝑐

′|

is smooth as well. Here we used again the module properties of Sobolev
spaces. It remains to show the smoothness of 𝑐 ↦→ ℓ𝑐. Therefore we use the
fact that

𝐿1(𝐷,R) → R

𝑓 ↦→
∫︁

𝑓 d𝜃

is a bounded linear operator, hence it immediately follows that the length
function 𝑐 ↦→ ℓ𝑐 =

∫︀
|𝑐′| d𝜃 is smooth. For 𝑛 ≥ 2 the metric 𝐺 is a strong

Riemannian metric on ℐ𝑛(𝐷,𝑁) since for each 𝑐 ∈ ℐ𝑛(𝐷,𝒩 ) the inner
product 𝐺𝑐(ℎ, 𝑘) describes the Hilbert space structure on 𝑇𝑐ℐ𝑛(𝐷,𝑁) (This
is best seen in a local chart, whose base is, by definition, around a smooth 𝑐,
otherwise one has to deal with Γ𝐻𝑛(𝑐*𝑇𝑁) for 𝑐 a Sobolev 𝐻𝑛-immersion).

□

3.3. Local well-posedness of the geodesic equation. The local well-
posedness results as summarized in the following theorem are based on the
seminal method of Ebin and Marsden [20]. They are known in the case
of closed curves, see [10, 28, 6], but to the best of our knowledge they are
new for the case of open curves. However, as local well-posedness is not
the focus of the current article, we postpone the proof of this result to the
Appendix A.2.

Theorem 3.8. Let 𝐷 = [0, 2𝜋] or 𝐷 = 𝑆1. Let 𝐺 be a Sobolev metric of
order 𝑛 ≥ 1 of the form (1.2) on ℐ𝑞(𝐷,𝒩 ), with either 𝑞 ≥ 2𝑛 or 𝑞 = 𝑛 ≥ 2.
We have:

(1) The initial value problem for the geodesic equation has unique local
solutions in the Banach manifold ℐ𝑞(𝐷,𝒩 ). The solutions depend
smoothly on 𝑡 and on the initial conditions 𝑐(0, ·) and 𝑐𝑡(0, ·). More-
over, the Riemannian exponential mapping exp exists and is smooth
on a neighborhood of the zero section in the tangent bundle, and
(𝜋, exp) is a diffeomorphism from a (possibly smaller) neighborhood
of the zero section of 𝑇ℐ𝑞(𝐷,𝒩 ) to a neighborhood of the diagonal
in ℐ𝑞(𝐷,𝒩 )× ℐ𝑞(𝐷,𝒩 ).

(2) The results of part 1 (local well-posedness of the geodesic equation
and properties of the exponential map) continue to hold on ℐ𝑞(𝐷,𝒩 )∩
𝐶∞(𝐷𝑜,𝒩 ), where 𝐷𝑜 is the interior of 𝐷.

Note, that for 𝐷 = 𝑆1 we have Imm(𝑆1,𝒩 ) = ℐ𝑞(𝑆1,𝒩 ) ∩ 𝐶∞(𝑆1,𝒩 ),
i.e., the local well-posedness continues to hold in the smooth category.
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4. Estimates

In this section we prove some interpolation inequalities for Sobolev sec-
tions of the tangent bundle, that will be needed for proving metric complete-
ness of (ℐ𝑛(𝐷,𝒩 ), 𝐺) in various cases. For vector-space-valued functions,
these inequalities are rather simple adaptations of standard inequalities; this
is the case when 𝒩 = R𝑑, as sections of 𝑐*𝑇R𝑑 can be regarded as vector-
space-valued functions (see [14, Lemmas 2.14–2.15], [12, Lemma 2.4] for the
case 𝐷 = 𝑆1).

For a general target manifold, two things change: first, instead of working
with a section ℎ ∈ 𝐻𝑘(𝐷, 𝑐*𝑇𝒩 ) directly, we need to parallel transport ℎ to
a single base point, that is, to work with

𝐻(𝜃) = Π𝜃0
𝜃 ℎ(𝜃) ∈ 𝐻𝑘(𝐷,𝑇𝑐(𝜃0)𝒩 ) ≃ 𝐻𝑘(𝐷,Rdim𝒩 ),

where 𝜃0 ∈ 𝐷 is a base point, and Π𝜃0
𝜃 is the parallel transport, in 𝒩 ,

from 𝑇𝑐(𝜃)𝒩 to 𝑇𝑐(𝜃0)𝒩 , along 𝑐. The reason for using 𝐻 is that it is a
vector-space-valued function, and so we can take regular derivatives of 𝐻
and use the fundamental theorem of calculus. The derivatives of 𝐻 relate
to covariant derivatives of ℎ via

(4.1) 𝐻 ′(𝜃) =
𝑑

d𝜃
Π𝜃0

𝜃 ℎ(𝜃) = Π𝜃0
𝜃 ∇𝜕𝜃ℎ(𝜃).

See, e.g., [17, Chapter 2, exercise 2]. Note that, since the parallel transport
operator is an isometry, we have |𝐻(𝜃)| = |ℎ(𝜃)|, |𝐻 ′(𝜃)| = |∇𝜕𝜃ℎ(𝜃)|, and
so on for higher order derivatives.

The second difference from the Euclidean case arises when 𝐷 = 𝑆1. In
the Euclidean case we obtain inequalities for periodic functions, that are
generally better than the ones for general functions (and this fact is essential
for completeness of constant coefficients metrics). However, when 𝒩 ̸= R𝑑,
even though ℎ(0) = ℎ(2𝜋), it is not true that 𝐻(0) = 𝐻(2𝜋), because the
holonomy along the curve 𝑐 is in general non-trivial (that is, Π0

2𝜋 ̸= id𝑇𝑐(0)𝒩 ).
Therefore, we need to bound the amount by which 𝐻 fails to be periodic,
and to prove estimates for such ”almost periodic” functions.

We now state the estimates; first the inequalities that hold for both 𝐷 =
𝑆1 or 𝐷 = [0, 2𝜋], and then inequalities that hold only in the periodic case.
As the proof of the periodic case is long and somewhat different from the
rest of the analysis in this paper, we postpone it to Appendix B. This is done
solely for the sake of readability — these estimates are at the core of proving
the metric completeness of (ℐ𝑛(𝑆1;𝒩 );𝐺) for 𝐺 with constant coefficients,
and are one of the main differences between the analysis of manifold valued
curves and of R𝑑-valued curves.

Lemma 4.1 (General estimates). If 𝑛 ≥ 2, 𝑐 ∈ ℐ𝑛(𝐷,𝒩 ) and ℎ ∈ 𝐻𝑛(𝐷, 𝑐*𝑇𝒩 ),
then for 0 ≤ 𝑘 < 𝑛, there exists 𝐶 = 𝐶(𝑘, 𝑛, dim𝒩 ) > 0 such that

(4.2) 𝑎2𝑘‖∇𝑘
𝜕𝑠ℎ‖

2
𝐿2( d𝑠) ≤ 𝐶

(︁
‖ℎ‖2𝐿2( d𝑠) + 𝑎2𝑛‖∇𝑛

𝜕𝑠ℎ‖
2
𝐿2( d𝑠)

)︁
,

and

(4.3) 𝑎2𝑘‖∇𝑘
𝜕𝑠ℎ‖

2
𝐿∞ ≤ 𝐶

(︁
𝑎−1‖ℎ‖2𝐿2( d𝑠) + 𝑎2𝑛−1‖∇𝑛

𝜕𝑠ℎ‖
2
𝐿2( d𝑠)

)︁
,



16 MARTIN BAUER, CY MAOR, AND PETER W. MICHOR

for every 𝑎 ∈ (0, ℓ𝑐]. The same holds when we replace ∇𝜕𝑠 with ∇𝜕𝜃 and d𝑠
with d𝜃, with 𝑎 ∈ (0, 2𝜋].

Proof. Since all the norms involved (in the d𝑠 case) are reparametrization-
invariant, we can assume that 𝑐 is arc-length parametrized. In this case, we
have ∇𝜕𝑠 = ∇𝜕𝜃 , d𝑠 = d𝜃, where 𝜃 ∈ [0, ℓ𝑐] (and in the case 𝐷 = 𝑆1, we
identify the points 𝜃 = 0 and 𝜃 = ℓ𝑐). Define

𝐻 : [0, ℓ𝑐] → 𝑇𝑐(0)𝒩 ≡ Rdim𝒩 𝐻(𝜃) = Π0
𝜃ℎ(𝜃).

From (4.1) we have⃒⃒⃒
∇𝑘

𝜕𝜃
ℎ(𝜃)

⃒⃒⃒
=
⃒⃒⃒
Π0

𝜃∇𝑘
𝜕𝜃
ℎ(𝜃)

⃒⃒⃒
=

⃒⃒⃒⃒
𝑑𝑘

d𝜃𝑘
𝐻(𝜃)

⃒⃒⃒⃒
.

In order to prove (4.2), we therefore need to prove that

𝑎2𝑘
∫︁ ℓ𝑐

0
|𝜕𝑘

𝜃𝐻|2 d𝜃 ≤ 𝐶

(︂∫︁ ℓ𝑐

0
|𝐻|2 d𝜃 + 𝑎2𝑛

∫︁ ℓ𝑐

0
|𝜕𝑛

𝜃𝐻|2 d𝜃

)︂
,

for every 𝑎 ∈ (0, ℓ𝑐], and similarly for (4.3). Since 𝐻 is valued in Rdim𝒩 ,
this is a standard Sobolev inequality, see, e.g., [25, Theorem 7.40].

The d𝜃 case is similar, but simpler (no need to reparametrize 𝑐 first). □

Lemma 4.2 (Estimates for 𝑆1). If 𝑛 ≥ 2, 𝑐 ∈ ℐ𝑛(𝑆1,𝒩 ) and ℎ ∈ 𝐻𝑛(𝑆1, 𝑐*𝑇𝒩 ),
then for 0 < 𝑘 < 𝑛, there exists 𝐶 > 0, depending on 𝑘, 𝑛, dim𝒩 , the injec-
tivity radius and the upper and lower bounds on the sectional curvature of
𝒩 , such that

(4.4) ‖∇𝑘
𝜕𝑠ℎ‖

2
𝐿2( d𝑠) ≤ 𝐶min

{︀
1, ℓ2𝑐

}︀(︁
‖ℎ‖2𝐿2( d𝑠) + ‖∇𝑛

𝜕𝑠ℎ‖
2
𝐿2( d𝑠)

)︁
.

Proof. See Appendix B. □

Remark 4.3. It is interesting to compare inequality (4.4) to the equivalent
one in the Euclidean settings [14, Lemma 2.14], that is, when 𝒩 = R𝑑.
There we have

‖∇𝜕𝑠ℎ‖2𝐿2( d𝑠) ≤
ℓ2𝑐
4
‖∇2

𝜕𝑠ℎ‖
2
𝐿2( d𝑠),

from which higher order inequalities readily follow. The zeroth order term
that appears in the right-hand side of (4.4) is a curvature term, and, as the
proof in Appendix B shows, arise from the non-trivial holonomy along the
closed curve 𝑐.

5. Metric and geodesic completeness

We now want to prove the main result of this article, i.e., extend the
completeness results, obtained for planar curves, to the situation studied
in this article. The exact statement of the main results is now detailed in
Theorems 5.1–5.3 below (the main result as presented in the introduction is
a slightly simplified form of them).

Theorem 5.1. Let 𝑛 ≥ 2, let 𝐷 = [0, 2𝜋] or 𝐷 = 𝑆1, and let 𝐺 be a
smooth Riemannian metric on ℐ𝑛(𝐷,𝒩 ). Assume that for every metric ball
𝐵(𝑐0, 𝑟) ∈ (ℐ𝑛(𝐷,𝒩 ),dist𝐺), there exists a constant 𝐶 = 𝐶(𝑐0, 𝑟) > 0, such
that for any 𝑐 ∈ 𝐵(𝑐0, 𝑟) and ℎ ∈ 𝑇𝑐ℐ𝑛(𝐷,𝒩 ) we have

‖ℎ‖𝐺𝑐 ≥ 𝐶ℓ−1/2
𝑐 ‖∇𝜕𝑠ℎ‖𝐿2( d𝑠),(5.1)
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‖ℎ‖𝐺𝑐 ≥ 𝐶‖∇𝑘
𝜕𝑠ℎ‖𝐿∞ 𝑘 = 0, . . . , 𝑛− 1,(5.2)

‖ℎ‖𝐺𝑐 ≥ 𝐶‖∇𝑛
𝜕𝑠ℎ‖𝐿2( d𝑠).(5.3)

Then 𝐺 is a strong metric, and we have:

(1) (ℐ𝑛(𝐷,𝒩 ), dist𝐺) is a complete metric space.
(2) (ℐ𝑛(𝐷,𝒩 ), 𝐺) is geodesically complete

For Sobolev metrics the type (1.2) we also obtain geodesic convexity:

Theorem 5.2. Let 𝐷 = [0, 2𝜋] or 𝐷 = 𝑆1, and let 𝐺 be a smooth Sobolev
metric of the type (1.2) on ℐ𝑛(𝐷,𝒩 ), that satisfies assumptions (5.1)–(5.3).
Then any two immersions in the same connected component can be joined
by a minimizing geodesic.

The reason that in Theorem 5.2 we further assume, unlike in Theorem 5.1,
that 𝐺 is of the type (1.2) is merely a technical one; both theorems are first
proved for metrics of this type, and in Theorem 5.1 the extension to the
general case is immediate. Theorem 5.2, with the same method of proof,
definitely holds for metrics that are not of type (1.2), but this needs to
be checked on a case-by-case basis, and thus we present this theorem only
for these type of metrics. The assumptions (5.1)–(5.3) are satisfied in the
following cases:

Theorem 5.3. Let 𝐷 = [0, 2𝜋] or 𝐷 = 𝑆1, and let 𝐺 be a Sobolev metric of
order 𝑛 ≥ 2 of the type (1.2) on ℐ𝑛(𝐷,𝒩 ). Assume that one of the following
holds:

(1) Length weighted case: There exists 𝛼 > 0 such that either 𝑎1(𝑥) ≥
𝛼𝑥−1 or both 𝑎0(𝑥) ≥ 𝛼𝑥−3 and 𝑎𝑘(𝑥) ≥ 𝛼𝑥2𝑘−3 for some 𝑘 > 1.

(2) Constant coefficient case: 𝐷 = 𝑆1 and both 𝑎0 and 𝑎𝑛 are posi-
tive constants.

Then assumptions (5.1)–(5.3) hold, and the completeness results of Theo-
rem 5.1 hold for (ℐ𝑛(𝐷,𝒩 ), 𝐺).

Remark 5.4. Note that the family of scale-invariant Sobolev metric, as in-
troduced in Section 1.2, satisfies conditions (1) of Theorem 5.3. In the arti-
cle [16], where the authors study completeness properties for length weighted
metrics on curves with values in Euclidean space, more general conditions
on the coefficient functions that still ensure completeness have been derived.
While such an analysis should be also possible in our situation, the resulting
conditions would be much more complicated. The reason for this essentially
lies in the fact that the manifold valued Sobolev estimates are more compli-
cated (and involve lower-order terms), compared to the R𝑑-valued one, as
described in Remark 4.3. Thus, for the sake of clarity, we discuss here only
conditions of the type (1).

The remaining part of this section will contain the proof of these theorems.
To prove Theorem 5.1 we will first show the metric completeness, which then
implies the geodesic completeness, see [24, VIII, Proposition 6.5]. Since
the theorem of Hopf-Rinow is not valid in infinite dimensions2 we cannot

2Atkin constructed in [3] an example of a geodesically complete Riemannian manifold
where the exponential map is not surjective, see also [21].
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conclude the existence of geodesics by abstract arguments. Instead we show
this statement by hand using the direct methods of the calculus of variations,
in Section 5.5. Finally, in Section 5.6, we deduce geodesic completeness in
the smooth category.

5.1. Reduction from metric completeness to equivalence of strong
Riemannian metrics. In this section we reduce the question of metric
completeness (ℐ𝑛(𝐷,𝒩 ), dist𝐺) to a question on uniform equivalence of the
Riemannian metrics 𝐺 and ℋ on metric balls. This is done in two steps.

First reduction — distance equivalence on balls. The space ℐ𝑛(𝐷,𝒩 )
is an open subset of 𝐻𝑛(𝐷,𝒩 ) (see Proposition 2.2). In addition to the met-
ric dist𝐺 induced by 𝐺, it therefore inherits also the distance distℋ function
induced from 𝐻𝑛(𝐷,𝒩 ). In general, dist𝐺 and distℋ are not equivalent.3

However, we do have the following:

Proposition 5.5. Assume that 𝐺 is a strong Riemannian metric on ℐ𝑛(𝐷,𝒩 )
and

(1) For every metric ball 𝐵(𝑐0, 𝑟) ⊂
(︀
ℐ𝑛(𝐷,𝒩 ),dist𝐺

)︀
, there exists a

constant 𝐶 > 0 such that distℋ ≤ 𝐶 dist𝐺 on 𝐵(𝑐0, 𝑟).

(2) For every metric ball 𝐵(𝑐0, 𝑟) ⊂
(︀
ℐ𝑛(𝐷,𝒩 ), dist𝐺

)︀
, ‖|𝑐′|−1‖𝐿∞ is

bounded.

Then (ℐ𝑛(𝐷,𝒩 ), dist𝐺) is metrically complete.

Proof. The proof below is similar to the proof of [12, Theorem 4.3]. For the
convenience of the reader we repeat the arguments here. Given a Cauchy se-
quence (𝑐𝑛) in

(︀
ℐ𝑛(𝐷,𝒩 ), dist𝐺

)︀
, the sequence remains in a bounded metric

ball in
(︀
ℐ𝑛(𝐷,𝒩 ),dist𝐺

)︀
, hence by (1) the sequence is also a Cauchy se-

quence in 𝐻𝑛(𝐷,𝒩 ), hence 𝑐𝑛 → 𝑐 ∈ 𝐻𝑛(𝐷,𝒩 ) (modulo a subsequence).
Moreover, since the sequence 𝑐𝑛 lies in a metric ball, |𝑐′𝑛|−1 < 𝐶 < ∞
for all 𝑛 by (2), and since 𝐻𝑛 convergence implies 𝐶1 convergence, we ob-
tain that |𝑐′|−1 ≤ 𝐶, and thus 𝑐 ∈ ℐ𝑛(𝐷,𝒩 ). Since both ℋ and 𝐺 are
strong metrics on ℐ𝑛(𝐷,𝒩 ), they induce the same topology (the manifold
topology) [24, VII, Proposition 6.1], and thus distℋ(𝑐𝑛, 𝑐) → 0 implies that
dist𝐺(𝑐𝑛, 𝑐) → 0, hence

(︀
ℐ𝑛(𝐷,𝒩 ), dist𝐺

)︀
is metrically complete. □

Second reduction — metric equivalence implies distance equiv-
alence.

Next, we show that distance-equivalence on metric balls follows from
metric-equivalence on metric balls. The following proposition is the con-
tent of Proposition 3.5 and Remark 3.6 in [12], adapted to our setting.

Proposition 5.6. Assume that for each metric ball

𝐵(𝑐0, 𝑟) ⊂
(︀
ℐ𝑛(𝐷,𝒩 ), dist𝐺

)︀
,

3This follows by the fact that ℋ and 𝐺 are no equivalent: For 𝐺 of the type (1.2),
the highest order derivative it involves is ∇𝑛

𝜕𝑠
, which equals to |𝑐′|−𝑛∇𝑛

𝜕𝜃
plus lower order

terms. The highest order derivative in ℋ is, on the other hand, ∇𝑛
𝜕𝜃

. In particular, if we

take a curve 𝑐 on which |𝑐′| is very close to being zero in some interval, it follows that ℋ𝑐

and 𝐺𝑐 can have extremely large ratio.
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there exists 𝐶 = 𝐶(𝑐0, 𝑟) > 0 such that for every 𝑐 ∈ 𝐵(𝑐0, 𝑟) and ℎ ∈
𝐻𝑛(𝐷; 𝑐*𝑇𝒩 ), we have

(5.4) ‖ℎ‖ℋ𝑐 ≤ 𝐶‖ℎ‖𝐺𝑐 .

Then, property (1) in Proposition 5.5 holds.

Proof. The following proof is an adaptation of the proof of [12, Lemma 4.2].
Let 𝑐1, 𝑐2 ∈ 𝐵(𝑐0, 𝑟) and 𝜀 > 0, and let 𝛾 be a piecewise smooth curve
between 𝑐1 and 𝑐2 with 𝐿𝐺(𝛾) ≤ dist𝐺(𝑐1, 𝑐2) + 𝜀. Since dist𝐺(𝑐1, 𝑐2) < 2𝑟,
by the triangle inequality, we have that 𝛾 ⊂ 𝐵(𝑐0, 3𝑟). We then have, using
assumption (5.4) for 𝐵(𝑐0, 3𝑟), that

distℋ(𝑐1, 𝑐2) ≤ 𝐿ℋ(𝛾) ≤ 𝐶𝐿𝐺(𝛾) ≤ 𝐶(dist𝐺(𝑐1, 𝑐2) + 𝜀).

Since 𝜀 is arbitrary, completes the proof. □

5.2. Estimates on ℓ𝑐 and |𝑐′| in metric balls. In this section we bound
various quantities that depend on the curve 𝑐 uniformly on metric balls in
ℐ𝑛(𝐷,𝒩 ). These will enable us to prove the assumption of Proposition 5.6,
as well as assumption (2) of Proposition 5.5.

To this end, we will repeatedly use the following result (see [12, Lemma 3.2]
for a proof4):

Lemma 5.7. Let (ℳ, g) be a Riemannian manifold, possibly of infinite
dimension, and let 𝐹 be a normed space. Let 𝑓 : ℳ → 𝐹 be a 𝐶1-function,
such that for each metric ball 𝐵(𝑦, 𝑟) in ℳ there exists a constant 𝐶, such
that

‖𝑇𝑥𝑓.𝑣‖𝐹 ≤ 𝐶(1 + ‖𝑓(𝑥)‖𝐹 )‖𝑣‖𝑥 for all 𝑥 ∈ 𝐵(𝑦, 𝑟), 𝑣 ∈ 𝑇𝑥ℳ.

Then 𝑓 is Lipschitz continuous on every metric ball, and in particular bounded
on every metric ball. Moreover, if the constant 𝐶 is independent of the met-
ric ball 𝐵(𝑦, 𝑟), then the Lipschitz constant in 𝐵(𝑦, 𝑟) can be bounded by a
function 𝐿 : [0,∞)3 → (0,∞), increasing in all variables, as follows:

‖𝑓(𝑥1)−𝑓(𝑥2)‖𝐹 ≤ 𝐿(𝐶, ‖𝑓(𝑦)‖𝐹 , 𝑟) dist(𝑥1, 𝑥2) for every 𝑥1, 𝑥2 ∈ 𝐵(𝑦, 𝑟).

In particular the Lipschitz constant in 𝐵(𝑦, 𝑟) depends on 𝑦 only through
‖𝑓(𝑦)‖𝐹 .

Remark 5.8. Tracking the constants in Lemma 5.7 carefully, one can obtain
the bound

(5.5) 𝐿(𝐶, 𝑡, 𝑟) = 𝐶2(1 + 𝑟)(1 + 2𝑟)𝑒2𝐶𝑟(1 + 𝑡).

Note that this is not sharp, it is simply what is obtained by the method of
the proof (using Gronwall’s inequality).

Lemma 5.9 (Bounds on length). Assume that assumption (5.1) holds.
Then the length function 𝑐 ↦→ ℓ𝑐 is bounded from above and away from
zero on every metric ball.

4In fact, for the case in which 𝐶 is independent of the metric ball, the statement in
[12, Lemma 3.2] is inaccurate; the statement of Lemma 5.7 is the corrected one, and the
proof follows exactly as in [12, Lemma 3.2], by checking carefully which constants appear
when using Gronwall’s inequality [12, Corollary 2.7].
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Proof. From (3.8) we have that

|𝐷𝑐,ℎℓ𝑐| ≤
∫︁
𝐷
|𝑔(𝑣,∇𝜕𝑠ℎ)| d𝑠 ≤ ℓ1/2𝑐

(︂∫︁
𝐷
|𝑔(𝑣,∇𝜕𝑠ℎ)|2 d𝑠

)︂1/2

≤

≤ ℓ1/2𝑐 ‖∇𝜕𝑠ℎ‖𝐿2( d𝑠).

Therefore, under the assumption (5.1), we have

|𝐷𝑐,ℎℓ𝑐| ≲ ‖ℎ‖𝐺𝑐

and we obtain from Lemma 5.7 that 𝑐 ↦→ ℓ𝑐 is bounded on every metric ball.
Similarly, for the map 𝑐 ↦→ ℓ−1

𝑐 , we have, under the assumption (5.1), that

|𝐷𝑐,ℎℓ
−1
𝑐 | = ℓ−2

𝑐 |𝐷𝑐,ℎℓ𝑐| ≤ ℓ−3/2
𝑐 ‖∇𝜕𝑠ℎ‖𝐿2( d𝑠) ≲ ℓ−1

𝑐 ‖ℎ‖𝐺𝑐 ,

which concludes the proof using again Lemma 5.7. □

Lemma 5.10 (Bounds on speed). Assume that assumption (5.2) holds for
𝑘 = 1. Then, there exists a constant 𝛼 = 𝛼(𝑐0, 𝑟) > 0 such that

𝛼−1 ≤ |𝑐′(𝜃)| ≤ 𝛼

for every 𝑐 ∈ 𝐵(𝑐0, 𝑟) and 𝜃 ∈ 𝐷.

Proof. Consider the function

log |𝑐′| : (ℐ𝑛(𝐷,𝒩 ), 𝐺) → 𝐿∞(𝐷;R).

By (3.6) and assumption (5.2) we have

‖𝐷𝑐,ℎ log |𝑐′|‖𝐿∞ ≤ ‖𝑔(𝑣,∇𝜕𝑠ℎ)‖𝐿∞ ≤ ‖∇𝜕𝑠ℎ‖𝐿∞ ≲ ‖ℎ‖𝐺𝑐 .

By Lemma 5.7 we thus have that log |𝑐′| is bounded on metric balls, from
which the claim follows. □

Lemma 5.11. Assume that assumption (5.2) holds for 𝑘 = 0. Then the
image in 𝒩 of every metric ball 𝐵(𝑐0, 𝑟) is bounded. That is, there exists
𝑅 = 𝑅(𝑐0, 𝑟) > 0 such that for every 𝑐 ∈ 𝐵(𝑐0, 𝑟) and every 𝜃 ∈ 𝐷,

dist𝒩 (𝑐(𝜃), 𝑐0(0)) < 𝑅.

Proof. Let 𝑐 ∈ 𝐵(𝑐0, 𝑟), and let 𝑐(𝑡, 𝜃) : [0, 1] → 𝐵(𝑐0, 𝑟) be a path between
𝑐0 = 𝑐(0, ·) to 𝑐 = 𝑐(1, ·), whose length is smaller than 𝑟. Using (5.2), we
have

dist𝒩 (𝑐(𝜃), 𝑐0(𝜃)) ≤
∫︁ 1

0
|𝜕𝑡𝑐(𝑡, 𝜃)| d𝑡 ≤ 𝐶

∫︁ 1

0
‖𝜕𝑡𝑐(𝑡, 𝜃)‖𝐺𝑐 d𝑡 < 𝐶𝑟.

This completes the proof, as the length of 𝑐0 is finite. □

Lemma 5.12. Assume that assumptions (5.1)–(5.3) hold. Then the follow-
ing quantities are bounded on every metric ball

‖∇𝑘
𝜕𝑠 |𝑐

′|‖𝐿∞ 𝑘 = 0, . . . , 𝑛− 2,(5.6)

‖∇𝑘
𝜕𝑠 |𝑐

′|‖𝐿2 𝑘 = 0, . . . , 𝑛− 1,(5.7)

where 𝐿2 is with respect to either d𝑠 or d𝜃.
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Proof. The proof of this is result follows by an induction on 𝑘 using itera-
tively Lemma 5.9 and 5.10. It is mainly an adaptation of Lemma 3.3 and
Proposition 3.4 in [12], though the calculations in our situation are more
involved due to the appearance of curvature terms of the manifold 𝒩 . To
keep the presentation simple we postpone it to the Appendix C. □

5.3. Proof of Theorem 5.1: metric and geodesic completeness. We
are now able to prove Theorem 5.1, that is, that (ℐ𝑛(𝐷,𝒩 ), 𝐺) is metrically
and geodesically complete. We first prove it for a metric 𝐺 of the type (1.2)
of order 𝑛 that satisfies assumptions (5.1)–(5.3). Afterwards the assumption
that 𝐺 is of the type (1.2) will be removed.

In particular, 𝐺 satisfies (5.2), and therefore Lemma 5.10 implies that
assumption (2) in Proposition 5.5 holds. Therefore, in order to prove that
(ℐ𝑛(𝐷,𝒩 ), dist𝐺) is metrically complete, we need to show that 𝐺 is a strong
metric, and prove property (1), which by Proposition 5.6 follows from (5.4).
In fact, we will show a stronger result and prove that 𝐺 and ℋ are equivalent
uniformly on metric balls. This will also imply that 𝐺 is a strong metric.

From Lemma 4.1, we have
𝑛∑︁

𝑖=0

‖∇𝑖
𝜕𝜃
ℎ‖2𝐿2( d𝜃) ≤ 𝐶‖ℎ‖2ℋ

for some universal constant 𝐶 > 0. Similarly, we have

(5.8) ‖∇𝜕𝜃ℎ‖𝐿∞ ≤ 𝐶 ′‖ℎ‖2ℋ
for some universal constant 𝐶 ′ > 0.

From the definition of ∇𝜕𝑠 we have, by using the Leibniz rule,

∇𝑘
𝜕𝑠ℎ =

1

|𝑐′|𝑘
∇𝑘

𝜕𝜃
ℎ+

𝑘−1∑︁
𝑖=1

𝑃𝑖,𝑘∇𝑖
𝜕𝜃
ℎ,

where 𝑃𝑖,𝑘 are polynomials in |𝑐′|,∇𝜕𝑠 |𝑐′|, . . . ,∇𝑘−𝑖
𝜕𝑠

|𝑐′| and |𝑐′|−1, . . . , |𝑐′|−𝑘,

which are linear in ∇𝑘−𝑖
𝜕𝑠

|𝑐′|. Similarly,

∇𝑘
𝜕𝜃
ℎ = |𝑐′|𝑘∇𝑘

𝜕𝑠ℎ+
𝑘−1∑︁
𝑖=1

𝑄𝑖,𝑘∇𝑖
𝜕𝑠ℎ

where 𝑄𝑖,𝑘 is a polynomial in the variables |𝑐′|,∇𝜕𝑠 |𝑐′|, . . . ,∇𝑘−𝑖
𝜕𝑠

|𝑐′| and the

variables |𝑐′|, . . . , |𝑐′|𝑘−1, which are linear in∇𝑘−𝑖
𝜕𝑠

|𝑐′|. Using Lemma 5.10 and
Lemma 5.12, we therefore have that for 𝑘 < 𝑛, 𝑃𝑖,𝑘 and 𝑄𝑖,𝑘 are uniformly
bounded on any metric ball, and so are |𝑐′|±1, hence

|∇𝑘
𝜕𝑠ℎ| ≲

𝑘∑︁
𝑖=1

|∇𝑖
𝜕𝜃ℎ|, |∇𝑘

𝜕𝜃ℎ| ≲
𝑘∑︁

𝑖=1

|∇𝑖
𝑘ℎ|,

uniformly on every metric ball. The bound on |𝑐′|±1 also implies that inte-
gration with respect to d𝑠 or d𝜃 are equivalent, hence
(5.9)

‖∇𝑘
𝜕𝑠ℎ‖𝐿2( d𝑠) ≲

𝑘∑︁
𝑖=1

‖∇𝑖
𝜕𝜃ℎ‖𝐿2( d𝜃), ‖∇𝑘

𝜕𝜃ℎ‖𝐿2( d𝜃) ≲
𝑘∑︁

𝑖=1

‖∇𝑖
𝑘ℎ‖𝐿2( d𝑠),
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uniformly on every metric ball.
For 𝑘 = 𝑛, we have, uniformly on every metric ball,

|∇𝑛
𝜕𝑠ℎ| ≲

⃒⃒
∇𝑛−1

𝜕𝑠
|𝑐′|
⃒⃒
|∇𝜕𝜃ℎ|+

𝑛∑︁
𝑖=2

|∇𝑖
𝜕𝜃
ℎ|

and

|∇𝑛
𝜕𝜃ℎ| ≲

⃒⃒
∇𝑛−1

𝜕𝑠
|𝑐′|
⃒⃒
|∇𝜕𝑠ℎ|+

𝑛∑︁
𝑖=2

|∇𝑖
𝜕𝑠ℎ|,

and therefore, invoking Lemma 5.12 again and using (5.8), we have,

(5.10) ‖∇𝑛
𝜕𝑠ℎ‖𝐿2( d𝑠) ≲ ‖∇𝜕𝜃ℎ‖𝐿∞ +

𝑛∑︁
𝑖=2

‖∇𝑖
𝜕𝜃
ℎ‖𝐿2( d𝜃) ≲ 𝐶‖ℎ‖ℋ

and, using (5.2) again,
(5.11)

‖∇𝑛
𝜕𝜃ℎ‖𝐿2( d𝜃) ≲ ‖∇𝜕𝑠ℎ‖𝐿∞ +

𝑛∑︁
𝑖=2

‖∇𝑖
𝜕𝑠ℎ‖𝐿2( d𝑠) ≲ ‖ℎ‖𝐺𝑐 +

𝑛∑︁
𝑖=2

‖∇𝑖
𝜕𝑠ℎ‖𝐿2( d𝑠).

Since (5.1) holds, we have by Lemma 5.9 that ℓ𝑐 is uniformly bounded
from above and below on metric balls, hence all the coefficient functions
𝑎𝑖(ℓ𝑐) ≥ 0 are bounded from above on metric balls, and 𝑎0, 𝑎𝑛 are also
bounded away from zero. We therefore have that, on each metric ball

‖ℎ‖𝐿2( d𝑠) + ‖∇𝑛
𝜕𝑠ℎ‖𝐿2( d𝑠) ≲ ‖ℎ‖𝐺𝑐 ≲

𝑛∑︁
𝑖=0

‖∇𝑖
𝜕𝑠ℎ‖𝐿2( d𝑠).

Since ℓ𝑐 is bounded from below and above uniformly on metric balls, Lemma 4.2
enables us to improve that to

𝑛∑︁
𝑖=0

‖∇𝑖
𝜕𝑠ℎ‖𝐿2( d𝑠) ≲ ‖ℎ‖𝐺𝑐 ≲

𝑛∑︁
𝑖=0

‖∇𝑖
𝜕𝑠ℎ‖𝐿2( d𝑠)

Combining this with the estimate (5.9), (5.10) and (5.11) immediately imply

‖ℎ‖ℋ𝑐 ≲ ‖ℎ‖𝐺 ≲ ‖ℎ‖ℋ𝑐 ,

uniformly on metric balls. In particular, this implies (5.4) and show that 𝐺 is
a strong metric, thus all the assumptions of Propositions 5.5–5.6 are satisfied,
which completes the proof of metric completeness. As stated before, geodesic
completeness follows directly as for strong Riemannian metrics (in infinite
dimensions) metric completeness still implies geodesic completeness, see,
e.g., [24, VIII, Proposition 6.5].

We now remove the assumption that 𝐺 is of the type (1.2), and only

assume that it is a smooth metric that satisfies (5.1)–(5.3). Denote by 𝐺̃
the metric

‖ℎ‖2
𝐺̃𝑐

:= ‖ℎ‖2𝐿2( d𝑠) + ℓ−1
𝑐 ‖∇𝜕𝑠ℎ‖2𝐿2( d𝑠) + ‖∇𝑛

𝜕𝑠ℎ‖𝐿2( d𝑠).

This metric is of the type (1.2), and in Section 5.4 below we show that this
metric indeed satisfies (5.1)–(5.3). Therefore, it is metrically complete.

Now assume that 𝐺 is another metric that satisfies (5.1)–(5.3). We claim
that on every metric ball 𝐵𝐺(𝑐0, 𝑟), there exists a constant 𝐶 = 𝐶(𝑐0, 𝑟)
such that ‖ · ‖𝐺̃𝑐

≤ 𝐶‖ · ‖𝐺𝑐 . Indeed, assumptions (5.1) and (5.3) imply
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that 𝐺 controls the second and third addends in the definition on 𝐺̃; since

‖ℎ‖𝐿∞ ≥ ℓ
−1/2
𝑐 ‖ℎ‖𝐿2( d𝑠), assumption (5.2) for 𝑘 = 0 and Lemma 5.9 imply

that 𝐺 controls the second addend in 𝐺̃ as well (uniformly on every metric

ball). This implies, in particular, that 𝐺 is a strong metric (since 𝐺̃ is).

The proof is now concluded by similar arguments as Section 5.1 (with 𝐺̃
instead of ℋ): Let 𝑐𝑘 ∈ (ℐ𝑛(𝐷,𝒩 ),dist𝐺) be a Cauchy sequence. It follows

that 𝑐𝑘 is also a Cauchy sequence in (ℐ𝑛(𝐷,𝒩 ), dist𝐺̃). Since (ℐ𝑛(𝐷,𝒩 ),dist𝐺̃)

is metrically complete, 𝑐𝑘 converges in (ℐ𝑛(𝐷,𝒩 ),dist𝐺̃) to some limit 𝑐 ∈
ℐ𝑛(𝐷,𝒩 ). Since both 𝐺 and 𝐺̃ are strong metrics on ℐ𝑛(𝐷,𝒩 ), they in-
duce the same topology. Therefore, 𝑐𝑘 → 𝑐 in (ℐ𝑛(𝐷,𝒩 ), dist𝐺) as well, thus
proving metric completeness, from which geodesic completeness follows as
before.

5.4. Proof of Theorem 5.3. Length weighted case. If both 𝑎0(𝑥) ≥
𝛼𝑥−3 and 𝑎𝑘(𝑥) ≥ 𝛼𝑥2𝑘−3 for some 𝑘 > 1, then by (4.2) we have that

ℓ−1
𝑐 ‖∇𝜕𝑠ℎ‖2𝐿2( d𝑠) ≤ 𝐶‖ℎ‖2𝐺

for some 𝐶 > 0. This is also obviously true if 𝑎1(𝑥) ≥ 𝛼𝑥−1. Thus (5.1)
holds, and from Lemma 5.9 we obtain that the length function 𝑐 ↦→ ℓ𝑐 is
bounded from above and away from zero on any metric ball. Since 𝐺 is of
the type (1.2), we have that

‖ℎ‖2𝐺𝑐
≥ 𝑎0(ℓ𝑐)‖ℎ‖2𝐿2( d𝑠) + 𝑎𝑛(ℓ𝑐)‖∇𝑛

𝜕𝑠ℎ‖
2
𝐿2( d𝑠),

and the bound on the length implies that on each metric ball, the constants
𝑎0(ℓ𝑐) and 𝑎𝑛(ℓ𝑐) are bounded away from zero. This immediately implies
(5.3), and also that on every metric ball

‖ℎ‖2𝐺𝑐
≥ 𝐶(‖ℎ‖2𝐿2( d𝑠) + ‖∇𝑛

𝜕𝑠ℎ‖
2
𝐿2( d𝑠)),

for some 𝐶 > 0. On the other hand, using (4.3) with 𝑎 = ℓ𝑐 we have, for
every 𝑘 = 0, . . . , 𝑛− 1,

‖∇𝑘
𝜕𝑠ℎ‖

2
𝐿∞ ≤ 𝐶

(︁
ℓ−2𝑘−1
𝑐 ‖ℎ‖2𝐿2( d𝑠) + ℓ2(𝑛−𝑘)−1

𝑐 ‖∇𝑛
𝜕𝑠ℎ‖

2
𝐿2( d𝑠)

)︁
,

hence on each metric ball, we have

‖∇𝑘
𝜕𝑠ℎ‖

2
𝐿∞ ≤ 𝐶 ′

(︁
‖ℎ‖2𝐿2( d𝑠) + ‖∇𝑛

𝜕𝑠ℎ‖
2
𝐿2( d𝑠)

)︁
≤ 𝐶 ′′‖ℎ‖2𝐺𝑐

,

which implies (5.2).
Constant coefficient case. Assume that 𝑎0 and 𝑎𝑛 are positive con-

stants. We then immediately have (5.3). Furthermore, using (4.4) for 𝑘 = 1,
we have

‖∇𝜕𝑠ℎ‖2𝐿2( d𝑠) ≤ 𝐶ℓ2𝑐‖ℎ‖2𝐺𝑐

for some constant 𝐶 that is independent of the curve 𝑐.5 This implies (5.1),
and hence the boundedness of 𝑐 ↦→ ℓ𝑐 by Lemma 5.9. The proof of (5.2)
now follows in the same manner as the length weighted case.

5This is the crucial point in which the improved estimates for closed curves in
Lemma 4.2 are needed.
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5.5. Proof of Theorem 5.2: existence of minimizing geodesics. We
now prove that any two immersions in the same connected component can
be joined by a minimizing geodesic. The approach is a variational one: we
consider the energy

𝐸(𝑐) :=

∫︁ 1

0
𝐺𝑐(𝑐̇, 𝑐̇) d𝑡,

defined on the set

𝐴𝑐0,𝑐1 :=
{︁
𝑐 : [0, 1] → ℐ𝑛(𝐷,𝒩 ) : 𝑐̇ ∈ 𝐿2((0, 1);𝐻𝑛(𝐷; 𝑐*𝑇𝑁)),

𝑐(0) = 𝑐0, 𝑐(1) = 𝑐1

}︁
,

where 𝑐0, 𝑐1 ∈ ℐ𝑛(𝐷,𝒩 ) are two immersions in the same connected compo-
nent (thus 𝐴𝑐0,𝑐1 is a non-empty set). We aim to show that there exists a
minimizer to 𝐸 over 𝐴𝑐0,𝑐1 , which is, by definition, a minimizing geodesic.

We prove the existence of minimizers using the direct methods in the
calculus of variations; namely, we take a minimizing sequence 𝑐𝑗 , prove
that it is weakly sequentially precompact, and that any limit point must
be a minimizer. In order to use weak convergence, we embed the curves
in a Hilbert space, which neither ℐ𝑛(𝐷,𝒩 ) or 𝐻𝑛(𝐷,𝒩 ) are (this is the
point where 𝒩 -valued curves differ from R𝑑-valued curves treated in [12,
Theorem 5.2]). To this end, we again isometrically embed 𝒩 into R𝑚 for
some large enough 𝑚 ∈ 𝒩 , as in the definition of 𝐻𝑛(𝐷,𝒩 ) that we started
with (Definition 2.1). This will require us, as in Section 2, to use Lemma 2.3
to relate the metric ℋ on 𝐻𝑛(𝐷,𝒩 ) with the standard Sobolev norm on
𝐻𝑛(𝐷;R𝑚).

Let now 𝑐𝑗 ∈ 𝐴𝑐0,𝑐1 be a minimizing sequence of 𝐸, that is,

𝐸(𝑐𝑗) → inf
𝐴𝑐0,𝑐1

𝐸.

In particular, 𝐸(𝑐𝑗) is a bounded sequence. Denote by 𝑅2 its supremum.
We also fix an isometric embedding 𝜄 : 𝒩 → R𝑚, and, using this embedding,
we consider 𝑐𝑗 as elements of the Hilbert space 𝐻1([0, 1];𝐻𝑛(𝐷;R𝑚)).
Step I: The family (𝑐𝑗(𝑡))𝑗∈N,𝑡∈[0,1] lies in a bounded ball around 𝑐0.

Fix 𝑡0 ∈ [0, 1] and 𝑗 ∈ N. Since 𝑐𝑗 : [0, 𝑡0] → ℐ𝑛(𝐷,𝒩 ) is a path from 𝑐0 to
𝑐𝑗(𝑡0), we have

dist2𝐺(𝑐
𝑗(𝑡0), 𝑐0) ≤

(︂∫︁ 𝑡0

0
‖𝑐̇𝑗(𝑡)‖𝐺

𝑐𝑗(𝑡)
d𝑡

)︂2

≤
∫︁ 1

0
‖𝑐̇𝑗(𝑡)‖2𝐺

𝑐𝑗(𝑡)
d𝑡 = 𝐸(𝑐𝑗) ≤ 𝑅2.

Therefore, (𝑐𝑗(𝑡))𝑗∈N,𝑡∈[0,1] ⊂ 𝐵(𝑐0, 𝑅), where the ball is with respect to the
metric 𝐺.
Step II: The family (𝑐𝑗)𝑗∈N is a bounded set in 𝐻1([0, 1];𝐻𝑛(𝐷;R𝑚)).
Since 𝐺 satisfies (5.1)–(5.3), we have that (5.4) hold uniformly on 𝐵(𝑐0, 𝑅),
that is, there exists 𝐶 > 0 such that

𝐶−1‖ℎ‖ℋ𝑐 ≤ ‖ℎ‖𝐺𝑐 ≤ 𝐶‖ℎ‖ℋ𝑐 , for all 𝑐 ∈ 𝐵(𝑐0, 𝑅), ℎ ∈ 𝐻𝑛(𝐷; 𝑐*𝑇𝒩 ).

This was proved in Section 5.3. Moreover, from Lemmata 5.11–5.12, we
have that the assumptions of Lemma 2.3 hold uniformly on 𝐵(𝑐0, 𝑅), hence,
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combining with the above inequality, we obtain that there exists 𝐶 > 0 such
that

𝐶−1‖ℎ‖𝐻𝑛(𝜄) ≤ ‖ℎ‖𝐺𝑐 ≤ 𝐶‖ℎ‖𝐻𝑛(𝜄), for all 𝑐 ∈ 𝐵(𝑐0, 𝑅), ℎ ∈ 𝐻𝑛(𝐷; 𝑐*𝑇𝒩 ).

Since (𝑐𝑗(𝑡))𝑗∈N,𝑡∈[0,1] ⊂ 𝐵(𝑐0, 𝑅), we obtain that for any fixed 𝑡0 and 𝑗,

‖𝑐0 − 𝑐𝑗(𝑡0)‖2𝐻𝑛(𝜄) =

∫︁
𝐷
|𝑐0 − 𝑐𝑗(𝑡0)|2 + |𝜕𝑛

𝜃 (𝑐0 − 𝑐𝑗(𝑡0))|2 d𝜃

=

∫︁
𝐷

⃒⃒⃒⃒∫︁ 𝑡0

0
𝑐̇𝑗(𝑡) d𝑡

⃒⃒⃒⃒2
+

⃒⃒⃒⃒∫︁ 𝑡0

0
𝜕𝑛
𝜃 𝑐̇

𝑗(𝑡0) d𝑡

⃒⃒⃒⃒2
d𝜃

≤
∫︁
𝐷

∫︁ 1

0
|𝑐̇𝑗(𝑡)|2 + |𝜕𝑛

𝜃 𝑐̇
𝑗(𝑡0)|2 d𝑡 d𝜃

=

∫︁ 1

0
‖𝑐̇𝑗(𝑡)‖2𝐻𝑛(𝜄) d𝑡

= 𝐶

∫︁ 1

0
‖𝑐̇𝑗(𝑡)‖2𝐺

𝑐𝑗(𝑡)
d𝑡 ≤ 𝐶𝑅2.

And therefore

‖𝑐𝑗‖2𝐻1([0,1];𝐻𝑛(𝐷;R𝑚)) =

∫︁ 1

0
‖𝑐𝑗(𝑡)‖2𝐻𝑛(𝜄) + ‖𝑐̇𝑗(𝑡)‖2𝐻𝑛(𝜄) d𝑡

≤
∫︁ 1

0
2‖𝑐0‖2𝐻𝑛(𝜄) + 2‖𝑐0 − 𝑐𝑗(𝑡0)‖2𝐻𝑛(𝜄) d𝑡+

∫︁ 1

0
‖𝑐̇𝑗(𝑡)‖2𝐻𝑛(𝜄) d𝑡

≤
∫︁ 1

0
2‖𝑐0‖2𝐻𝑛(𝜄) + 2𝐶𝑅2 d𝑡+ 𝐶

∫︁ 1

0
‖𝑐̇𝑗(𝑡)‖2𝐺

𝑐𝑗(𝑡)
d𝑡

≤ 3𝐶𝑅2 + 2‖𝑐0‖2𝐻𝑛(𝜄)

Hence, the sequence 𝑐𝑗 is bounded in the Hilbert space𝐻1([0, 1];𝐻𝑛(𝐷;R𝑚)).
Therefore, it has a subsequence (not relabeled) that weakly converges to
some 𝑐* ∈ 𝐻1([0, 1];𝐻𝑛(𝐷;R𝑚)).
Step III: The limit point 𝑐* belongs to 𝐴𝑐0,𝑐1. Let 𝜀 ∈ (0, 1/2). We then
have that the embedding 𝐻1([0, 1];𝐻𝑛(𝐷;R𝑚)) ⊂ 𝐶([0, 1];𝐻𝑛−𝜀(𝐷;R𝑚))
is compact (due to the Aubin–Lions–Simon Lemma6) and 𝐻𝑛−𝜀(𝐷;R𝑚) is
compactly embedded in 𝐶𝑛−1(𝐷;R𝑚). In particular, we thus have that
𝑐𝑗 → 𝑐* in the strong topology of 𝐶([0, 1];𝐶𝑛−1(𝐷;R𝑚)). Since 𝑐𝑗(𝜃) ∈ 𝒩
for all 𝑗 and 𝜃, the uniform convergence implies that 𝑐*(𝜃) ∈ 𝒩 for all 𝜃 as
well. Since 𝑐𝑗(0) = 𝑐0 and 𝑐𝑗(1) = 𝑐1 for all 𝑗, the same holds for 𝑐*. Finally,
since 𝑐𝑗(𝑡) ∈ 𝐵(𝑐0, 𝑅) for every 𝑗 and 𝑡, Lemma 5.10 implies that

|𝜕𝜃𝑐𝑗(𝑡, 𝜃)| > 𝛼

for some 𝛼 > 0. Since 𝑐𝑗 → 𝑐* in 𝐶([0, 1];𝐶𝑛−1(𝐷;R𝑚)), the same holds for
𝑐*, hence 𝑐* ∈ ℐ𝑛(𝐷,𝒩 ). This shows that indeed 𝑐* ∈ 𝐴𝑐0,𝑐1 .
Step IV: Weak convergence of derivatives. It will be helpful now to
emphasize the particular curve that is used to define the ∇𝜕𝑠 derivative.

6See, e.g., [11, Theorem II.5.16]. With the respect to the notation there we use the
lemma for 𝑝 = ∞, 𝑟 = 2, 𝐵0 = 𝐻𝑛, 𝐵1 = 𝐻𝑛−𝜀 and 𝐵2 = 𝐻𝑛−1. We can use 𝑝 = ∞
because 𝐻1 embeds in 𝐿∞.
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Therefore, for the rest of this proof, denote 𝐷𝑐𝑗 := |𝑐𝑗 |−1∇𝒩
𝜕𝜃. We now show

that, for 𝑘 = 0, . . . , 𝑛, we have

(5.12) 𝐷𝑛
𝑐𝑗 𝑐̇

𝑗 ⇀ 𝐷𝑛
𝑐* 𝑐̇

* in 𝐿2([0, 1];𝐿2(𝐷;R𝑚)).

By the definition of 𝑐*, we have that

𝑐̇𝑗 ⇀ 𝑐̇* in 𝐿2([0, 1];𝐻𝑛(𝐷;R𝑚)),

hence the case 𝑘 = 0 is immediate. We will show that for 𝑘 = 1, . . . , 𝑛,

(5.13) ℎ𝑗 ⇀ ℎ in 𝐿2([0, 1];𝐻𝑘(𝐷;R𝑚))

implies

(5.14) 𝐷𝑐𝑗ℎ
𝑗 ⇀ 𝐷𝑐*ℎ in 𝐿2([0, 1];𝐻𝑘−1(𝐷;R𝑚)),

from which (5.12) follows by induction. First, considering all the vector
fields as sections of 𝐷 × R𝑚, we have that

𝐷𝑐𝑗ℎ
𝑗 =

1

|𝜕𝜃𝑐𝑗 |
(︀
𝜕𝜃ℎ

𝑗 − II𝑐𝑗 (𝜕𝜃𝑐
𝑗 , ℎ𝑗)

)︀
, 𝐷𝑐*ℎ =

1

|𝜕𝜃𝑐*|
(𝜕𝜃ℎ− II𝑐*(𝜕𝜃𝑐

*, ℎ)) ,

where the subscript of II denotes the point where it is evaluated (recall that
II is the second fundamental form of 𝒩 in R𝑚).

Since 𝑐𝑗 → 𝑐* in 𝐶([0, 1];𝐶𝑛−1(𝐷;R𝑚)) and |𝜕𝜃𝑐𝑗 | is uniformly bounded
from below, we have that |𝜕𝜃𝑐𝑗 |−1 → |𝜕𝜃𝑐*|−1 uniformly (in 𝑡 and 𝜃). In
particular, since II𝑐𝑗 are uniformly bounded bilinear forms (this follows
again from Lemma 5.11), it follows that 𝐷𝑐𝑗ℎ

𝑗 is a bounded sequence in
𝐿2([0, 1];𝐻𝑘−1(𝐷;R𝑚)). Therefore, in order to prove (5.14), it is enough to
check it with respect to smooth test functions. Let 𝑢 ∈ 𝐶([0, 1];𝐶∞(𝐷;R𝑚)),

and denote 𝑤 = 𝑢+ (−1)𝑘−1𝜕2𝑘−2
𝜃 𝑢; we then have⟨︀

𝐷𝑐𝑗ℎ
𝑗 −𝐷𝑐*ℎ, 𝑢

⟩︀
𝐿2([0,1];𝐻𝑘−1(𝐷;R𝑚))

=
⟨︀
𝐷𝑐𝑗ℎ

𝑗 −𝐷𝑐*ℎ,𝑤
⟩︀
𝐿2([0,1];𝐿2(𝐷;R𝑚))

.

Since |𝜕𝜃𝑐𝑗 |−1 → |𝜕𝜃𝑐*|−1 uniformly, the right-hand side converges to zero if⟨︀
𝜕𝜃ℎ

𝑗 − 𝜕𝜃ℎ,𝑤
⟩︀
𝐿2([0,1];𝐿2(𝐷;R𝑚))

→ 0,⟨︀
II𝑐𝑗 (𝜕𝜃𝑐

𝑗 , ℎ𝑗)− II𝑐*(𝜕𝜃𝑐
*, ℎ), 𝑤

⟩︀
𝐿2([0,1];𝐿2(𝐷;R𝑚))

→ 0.

The first one follows from (5.13). The second one follows also from (5.13),
using in additon the fact that 𝑐𝑗 → 𝑐* in 𝐶([0, 1];𝐶𝑛−1(𝐷;R𝑚)) implies that
II𝑐𝑗 → II𝑐* uniformly, and 𝜕𝜃𝑐

𝑗 → 𝜕𝜃𝑐
* uniformly. This completes the proof

of (5.14), and hence also of (5.12).
Step V: 𝑐* is a minimizer. Using the embedding 𝜄, and considering all
curves as curves in R𝑚, we can write the energy as

𝐸(𝑐) =
𝑛∑︁

𝑘=0

∫︁ 1

0

∫︁ 2𝜋

0
𝑎𝑘(ℓ𝑐)|𝐷𝑘

𝑐 𝑐̇|2|𝜕𝜃𝑐| d𝜃 d𝑡

=
𝑛∑︁

𝑘=0

‖
√︀
𝑎𝑘(ℓ𝑐)

√︀
|𝜕𝜃𝑐|𝐷𝑘

𝑐 𝑐̇‖2𝐿2([0,1];𝐿2(𝐷;R𝑚)),

where the transition to the second line uses the fact that 𝜄 is an isometric em-
bedding. Since 𝑐𝑗 → 𝑐* in 𝐶([0, 1];𝐶𝑛−1(𝐷;R𝑚)), we have that

√︀
𝑎𝑘(ℓ𝑐𝑗 ) →
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𝑎𝑘(ℓ𝑐*) uniformly (for 𝑘 = 0, . . . , 𝑛), and that

√︀
|𝜕𝜃𝑐𝑗 | →

√︀
|𝜕𝜃𝑐*| uni-

formly. Therefore, (5.12) implies that for all 𝑘 = 0, . . . , 𝑛,√︀
𝑎𝑘(ℓ𝑐𝑗 )

√︁
|𝜕𝜃𝑐𝑗 |𝐷𝑘

𝑐𝑗 𝑐̇
𝑗 ⇀

√︀
𝑎𝑘(ℓ𝑐*)

√︀
|𝜕𝜃𝑐*|𝐷𝑘

𝑐* 𝑐̇
* in 𝐿2([0, 1];𝐿2(𝐷;R𝑚)).

Since the map 𝑥 ↦→ ‖𝑥‖2 in a Hilbert space is weakly sequentially lower
semicontinuous, we obtain that

inf
𝐴𝑐0,𝑐1

𝐸 ≤ 𝐸(𝑐*) ≤ lim inf 𝐸(𝑐𝑗) → inf
𝐴𝑐0,𝑐1

𝐸,

hence 𝑐* is a minimizer.

5.6. Geodesic completeness in the smooth category. For closed curves,
i.e., 𝐷 = 𝑆1 we obtain also completeness in the smooth category using the
no-loss-no-gain result.

Corollary 5.13. Let 𝑛 ≥ 2 and let 𝐺 be a smooth Riemannian metric on
ℐ𝑛(𝑆1,𝒩 ). Assume that for every metric ball 𝐵(𝑐0, 𝑟) ∈ (ℐ𝑛(𝑆1,𝒩 ),dist𝐺),
there exists a constant 𝐶 = 𝐶(𝑐0, 𝑟) > 0 such that conditions from theorem
5.1 hold, i.e.,

‖ℎ‖𝐺𝑐 ≥ 𝐶ℓ−1/2
𝑐 ‖∇𝜕𝑠ℎ‖𝐿2( d𝑠),(5.1)

‖ℎ‖𝐺𝑐 ≥ 𝐶‖∇𝑘
𝜕𝑠ℎ‖𝐿∞ 𝑘 = 0, . . . , 𝑛− 1,(5.2)

‖ℎ‖𝐺𝑐 ≥ 𝐶‖∇𝑛
𝜕𝑠ℎ‖𝐿2 .(5.3)

Then the space (Imm(𝑆1,𝒩 ), 𝐺|Imm(𝑆1,𝒩 )) is geodesically complete, where
𝐺|Imm(𝑆1,𝒩 ) is the restriction of the metric 𝐺 to the space of smooth immer-
sions.

Proof. The proof of this result follows directly by applying Lemma A.1, for
𝑉 = 𝑇ℐ𝑛(𝐷,𝒩 ), an open subset of 𝐻𝑛(𝐷,𝑇𝒩 ), and 𝐹 the exponential map
of 𝐺. □

For open curves 𝐷 = [0, 2𝜋] one has to be slightly more careful, due to
the potential loss of smoothness at the boundary; in this case Lemma A.1
only yields that solutions to the geodesic equation with smooth initial data
remain at all times in ℐ𝑛([0, 2𝜋],𝒩 ) ∩ 𝐶∞((0, 2𝜋),𝒩 ).

6. Incompleteness of constant coefficient metrics on open
curves

In our main result we have seen a significant difference between open and
closed curves: while we prove that the constant coefficient metrics of order
𝑛 ≥ 2 are geodesically and metrically complete on spaces of closed curves,
for open curves we had to assume certain non-trivial length-weighted co-
efficients. In fact, for open curves with values in R𝑑 it has been observed
in [4, Remark 2.7] that constant coefficient Sobolev metrics are in fact met-
rically incomplete, by constructing an explicit example of a path that leaves
the space in finite time. Essentially, they showed that one can shrink a
straight line to a point using finite energy. This behavior does not appear
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for closed curves as blow-up of curvature is an obstruction and thus ensures
the completeness of the space.7 The goals of this section are twofold:

(1) to extend the example of metric incompleteness from [4] (Exam-
ple 6.1);

(2) to show that shrinking to a point is the only possibility to leave the
space with finite energy (Theorem 6.3), and deduce from it a con-
dition that ensures the existence of geodesics between given curves
(Theorem 6.7).

The following example of metric incompleteness is a generalization of the
example given in [4, Remark 2.7]. We only present it for R2-valued curves
for the sake of clarity; it can be adapted easily to arbitrary target manifolds
(disappearing along a geodesic instead of a straight line).

Example 6.1. Consider ℐ𝑛([0, 2𝜋];R2) with the metric

‖ℎ‖2𝐺𝑐
= ‖ℎ‖2𝐿2( d𝑠) + ‖∇𝑛

𝜕𝑠ℎ‖
2
𝐿2( d𝑠).

Consider the path 𝑐 : [0, 1) → ℐ𝑛, defined by

𝑐(𝑡, 𝜃) = ((1− 𝑡)(𝜃 − 𝜋) + 𝑓(𝑡), 𝑔(𝑡))

for some smooth functions 𝑓, 𝑔 : [0, 1) → R to be determined. Note that

𝑐𝜃 = (1− 𝑡, 0), 𝑐𝑡 = (−(𝜃 − 𝜋) + 𝑓 ′(𝑡), 𝑔′(𝑡)),

∇𝜕𝑠𝑐𝑡 =

(︂
−1

1− 𝑡
, 0

)︂
, ∇𝑘

𝜕𝑠𝑐𝑡 = 0 for 𝑘 > 1.

Hence

‖𝑐𝑡‖2𝐺𝑐
=

∫︁ 2𝜋

0

(︀
(𝑓 ′(𝑡)− (𝜃 − 𝜋))2 + 𝑔′(𝑡)2

)︀
(1− 𝑡) d𝜃

= 2𝜋(1− 𝑡)

(︂
𝜋2

3
+ 𝑓 ′(𝑡)2 + 𝑔′(𝑡)2

)︂
,

and therefore

length(𝑐) =

∫︁ 1

0
‖𝑐𝑡‖𝐺𝑐 =

√
2𝜋

∫︁ 1

0
(1− 𝑡)1/2

(︂
𝜋2

3
+ 𝑓 ′(𝑡)2 + 𝑔′(𝑡)2

)︂1/2

d𝑡

≤
√
2𝜋

∫︁ 1

0
(1− 𝑡)1/2

(︂
𝜋√
3
+ |𝑓 ′(𝑡)|+ |𝑔′(𝑡)|

)︂
d𝑡,

hence length(𝑐) < ∞ if
∫︀ 1
0 |𝑓 ′(𝑡)|(1−𝑡)1/2 d𝑡 < ∞ and similarly for 𝑔. Under

these restrictions on 𝑓 and 𝑔 many things can happen, for example:

(1) For 𝑓 = 𝑔 = 0 we obtain that 𝑐 converges, as 𝑡 → 1, to the constant
curve at the origin;

(2) For 𝑓(𝑡) = 𝑡𝑥0 and 𝑔(𝑡) = 𝑡𝑦0, 𝑐 converges to the constant curve at
(𝑥0, 𝑦0).

(3) For 𝑓(𝑡) = − log(1− 𝑡) and 𝑔 = 0, 𝑐 converges to a point at infinity
at the positive end of the 𝑥 axis.

7This is true for metrics of order 𝑛 ≥ 2 that are discussed in this paper. Metrics of
order 𝑛 < 2 are not strong enough to detect this curvature blowup, which results in metric-
and geodesic-incompleteness, as seen in [28, Section 6.1].
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(4) For 𝑓(𝑡) = sin(− log(1− 𝑡)) and 𝑔 = 0, 𝑐 does not converge pointwise
to anything in R2.

Note that this analysis does not change if we replace 𝐺 with another
constant coefficient metric. This shows that (ℐ𝑛([0, 2𝜋];R2), dist𝐺) is not
metrically complete. However, from the point of view of the metric com-
pletion, all these different choices of 𝑓 and 𝑔 are the same point in the
completion — indeed, let

𝑐𝑖(𝑡, 𝜃) = ((1− 𝑡)(𝜃 − 𝜋) + 𝑓𝑖(𝑡), 𝑔𝑖(𝑡)), 𝑖 = 1, 2,

and define, for a fixed 𝑡 ∈ [0, 1), the path 𝛾𝑡(𝜏, 𝜃) as the affine homotopy
between 𝑐1(𝑡, ·) = 𝛾𝑡(0, ·) and 𝑐2(𝑡, ·) = 𝛾𝑡(1, ·), that is,

𝛾𝑡(𝜏, 𝜃) = ((1− 𝑡)(𝜃 − 𝜋) + 𝜏𝑓1(𝑡) + (1− 𝜏)𝑓2(𝑡), 𝜏𝑔1(𝑡) + (1− 𝜏)𝑔2(𝑡)).

Since |𝛾𝑡𝜃| = 1− 𝑡 and 𝛾𝑡𝜏 = (𝑓1(𝑡)− 𝑓2(𝑡), 𝑔1(𝑡)− 𝑔2(𝑡)) is independent of 𝜃
and 𝜏 , it follows immediately that

length(𝛾𝑡) ∝ 1− 𝑡.

Therefore,

dist𝐺(𝑐1(𝑡, ·), 𝑐2(𝑡, ·)) ≤ length(𝛾𝑡) ∝ 1− 𝑡 → 0

as 𝑡 → 1. This means, that in the metric completion, all the Cauchy se-
quences obtained by choosing different 𝑓s and 𝑔s are equivalent, hence con-
verge to a single point.

This example leads to the following open question:

Question 6.2. Let 𝐺 be a constant coefficient Sobolev metric of order 𝑛 ≥ 2
of the type (1.2) on ℐ𝑛([0, 2𝜋],𝒩 ). For 𝑖 = 1, 2, let 𝑐𝑖𝑛 ∈ ℐ𝑛([0, 2𝜋],𝒩 ) be
two Cauchy sequences with ℓ𝑐𝑖𝑛 → 0. Does it hold that

lim
𝑛→∞

dist𝐺(𝑐1𝑛, 𝑐
2
𝑛) = 0?

We now show that if a Cauchy sequence of curves does not converge, its
lengths must tend to zero:

Theorem 6.3. Let 𝐺 be a constant coefficient Sobolev metric of order 𝑛 ≥ 2
of the type (1.2) on ℐ𝑛([0, 2𝜋];𝒩 ), where both 𝑎0 and 𝑎𝑛 are strictly positive
constants. Assume that (𝑐𝑛)𝑛∈N ⊂ ℐ𝑛([0, 2𝜋];𝒩 ) is a Cauchy sequence with
respect to dist𝐺, whose lengths are bounded from below, that is ℓ𝑐𝑛 > 𝛿 > 0
for all 𝑛. Then 𝑐𝑛 converges to some 𝑐∞ ∈ ℐ𝑛([0, 2𝜋];𝒩 ).

Before proving this result we note a consequence of it: if the answer to
Question 6.2 is positive, then, together with Theorem 6.3, it would give
a positive answer to the following conjecture on the metric completion of
(ℐ𝑛([0, 2𝜋],𝒩 ),dist𝐺):

Question 6.4. Let 𝐺 be a constant coefficient Sobolev metric of order
𝑛 ≥ 2 of the type (1.2) on ℐ𝑛([0, 2𝜋],𝒩 ). Is the metric completion of
(ℐ𝑛([0, 2𝜋],𝒩 ), dist𝐺) given by ℐ𝑛([0, 2𝜋],𝒩 ) ∪ {0}, where {0} represents
the limit of all vanishing-length Cauchy sequences?
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In our infinite dimensional situation metric incompleteness does not imply
geodesic incompleteness. Furthermore the paths constructed in Example 6.1
are not geodesics (a direct calculations shows that the boundary equations
in the geodesic equations are not satisfied). This leads to the following
question:

Question 6.5. Let 𝐺 be a constant coefficient Sobolev metric of order 𝑛 ≥ 2
of the type (1.2) on ℐ𝑛([0, 2𝜋],𝒩 ). Is ℐ𝑛([0, 2𝜋],𝒩 ) geodesically complete?

We proceed with the proof of Theorem 6.3. We will need the following
lemma, which is similar to Lemma 5.9:

Lemma 6.6. Let 𝐺 be a Sobolev metric of order 𝑛 ≥ 2 on ℐ𝑛([0, 2𝜋],𝒩 ),
such that, for every ℎ ∈ 𝐻𝑛([0, 2𝜋], 𝑐*𝑇𝒩 ),

‖∇𝜕𝑠ℎ‖𝐿2( d𝑠) ≤ 𝐶max
{︀
1, ℓ−1

𝑐

}︀
‖ℎ‖𝐺𝑐

for some uniform constant 𝐶 > 0. Then, the function 𝑐 ↦→ ℓ
3/2
𝑐 is Lip-

schitz continuous on every metric ball in (ℐ𝑛([0, 2𝜋],𝒩 ),dist𝐺). Moreover,
the Lipschitz constant of in 𝐵(𝑐0, 𝑟) depends only on ℓ𝑐0 and 𝑟, and is an in-
creasing function of both, that is, there exists a function L(𝐶, ℓ, 𝑟), increasing
in all variables, such that

|ℓ3/2𝑐 − ℓ
3/2
𝑐 | ≤ L(𝐶, ℓ𝑐0 , 𝑟) dist

𝐺(𝑐, 𝑐) for every 𝑐, 𝑐 ∈ 𝐵(𝑐0, 𝑟).

Proof of Lemma 6.6. As in the proof of Lemma 5.9, we have

|𝐷𝑐,ℎℓ
3/2
𝑐 | ≤ 3

2
ℓ𝑐‖∇𝜕𝑠ℎ‖𝐿2( d𝑠) ≤

3

2
𝐶max {ℓ𝑐, 1} ‖ℎ‖𝐺𝑐 ≤

3

2
𝐶(1 + ℓ3/2𝑐 )‖ℎ‖𝐺𝑐

from which the claim follows by Lemma 5.7, with L(𝐶, ℓ, 𝑟) := 𝐿(𝐶, ℓ3/2, 𝑟).
□

Proof of Theorem 6.3. Assume that 𝑐𝑛 is a Cauchy sequence with ℓ𝑐𝑛 > 𝛿
for some 𝛿 > 0.

Since 𝐺 has constant coefficients (with 𝑎0, 𝑎𝑛 > 0), we have, using (4.2)
for 𝑘 = 1, that

‖∇𝜕𝑠ℎ‖2𝐿2( d𝑠) ≤ 𝐶max
{︀
1, ℓ−2

𝑐

}︀(︁
‖ℎ‖2𝐿2( d𝑠) + ‖∇𝑛

𝜕𝑠ℎ‖𝐿2( d𝑠)

)︁
≤ 𝐶 ′max

{︀
1, ℓ−2

𝑐

}︀
‖ℎ‖2𝐺𝑐

,

where the constants 𝐶,𝐶 ′ depend only on 𝑛, 𝑎0 and 𝑎𝑛, hence we can apply
Lemma 6.6.

There exists 𝑁1 large enough such that 𝑐𝑛 ∈ 𝐵(𝑐𝑁1 , 1/2) for all 𝑛 ≥ 𝑁1.
Applying Lemma 6.6, for 𝐵(𝑐𝑁1 , 1) we obtain that there exists a constant ℓ̄,
depending on 𝑐𝑁1 such that

ℓ𝑐 ≤ ℓ̄ for all 𝑐 ∈ 𝐵(𝑐𝑁1 , 1).

In particular, this applies to all 𝑐𝑛 for 𝑛 ≥ 𝑁1.
Let L(𝐶 ′, ℓ, 𝑟) be the Lipschitz constant bound as in Lemma 6.6, and

denote 𝐿̄ := L(𝐶 ′, ℓ̄, 1). Denote 𝑟0 := min
{︁

𝛿3/2

2𝐿̄
, 1/2

}︁
. There exists an

index 𝑁2 > 𝑁1 such that for 𝑛 ≥ 𝑁2 we have that 𝑐𝑛 ∈ 𝐵(𝑐𝑁2 , 𝑟0/3), that
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is dist𝐺(𝑐𝑛, 𝑐𝑁 ) < 𝑟0/3. Applying Lemma 6.6 to 𝐵(𝑐𝑁2 , 𝑟0) and the bound
ℓ𝑐𝑁2

≤ ℓ̄, we have that⃒⃒⃒
ℓ3/2𝑐 − ℓ

3/2
𝑐

⃒⃒⃒
≤ 𝐿̄dist𝐺(𝑐, 𝑐) for every 𝑐, 𝑐 ∈ 𝐵(𝑐𝑁2 , 𝑟0).

Since ℓ𝑐𝑁2
> 𝛿, and 𝐵(𝑐𝑁2 , 𝑟0) ⊂ 𝐵(𝑐𝑁1 , 1), we obtain

(6.1) ℓ𝑐 ∈
[︂

𝛿

22/3
, ℓ̄

]︂
for every 𝑐 ∈ 𝐵(𝑐𝑁2 , 𝑟0).

Denote by𝐺′ the standard scale-invariant metric of order 𝑛 on ℐ𝑛([0, 2𝜋],𝒩 );
that is,

‖ℎ‖2𝐺′
𝑐
= ℓ−3

𝑐 ‖ℎ‖2𝐿2( d𝑠) + ℓ2𝑛−3
𝑐 ‖∇𝑛

𝜕𝑠ℎ‖
2
𝐿2( d𝑠).

Recall that (ℐ𝑛, dist𝐺
′
) is metrically complete by Theorem 5.3. Using (6.1)

and Lemma 4.1, it follows that 𝐺′ and 𝐺 are equivalent in 𝐵(𝑐𝑁2 , 𝑟0). From
here we continue in a similar way as in Propositions 5.5–5.6: Let 𝑐, 𝑐 ∈
𝐵(𝑐𝑁2 , 𝑟0/3), and 0 < 𝜀 < 𝑟0/3 − dist𝐺(𝑐, 𝑐). Let 𝛾 be a curve between 𝑐

and 𝑐 such that length𝐺(𝛾) < dist𝐺(𝑐, 𝑐)+𝜀. By triangle inequality, we have
that 𝛾 ⊂ 𝐵(𝑐𝑁2 , 𝑟0), and since 𝐺′ and 𝐺 are equivalent there, we have that
for some constant 𝐶 > 0 (independent of 𝛾),

dist𝐺
′
(𝑐, 𝑐) ≤ length𝐺

′
(𝛾) ≤ 𝐶 length𝐺(𝛾) < 𝐶(dist𝐺(𝑐, 𝑐) + 𝜀),

and since 𝜀 is arbitrarily small, we conclude that

dist𝐺
′
(𝑐, 𝑐) ≤ 𝐶 dist𝐺(𝑐, 𝑐), for every 𝑐, 𝑐 ∈ 𝐵(𝑐𝑁2 , 𝑟0/3).

Since for every 𝑛 ≥ 𝑁2, 𝑐𝑛 ∈ 𝐵(𝑐𝑁2 , 𝑟0/3), it follows that 𝑐𝑛 is a Cauchy

sequence with respect to 𝐺′ as well. Since (ℐ𝑛,dist𝐺
′
) is metrically complete,

we have that there exists 𝑐∞ ∈ ℐ𝑛 such that dist𝐺
′
(𝑐𝑛, 𝑐∞) → 0. Since both

𝐺 and 𝐺′ are strong metrics on ℐ𝑛, they induce the same topology [24, VII,
Proposition 6.1], and thus 𝑐𝑛 → 𝑐∞ ∈ ℐ𝑛 with respect to 𝐺 as well, which
completes the proof. □

From the arguments in the proof of Theorem 6.3, we also obtain that for
close enough immersions 𝑐0, 𝑐1 ∈ ℐ𝑛([0, 2𝜋];𝒩 ), there exists a connecting
minimizing geodesic:

Theorem 6.7. Let 𝐺 be a constant coefficient Sobolev metric of order 𝑛 ≥ 2
of the type (1.2) on ℐ𝑛([0, 2𝜋];𝒩 ), where both 𝑎0 and 𝑎𝑛 are strictly positive
constants. Let 𝑐0 ∈ ℐ𝑛([0, 2𝜋];𝒩 ). Then, there exists a constant 𝑟0, depend-
ing only on the coefficients 𝑎𝑘 and on ℓ𝑐0, such that for every 𝑐1 ∈ 𝐵(𝑐0, 𝑟0),
there exists a minimizing geodesic between 𝑐0 and 𝑐1.

Remark 6.8. The proof below, together with the bound (5.5), imply that
𝑟0 can be chosen such that

𝑟0 = 𝐶
ℓ
3/2
𝑐0

1 + ℓ
3/2
𝑐0

≥ 𝐶min

(︂
ℓ3/2𝑐0 ,

1

2

)︂
,

where 𝐶 depends only on the coefficients 𝑎𝑘, 𝑘 = 0, . . . , 𝑛. Note that we
do not know whether the existence of minimizing geodesics fails in general;
it might be that although the space in metrically incomplete, a minimizing
geodesic between any two curves 𝑐0, 𝑐1 ∈ ℐ𝑛([0, 2𝜋],𝒩 ) exists.
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Proof. As in Theorem 6.3, there exists a constant 𝐶, depending only on 𝑛,
𝑎0 and 𝑎𝑛 (or alternatively, on 𝑎𝑘, 𝑘 = 0, . . . , 𝑛) such that the assumption

of Lemma 6.6 holds. Fix 𝐿̃ := L(𝐶, ℓ𝑐0 , 1), where L(𝐶, ℓ, 𝑟) is the Lipschitz
constant function from Lemma 6.6. Let

𝑟0 = min

(︃
ℓ
3/2
𝑐0

2𝐿̃
, 1

)︃
.

It follows that

ℓ𝑐 ∈

[︃
1

22/3
ℓ𝑐0 ,

32/3

22/3
ℓ𝑐0

]︃
for every 𝑐 ∈ 𝐵(𝑐0, 𝑟0).

As in Theorem 6.3, it follows that in this ball 𝐺 is uniformly equivalent to
a scale-invariant Sobolev metric of order 𝑛 on ℐ𝑛([0, 2𝜋];𝒩 ), hence Lem-
mata 5.10–5.12 holds uniformly on 𝐵(𝑐0, 𝑟0) (rather than on every metric
ball).

Let 𝑐1 ∈ 𝐵(𝑐0, 𝑟0). Define the energy 𝐸(𝑐) and the set of paths 𝐴𝑐0,𝑐1 as
in Section 5.5. Let 𝑐 ∈ 𝐴𝑐0,𝑐1 , with length(𝑐) < 𝑟0. Assume that 𝑐 is has
constant speed; we then have

𝐸(𝑐) = length(𝑐)2 < 𝑟20.

Therefore,

inf
𝐴𝑐0,𝑐1

𝐸 < 𝑟20.

We can now take a minimizing sequence 𝑐𝑗 ∈ 𝐴𝑐0,𝑐1 , and assume without
loss of generality that 𝐸(𝑐𝑗) < 𝑟20 for all 𝑗. The proof now follows in the
same way as in Theorem 6.3. □

Appendix A. The geodesic equation

A.1. Proof of Lemma 3.3: the geodesic equation.

Proof of Lemma 3.3. To prove the formula for the geodesic equation we con-
sider of the energy of a path of immersions 𝑐(𝑡, 𝜃). Furthermore, we will treat
the zero and first order terms separately. Varying 𝑐(𝑡, 𝜃) in direction ℎ(𝑡, 𝜃)
with ℎ(0, 𝜃) = ℎ(1, 𝜃) = 0 we obtain for the zeroth order term:

𝑑

(︂∫︁ 1

0
𝑎0(ℓ𝑐)

∫︁
𝐷
𝑔(𝑐𝑡, 𝑐𝑡)|𝑐′| d𝜃 d𝑡

)︂
(ℎ)

=

∫︁ 1

0
𝑎′0(ℓ𝑐)𝐷𝑐,ℎℓ𝑐

∫︁
𝐷
𝑔(𝑐𝑡, 𝑐𝑡)|𝑐′|d𝜃 d𝑡

+

∫︁ 1

0
𝑎0(ℓ𝑐)

∫︁
𝐷
2𝑔(∇ℎ𝑐𝑡, 𝑐𝑡) + 𝑔(𝑐𝑡, 𝑐𝑡)𝑔(𝑣,∇𝜕𝑠ℎ) d𝑠 d𝑡

=

∫︁ 1

0

(︂
𝑎′0(ℓ𝑐)

∫︁
𝐷
𝑔(𝑣,∇𝜕𝑠ℎ) d𝑠

∫︁
𝐷
𝑔(𝑐𝑡, 𝑐𝑡) d𝑠

)︂
d𝑡

+

∫︁ 1

0

(︂
𝑎0(ℓ𝑐)

∫︁
𝐷
2𝑔(∇𝜕𝑡ℎ, 𝑐𝑡) + 𝑔(∇𝜕𝑠ℎ, 𝑣𝑔(𝑐𝑡, 𝑐𝑡)) d𝑠

)︂
d𝑡
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where we used in the last step that

(A.1) ∇ℎ𝑐𝑡 = ∇𝜕𝑡ℎ .

and the variation formula for the length ℓ𝑐 from Lemma 3.2. Here, as before,
𝑣 = 𝑐′/|𝑐′| is the unit length tangent vector to the curve 𝑐.

Similarly we calculate for the first order terms:

𝑑

(︂∫︁ 1

0
𝑎1(ℓ𝑐)

∫︁
𝐷
𝑔(∇𝜕𝑠𝑐𝑡,∇𝜕𝑠𝑐𝑡)|𝑐′|d𝜃 d𝑡

)︂
(ℎ)

=

∫︁ 1

0
𝑎′1(ℓ𝑐)

(︂∫︁
𝐷
𝑔(𝑣,∇𝜕𝑠ℎ) d𝑠

∫︁
𝐷
𝑔(∇𝜕𝑠𝑐𝑡,∇𝜕𝑠𝑐𝑡) d𝑠

)︂
d𝑡

+

∫︁ 1

0
𝑎1(ℓ𝑐)

(︂∫︁
𝐷
2𝑔(∇ℎ∇𝜕𝑠𝑐𝑡,∇𝜕𝑠𝑐𝑡) + 𝑔(∇𝜕𝑠𝑐𝑡,∇𝜕𝑠𝑐𝑡)𝑔(𝑣,∇𝜕𝑠ℎ) d𝑠

)︂
d𝑡

=

∫︁ 1

0
𝑎′1(ℓ𝑐)

(︂∫︁
𝐷
𝑔(𝑣,∇𝜕𝑠ℎ) d𝑠

∫︁
𝐷
𝑔(∇𝜕𝑠𝑐𝑡,∇𝜕𝑠𝑐𝑡) d𝑠

)︂
d𝑡

+

∫︁ 1

0
𝑎1(ℓ𝑐)

(︂∫︁
𝐷
2𝑔(−𝑔(𝑣,∇𝜕𝑠ℎ)∇𝜕𝑠𝑐𝑡 +∇𝜕𝑠∇ℎ𝑐𝑡 +ℛ(𝑣, ℎ)𝑐𝑡,∇𝜕𝑠𝑐𝑡) d𝑠

)︂
d𝑡

+

∫︁ 1

0
𝑎1(ℓ𝑐)

(︂∫︁
𝐷
𝑔(∇𝜕𝑠𝑐𝑡,∇𝜕𝑠𝑐𝑡)𝑔(𝑣,∇𝜕𝑠ℎ) d𝑠

)︂
d𝑡

=

∫︁ 1

0
𝑎′1(ℓ𝑐)

(︂∫︁
𝐷
𝑔(𝑣,∇𝜕𝑠ℎ) d𝑠

∫︁
𝐷
𝑔(∇𝜕𝑠𝑐𝑡,∇𝜕𝑠𝑐𝑡) d𝑠

)︂
d𝑡

+

∫︁ 1

0
𝑎1(ℓ𝑐)

(︂∫︁
𝐷
𝑔(−𝑔(𝑣,∇𝜕𝑠ℎ)∇𝜕𝑠𝑐𝑡 + 2∇𝜕𝑠∇𝜕𝑡ℎ+ 2ℛ(𝑣, ℎ)𝑐𝑡,∇𝜕𝑠𝑐𝑡) d𝑠

)︂
d𝑡

Sorting this by derivatives of ℎ we obtain

𝑑

(︂∫︁ 1

0
𝑎1(ℓ𝑐)

∫︁
𝐷
𝑔(∇𝜕𝑠𝑐𝑡,∇𝜕𝑠𝑐𝑡)|𝑐′|d𝜃 d𝑡

)︂
(ℎ)

=

∫︁ 1

0
𝑎1(ℓ𝑐)

∫︁
𝐷
2𝑔(∇𝜕𝑠∇𝜕𝑡ℎ,∇𝜕𝑠𝑐𝑡) + 2𝑔(ℛ(𝑣, ℎ)𝑐𝑡,∇𝜕𝑠𝑐𝑡)

+ 𝑔

(︂
∇𝜕𝑠ℎ,

𝑎′1(ℓ𝑐)

𝑎1(ℓ𝑐)

∫︁
𝐷
𝑔(∇𝜕𝑠𝑐𝑡,∇𝜕𝑠𝑐𝑡) d𝑠 𝑣 − 𝑔(∇𝜕𝑠𝑐𝑡,∇𝜕𝑠𝑐𝑡)𝑣

)︂
d𝑠 d𝑡

Putting both together we obtain:

𝑑𝐸(𝑐).ℎ =

∫︁ 1

0

∫︁
𝐷
2𝑎0(ℓ𝑐)𝑔(∇𝜕𝑡ℎ, 𝑐𝑡) + 2𝑎1(ℓ𝑐)𝑔(∇𝜕𝑠∇𝜕𝑡ℎ,∇𝜕𝑠𝑐𝑡)

+ 2𝑎1(ℓ𝑐)𝑔(ℛ(𝑣, ℎ)𝑐𝑡,∇𝜕𝑠𝑐𝑡) + 𝑔(∇𝜕𝑠ℎ,Ψ𝑐(𝑐𝑡, 𝑐𝑡)𝑣) d𝑠 d𝑡

where

Ψ𝑐(𝑐𝑡, 𝑐𝑡) = 𝑎0(ℓ𝑐)𝑔(𝑐𝑡, 𝑐𝑡) + 𝑎′0(ℓ𝑐)

∫︁
𝐷
𝑔(𝑐𝑡, 𝑐𝑡) d𝑠

− 𝑎1(ℓ𝑐)𝑔(∇𝜕𝑠𝑐𝑡,∇𝜕𝑠𝑐𝑡) + 𝑎′1(ℓ𝑐)

∫︁
𝐷
𝑔(∇𝜕𝑠𝑐𝑡,∇𝜕𝑠𝑐𝑡) d𝑠.

To obtain the geodesic equation, we have to integrate by parts to free ℎ
from all derivatives. We will treat the four terms separately. For the first
two terms we recall that d𝑠 depends on the curve 𝑐 (and thus on time 𝑡),
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i.e., for time dependent vector fields ℎ and 𝑘, with ℎ(0, 𝜃) = ℎ(1, 𝜃) = 0, we
have ∫︁ 1

0

∫︁
𝐷
𝑔(∇𝜕𝑡ℎ, 𝑘) d𝑠 d𝑡 = −

∫︁ 1

0

∫︁
𝐷
𝑔(ℎ,∇𝜕𝑡(|𝑐′|𝑘)) d𝜃 d𝑡

= −
∫︁ 1

0

∫︁
𝐷
𝑔(ℎ,∇𝜕𝑡𝑘 + 𝑔(𝑣,∇𝜕𝑠𝑐𝑡)𝑘) d𝑠 d𝑡 .

(A.2)

Applying this formula to the first term yields:

2

∫︁ 1

0

∫︁
𝐷
𝑔(∇𝜕𝑡ℎ, 𝑎0(ℓ𝑐)𝑐𝑡) d𝑠d𝑡

= −2

∫︁
𝐷
𝑎0(ℓ𝑐) 𝑔

(︁
ℎ,∇𝑡𝑐𝑡 + 𝑔(𝑣,∇𝜕𝑠𝑐𝑡)𝑐𝑡

+
𝑎′0(ℓ𝑐)
𝑎0(ℓ𝑐)

∫︁
𝐷
𝑔(𝑣,∇𝜕𝑠𝑐𝑡) d𝑠 𝑐𝑡

)︁
d𝑠 d𝑡 .

For the second term we need to apply integration by parts in space first:

2

∫︁ 1

0

∫︁
𝐷
𝑔(∇𝜕𝑠∇𝜕𝑡ℎ, 𝑎1(ℓ𝑐)∇𝜕𝑠𝑐𝑡) d𝑠 d𝑡

= 2

∫︁ 1

0
𝑔(∇𝜕𝑡ℎ, 𝑎1(ℓ𝑐)∇𝜕𝑠𝑐𝑡)|2𝜋0 d𝑡− 2

∫︁ 1

0

∫︁
𝐷
𝑔(∇𝜕𝑡ℎ, 𝑎1(ℓ𝑐)∇𝜕𝑠∇𝜕𝑠𝑐𝑡) d𝑠 d𝑡

= −2

∫︁ 1

0
𝑔(ℎ,∇𝜕𝑡 (𝑎1(ℓ𝑐)∇𝜕𝑠𝑐𝑡))|2𝜋0 d𝑡+ 2

∫︁ 1

0

∫︁
𝐷
𝑎1(ℓ𝑐)𝑔(ℎ,∇𝜕𝑡∇2

𝑠𝑐𝑡) d𝑠d𝑡

+ 2

∫︁ 1

0

∫︁
𝐷
𝑎1(ℓ𝑐)𝑔

(︂
ℎ, 𝑔(𝑣,∇𝜕𝑠𝑐𝑡)∇2

𝑠𝑐𝑡 +
𝑎′1(ℓ𝑐)
𝑎1(ℓ𝑐)

∫︁
𝐷
𝑔(𝑣,∇𝜕𝑠𝑐𝑡) d𝑠 ∇2

𝑠𝑐𝑡

)︂
d𝑠d𝑡

For the third term we use the symmetries of the curvature tensor to obtain

2

∫︁ 1

0

∫︁
𝐷
𝑎1(ℓ𝑐)𝑔(ℛ(𝑣, ℎ)𝑐𝑡,∇𝜕𝑠𝑐𝑡) d𝑠 d𝑡 = 2

∫︁ 1

0

∫︁
𝐷
𝑎1(ℓ𝑐)𝑔(ℛ(𝑐𝑡,∇𝜕𝑠𝑐𝑡)𝑣, ℎ) d𝑠 d𝑡.

Finally for the last term we need to integrate in parts in space again, taking
into account the boundary terms:∫︁ 1

0

∫︁
𝐷
𝑔(∇𝜕𝑠ℎ,Ψ𝑐(𝑐𝑡, 𝑐𝑡)𝑣) d𝑠 d𝑡

=

∫︁ 1

0
𝑔
(︀
ℎ,Ψ𝑐(𝑐𝑡, 𝑐𝑡)𝑣)

⃒⃒⃒2𝜋
0

d𝑡−
∫︁ 1

0

∫︁
𝐷
𝑔
(︀
ℎ,∇𝜕𝑠(Ψ𝑐(𝑐𝑡, 𝑐𝑡)𝑣)

)︀
d𝑠d𝑡 .

We can now read off the geodesic equation. We will fist start by collecting
the terms on the interior of 𝐷:

𝑎0(ℓ𝑐)∇𝜕𝑡𝑐𝑡 − 𝑎1(ℓ𝑐)∇𝜕𝑡∇2
𝑠𝑐𝑡

= −𝑎0(ℓ𝑐)𝑔(𝑣,∇𝜕𝑠𝑐𝑡)𝑐𝑡 − 𝑎′0(ℓ𝑐)

(︂∫︁
𝐷
𝑔(𝑣,∇𝜕𝑠𝑐𝑡) d𝑠

)︂
𝑐𝑡

+ 𝑎1(ℓ𝑐)𝑔(𝑣,∇𝜕𝑠𝑐𝑡)∇2
𝜕𝑠𝑐𝑡 + 𝑎′1(ℓ𝑐)

(︂∫︁
𝐷
𝑔(𝑣,∇𝜕𝑠𝑐𝑡) d𝑠

)︂
∇2

𝑠𝑐𝑡

+ 𝑎1(ℓ𝑐)ℛ(𝑐𝑡,∇𝜕𝑠𝑐𝑡)𝑣 −
1

2
∇𝜕𝑠(Ψ𝑐(𝑐𝑡, 𝑐𝑡)𝑣).
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From here the result follows using the definition of the inertia operator 𝐴𝑐,
the product rule for the term ∇𝜕𝑠(Ψ𝑐(𝑐𝑡, 𝑐𝑡)𝑣), by using the formula

∇𝑡(𝐴𝑐𝑐𝑡) = (∇𝑡𝐴𝑐)𝑐𝑡 +𝐴𝑐(∇𝑡𝑐𝑡) = ∇𝑡(𝑎0(ℓ𝑐)𝑐𝑡 − 𝑎1(ℓ𝑐)∇2
𝜕𝑠𝑐𝑡)

=

(︂∫︁
𝐷
𝑔(𝑣,∇𝜕𝑠𝑐𝑡) d𝑠

)︂
𝑎′0(ℓ𝑐)𝑐𝑡 + 𝑎0(ℓ𝑐)∇𝜕𝑡𝑐𝑡

−
(︂∫︁

𝐷
𝑔(𝑣,∇𝜕𝑠𝑐𝑡) d𝑠

)︂
𝑎′1(ℓ𝑐)∇2

𝑠𝑐𝑡 − 𝑎1(ℓ𝑐)∇𝜕𝑡∇2
𝑠𝑐𝑡 ,

and by collecting the boundary terms if 𝐷 = [0, 2𝜋]. □

A.2. Proof of Theorem 3.8: local well-posedness. In this section we
will use the method of Ebin-Marsden to obtain local well-posedness and
uniqueness of the geodesic equations. Before we will prove the local well-
posedness we will formulate a variant of the no-loss-no-gain result, which is
also used in Section 5.6.

Lemma A.1. Let 𝑞 ≥ 2, 𝑉 ⊂ 𝐻𝑞(𝐷,𝑇𝒩 ) an open subset and let 𝐹 : 𝑉 →
𝐻𝑞(𝐷,𝑇𝒩 ) be a smooth and 𝒟𝑞(𝐷) equivariant map, i.e., 𝐹 (ℎ∘𝜙) = 𝐹 (ℎ)∘𝜙
for all ℎ ∈ 𝐻𝑞(𝐷,𝑇𝒩 ) and 𝜙 ∈ 𝒟𝑞(𝐷). Then 𝐹 is a smooth map from

𝑉 ∩𝐻𝑞+𝑙
loc (𝐷𝑜, 𝑇𝒩 ) to itself for any 𝑙 ∈ N, where 𝐷𝑜 is the interior of 𝐷.

Proof. For 𝐷 = 𝑆1 this result is shown in [13, Corollary 4.1]. For the case
𝐷 = [0, 2𝜋] the proof is essentially the same, see also the arguments of
Ebin and Marsden [20, Theorem 12.1, Lemma 12.2] who proved the original
no-loss-no-gain results for manifolds with boundary. □

Proof of Theorem 3.8. For closed curves, i.e., 𝐷 = 𝑆1, this result can be
found in [10, Theorem 4.4], see also [28, 6]. In the following we will focus
on the case of open curves, where the proof will be slightly more involved
due to the existence of a boundary. For a strong Riemannian metric (𝑞 = 𝑛)
the existence of the geodesic equation and its local well-posedness is always
guaranteed, see, e.g., [24, VIII, Theorem 4.2]. Thus we obtain the first part
of the theorem for the Sobolev metric of order 𝑛 ≥ 2 on ℐ𝑛([0, 2𝜋],𝒩 ) by
Theorem 3.7. For 𝑞 ̸= 𝑛 we have to prove the well-posedness by hand. In the
follwoing we will assume that 𝑛 = 1; the proof for 𝑛 > 1 follows similarly.
Following the seminal method of Ebin and Marsden [20] we will show that
the geodesic spray, as derived in Lemma 3.3, extends to a smooth vector
field on the Sobolev completion, which will allow us to apply the Cauchy-
theorem to conclude the local well-posedness of the equation. Therefore will
need the following statement regarding the invertibility of the operator 𝐴𝑐

under Neumann boundary conditions:
Claim: Let 𝑓 ∈ 𝐻𝑟

ℐ𝑞([0, 2𝜋], 𝑇𝒩 ) and 𝑐 ∈ ℐ𝑞([0, 2𝜋],𝒩 ) with 𝑞 − 2 ≥ 𝑟 ≥ 0
and 𝜋 ∘ 𝑓 = 𝑐. Then the boundary value problem

(A.3) 𝐴𝑐𝑢(𝜃) = 𝑓(𝜃) , ∇𝜕𝜃𝑢(0) = 𝑢0, ∇𝜕𝜃𝑢(2𝜋) = 𝑢1

has a unique solution 𝑢 ∈ 𝐻𝑟+2
ℐ𝑞 ([0, 2𝜋], 𝑇𝒩 ), with 𝜋 ∘ 𝑢 = 𝑐.

Note that by subtracting any 𝐻𝑞 section that satisfy the boundary condi-
tions, we can assume that the boundary conditions are homogeneous. Then,

a weak form of this equation is simply 𝐺𝑐(𝑢,𝑤) =
∫︀ 2𝜋
0 𝑔(𝑓, 𝑤) d𝜃 for every

𝑤 ∈ 𝐻1([0, 2𝜋], 𝑐*𝑇𝒩 ). Since 𝑐 is fixed, 𝐺𝑐 is equivalent to the standard 𝐻1
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norm on 𝐻1([0, 2𝜋], 𝑐*𝑇𝒩 ). By the Lax-Milgram theorem, there exists a
unique solution 𝑢* ∈ 𝐻1. We can then consider the equation 𝐴𝑐𝑢(𝜃) = 𝑓(𝜃)
with initial conditions 𝑢(0) = 𝑢*(0), ∇𝜕𝜃𝑢(0) = 0. By moving to the weak
form again, it follows that the solution for this initial value problem must
be 𝑢*, and so its regularity then follows from standard initial-value ODE
theory. This completes the proof of this claim.

To apply this theorem to the geodesic equation we need to observe that
for any fixed time 𝑡 the boundary terms of the geodesic equation can be
rewritten to yield exactly Neumann conditions for the system

𝐴𝑐(∇𝜕𝑡𝑐𝑡) =

(︂
− (∇𝜕𝑡𝐴𝑐)𝑐𝑡 − 𝑔(𝑣,∇𝜕𝑠𝑐𝑡)𝐴𝑐𝑐𝑡 −

1

2
Ψ𝑐(𝑐𝑡, 𝑐𝑡)∇𝜕𝑠𝑣

− 𝑔(∇𝜕𝑠𝑐𝑡, 𝐴𝑐𝑐𝑡)𝑣 + 𝑎1(ℓ𝑐)ℛ(𝑐𝑡,∇𝜕𝑠𝑐𝑡)𝑣

)︂
,

where (∇𝜕𝑡𝐴𝑐) = ∇𝜕𝑡 ∘ 𝐴𝑐 − 𝐴𝑐 ∘ ∇𝜕𝑡 , which is an operator of order 2. In
addition we have the boundary conditions

∇𝜃∇𝜕𝑡𝑐𝑡

⃒⃒⃒⃒
𝜃=0

= 𝐹0(𝑐, 𝑐𝑡) ∈ R

∇𝜃∇𝜕𝑡𝑐𝑡

⃒⃒⃒⃒
𝜃=2𝜋

= 𝐹1(𝑐, 𝑐𝑡) ∈ R .

where 𝐹0 and 𝐹1 can be calculated by applying the product formula for
differentiation and the formula for swapping covariant derivatives to the
boundary conditions in Lemma 3.3.

Thus by the claim above we can invert 𝐴𝑐 to rewrite the geodesic equation
as

∇𝜕𝑡𝑐𝑡 = 𝐴−1
𝑐

(︂
− (∇𝜕𝑡𝐴𝑐)𝑐𝑡 − 𝑔(𝑣,∇𝜕𝑠𝑐𝑡)𝐴𝑐𝑐𝑡 −

1

2
Ψ𝑐(𝑐𝑡, 𝑐𝑡)∇𝜕𝑠𝑣

− 𝑔(∇𝜕𝑠𝑐𝑡, 𝐴𝑐𝑐𝑡)𝑣 + 𝑎1(ℓ𝑐)ℛ(𝑐𝑡,∇𝜕𝑠𝑐𝑡)𝑣

)︂
.

The right hand side of this equation defines a smooth mapping

Φ : 𝑇ℐ𝑞(𝐷,𝒩 ) → 𝑇ℐ𝑞(𝐷,𝒩 ),

where the smoothness of Φ follows directly by counting derivatives, using the
Sobolev embedding theorem and the result that 𝐴𝑐 and thus also (∇𝜕𝑡𝐴𝑐)
and 𝐴−1

𝑐 are smooth. Thus we have interpreted the geodesic equation as an
ODE (in 𝑡) on a Banach space of functions. From here the proof of item 1
of Theorem 3.8 follows directly as in [10, Theorem 4.4] and reduces to an
application of the Cauchy theorem and the equivalence of fiber-wise qua-
dratic smooth mappings Φ: 𝑇ℐ𝑞(𝐷,𝒩 ) → 𝑇ℐ𝑞(𝐷,𝒩 ) and smooth sprays
𝑆 : 𝑇ℐ𝑞(𝐷,𝒩 ) → 𝑇𝑇ℐ𝑞(𝐷,𝒩 ).

To prove item 2 of Theorem 3.8, we use Lemma A.1, for 𝐹 the exponential
map 𝐺 on ℐ𝑞(𝐷,𝒩 ), and 𝑉 ⊂ 𝐻𝑞

ℐ𝑞(𝐷,𝑇𝒩 ) is a neighborhood of the zero
section on which the exponential map is defined. It follows that the domain
of existence of the geodesic equation (in 𝑡) and the neighborhoods for the
exponential mapping are uniform in the Sobolev exponential 𝑙 ∈ 𝒩 and thus
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the result continues to hold on ℐ𝑞+𝑙
loc (𝐷,𝒩 ) and therefore also locally in the

smooth category. □

Appendix B. Holonomy estimates: proof of Lemma 4.2

We now prove the Sobolev estimates for manifolds-valued curves as stated
in Lemma 4.2. We start be proving some geometric estimates, culminating
in bounds on the holonomy along a closed curve (Proposition B.3). The
settings for the geometric estimates is as follows:

Let (𝒩 , 𝑔) be a complete Riemannian manifold of finite dimension, with
bounded sectional curvature, |𝐾| ≤ 𝐾𝒩 and positive injectivity radius
inj𝒩 > 0. We denote by ℛ the Riemann curvature of 𝑔.

Let 𝑐 : [0, 𝑎] → 𝒩 be a curve, and let 𝑉 be a vector field along 𝑐. Let

Π𝜃2
𝜃1

: 𝑇𝑐(𝜃1)𝒩 → 𝑇𝑐(𝜃2)𝒩 be the parallel transport operator along 𝑐, and 𝐷
𝑑𝜃

the covariant derivative along 𝑐.

Lemma B.1.

|𝑉 (𝑎)−Π𝑎
0𝑉 (0)| ≤

∫︁ 𝑎

0

⃒⃒⃒⃒
𝐷

𝑑𝜃
𝑉 (𝜃)

⃒⃒⃒⃒
d𝜃.

Proof. Define 𝑓(𝜃) = Π𝑎
𝜃𝑉 (𝜃)− Π𝑎

0𝑉 (0). Our goal is to bound |𝑓(𝑎)|. Note
that 𝑓(0) = 0, and that

𝜕

𝜕𝜃
𝑓(𝜃) = Π𝑎

𝜃

𝐷

𝑑𝜃
𝑉 (𝜃).

Therefore, using the fact that the parallel transport is an isometry, we have

|𝑓(𝑎)| =
⃒⃒⃒⃒∫︁ 𝑎

0

𝜕

𝜕𝜃
𝑓(𝜃) d𝜃

⃒⃒⃒⃒
≤
∫︁ 𝑎

0

⃒⃒⃒⃒
𝐷

𝑑𝜃
𝑉 (𝜃)

⃒⃒⃒⃒
d𝜃.

□

Let 𝑐 : [0, 𝑎] → 𝒩 be a closed curve, 𝑐(0) = 𝑐(𝑎) = 𝑝, with ℓ𝑐 < 2 inj𝒩 .
Define a map 𝑐(𝜃, 𝑡) : [0, 𝑎] × [0, 1] → 𝒩 , such that 𝑐(𝜃, ·) is the unique
geodesic connecting 𝑝 and 𝑐(𝜃). This is well defined since ℓ𝑐 < 2 inj𝒩 implies
that dist(𝑝, 𝑐(𝜃)) < ℓ𝑐/2 < inj𝒩 for any 𝜃. In other words, if we define
𝛾(𝜃) = exp−1

𝑝 (𝑐(𝜃)), then 𝑐(𝜃, 𝑡) := exp𝑝(𝑡𝛾(𝜃)). For every 𝑡0 ∈ [0, 1], 𝑐𝑡0 :=
𝑐(·, 𝑡0) : [0, 𝑎] → 𝒩 is a closed curve based in 𝑝, and for 𝑡0 = 0 it is the
constant curve.

Lemma B.2. There exists a constant 𝐶1, depending only on inj𝒩 and the
upper bound for the sectional curvature of 𝒩 , such that if the curve 𝑐 satisfies
ℓ𝑐 < 𝐶1, then ℓ𝑐𝑡 ≤ ℓ𝑐 for every 𝑡 ∈ [0, 1].

Proof. In the following we will assume that ℓ𝑐 < 2 inj𝒩 , otherwise the family
𝑐𝑡 is not well-defined.

It is obviously sufficient to prove that |𝜕𝜃𝑐(𝜃, 𝑡)| ≤ |𝜕𝜃𝑐(𝜃, 1)| for every 𝜃
and 𝑡. Note that for a fixed 𝜃0, 𝐽(𝑡) := 𝜕𝜃𝑐(𝜃0, 𝑡) is a Jacobi field, hence it
satisfies the Jacobi equation

𝐷2

𝑑𝑡2
𝐽 +ℛ (𝐽, 𝜕𝑡𝑐(𝜃0, 𝑡)) 𝜕𝑡𝑐(𝜃0, 𝑡) = 0,

with the initial conditions

𝐽(0) = 0,
𝐷

𝑑𝑡
𝐽(0) =

𝜕

𝜕𝜃

⃒⃒⃒⃒
𝜃=𝜃0

exp−1
𝑝 𝑐(𝜃) =: 𝛾′(𝜃0).
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These initial conditions follow from the fact that

𝐽(0) =
𝜕

𝜕𝜃

⃒⃒⃒⃒
𝜃=𝜃0

𝑐(𝜃, 0) =
𝜕

𝜕𝜃

⃒⃒⃒⃒
𝜃=𝜃0

𝑝 = 0,

𝐷

𝑑𝑡
𝐽(0) =

𝐷

𝜕𝑡

𝜕

𝜕𝜃
𝑐

⃒⃒⃒⃒
(𝜃,𝑡)=(𝜃0,0)

=
𝐷

𝜕𝜃

𝜕

𝜕𝑡
𝑐

⃒⃒⃒⃒
(𝜃,𝑡)=(𝜃0,0)

=
𝐷

𝜕𝜃
𝑑𝑡𝛾(𝜃) exp𝑝[𝛾(𝜃)]

⃒⃒⃒⃒
(𝜃,𝑡)=(𝜃0,0)

=
𝐷

𝜕𝜃
𝑑0 exp𝑝[𝛾(𝜃)]

⃒⃒⃒⃒
𝜃=𝜃0

=
𝐷

𝜕𝜃
𝛾(𝜃)

⃒⃒⃒⃒
𝜃=𝜃0

= 𝛾′(𝜃0),

where we used the fact that 𝑑0 exp𝑝 = id𝑇𝑝𝒩 , and that when 𝑡 = 0, 𝑐(𝜃, 0) =
𝑝 for all 𝜃, hence covariant derivative along 𝜃 is the same as the regular
derivative in id𝑇𝑝𝒩 .

Note that we can always reparametrize 𝜃 such that |𝛾′(𝜃)| = 1 for any 𝜃,
hence

⃒⃒
𝐷
𝑑𝑡𝐽(0)

⃒⃒
= 1.

Our aim is to prove that |𝐽(𝑡)| ≤ |𝐽(1)|. The proof mimics the proof of
Rauch’s comparison theorem. Define 𝑓(𝑡) := |𝐽(𝑡)|; we want to prove that

𝑓(𝑡) ≥ 0 for 𝑡 ∈ (0, 1). For brevity, write 𝐽 := 𝐷
𝑑𝑡𝐽 , 𝐽 := 𝐷2

𝑑𝑡2
𝐽 . We then have

𝑓 =
𝑔(𝐽, 𝐽)

|𝐽 |2
.

We have 𝐽(0) = 0 and therefore, by the Jacobi equations, also 𝐽(0) = 0.
We therefore obtain that

𝐽(𝑡) = 𝐽(0) +𝑂(𝑡2), 𝐽(𝑡) = 𝑡𝐽(0) +𝑂(𝑡3),

hence

𝑓(𝑡) =
1

𝑡
+𝑂(𝑡).

Using the Jacobi equations and the upper bound 𝐾 on the sectional curva-
ture of 𝒩 , we obtain

𝑓 =

(︁
|𝐽 |2 + 𝑔(𝐽, 𝐽)

)︁
|𝐽 |2 − 2𝑔(𝐽, 𝐽)2

|𝐽 |4

≥ 𝑔(𝐽, 𝐽)

|𝐽 |2
− 𝑔(𝐽, 𝐽)2

|𝐽 |4
=

𝑔(𝐽, 𝐽)

|𝐽 |2
− 𝑓2

= −𝑔(𝐽,ℛ(𝐽, 𝜕𝑡𝑐)𝜕𝑡𝑐)

|𝐽 |2
− 𝑓2

≥ −𝐾|𝜕𝑡𝑐|2|𝐽 |2)
|𝐽 |2

− 𝑓2 = −𝐾|𝜕𝑡𝑐|2 − 𝑓2

≥ −𝐾 dist2𝒩 (𝑝, 𝑐(𝜃0))− 𝑓2 ≥ −𝐾ℓ2𝑐
4

− 𝑓2,

where we used the fact that |𝜕𝑡𝑐(𝜃0, 𝑡)| = dist2𝒩 (𝑝, 𝑐(𝜃0)) since 𝑐(𝜃0, 𝑡) is a
constant speed geodesic from 𝑝 to 𝑐(𝜃0). We obtain that

𝑓 + 𝑓2 ≥ −𝐾ℓ2𝑐
4

, 𝑓(𝑡) =
1

𝑡
+𝑂(𝑡).
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From the Riccati comparison estimate [31, Corollary 6.4.2], it follows that
for 𝑡 > 0 we have

𝑓(𝑡) ≥

⎧⎪⎪⎨⎪⎪⎩
√
𝐾ℓ𝑐
2 cot

(︁√
𝐾ℓ𝑐
2 𝑡

)︁
𝐾 > 0, 𝑡 ≤ 2𝜋√

𝐾ℓ𝑐

𝑡 𝐾 = 0
√
−𝐾ℓ𝑐
2 coth

(︁√
−𝐾ℓ𝑐
2 𝑡

)︁
𝐾 < 0.

If 𝐾 ≤ 0, it follows that 𝑓(𝑡) > 0 for any 𝑡 > 0, and we are done. If 𝐾 > 0,

then by choosing ℓ𝑐 < 𝜋/
√
𝐾, we obtain that 𝑓(𝑡) is larger than a function

that is positive in (0, 1]. □

We now state the main geometric estimate we need. Recall that, in two
dimensions, the holonomy of a small closed curve is roughly the area of
enclosed by the curve times the curvature inside it, and that by the isoperi-
metric inequality, the area grows at most like the length of the curve squared.
The following proposition combines these statements (in any dimension) into
a quantitative estimate on the holonomy:

Proposition B.3. There exists a constant 𝐶 = 𝐶(𝐾𝒩 , inj𝒩 , dim𝒩 ) > 0,
such that for every closed curve 𝑐 ⊂ 𝒩 based in 𝑇𝑝𝒩 ,⃒⃒

Hol𝑐−id𝑇𝑝𝒩
⃒⃒
≤ min

{︁
𝐶ℓ2𝑐 , 2

√
dim𝒩

}︁
where Hol𝑐 is the holonomy along 𝑐 and ℓ𝑐 is the length of the curve 𝑐.

Proof. Since Hol𝑐 is an isometry of 𝑇𝑝𝒩 , |Hol𝑐 | = |id𝑇𝑝𝒩 | =
√
dim𝒩 .

Therefore, by triangle inequality, we have
⃒⃒
Hol𝑐−id𝑇𝑝𝒩

⃒⃒
≤ 2

√
dim𝒩 .

In the following, we assume that 𝐶 ≥ 2
√
dim𝒩/𝐶2

1 , where 𝐶1 is defined in
Lemma B.2, and therefore it is sufficient to prove that

⃒⃒
Hol𝑐−id𝑇𝑝𝒩

⃒⃒
≤ 𝐶ℓ2𝑐

under the assumption that ℓ𝑐 ≤ 𝐶1.
Fix 𝑣 ∈ 𝑇𝑝𝒩 a unit vector. Our goal is to prove that |Hol𝑐 𝑣 − 𝑣| ≤

𝐶ℓ2𝑐 . Define the family of curves 𝑐(𝜃, 𝑡) = 𝑐𝑡(𝜃) : [0, 𝑎] × [0, 1] → 𝒩 as in
Lemma B.2. Define a vector field 𝑋 ∈ Γ(𝑐*𝑇𝒩 ) by

𝑋(𝜃, 𝑡) := Π𝑐𝑡(𝜃)
𝑝 𝑣,

where Π
𝑐𝑡(𝜃)
𝑝 : 𝑇𝑝𝒩 → 𝑇𝑐𝑡(𝜃)𝒩 is the parallel transport along the curve 𝑐𝑡.

We have

𝑋(𝜃, 0) = 𝑣, 𝑋(0, 𝑡) = 𝑣, 𝑋(𝑎, 𝑡) = Hol𝑐𝑡 𝑣.

Since 𝑐(𝑎, 𝑡) = 𝑝, the parallel transport along the curve 𝑐(𝑎, ·) is the identity,
and so, by Lemma B.1 we have that

|Hol𝑐 𝑣 − 𝑣| = |𝑋(𝑎, 1)−𝑋(𝑎, 0)| ≤
∫︁ 1

0

⃒⃒⃒⃒
𝐷

𝜕𝑡
𝑋(𝑎, 𝑡)

⃒⃒⃒⃒
d𝑡.

Since 𝑐(0, 𝑡) = 𝑝 for all 𝑡, the covariant derivative 𝐷
𝜕𝑡 along (0, 𝑡) is simply

the standard derivative 𝜕
𝜕𝑡 . Therefore, since 𝑋(0, 𝑡) = 𝑣 does not depend on

𝑡, we have 𝐷
𝜕𝑡𝑋(0, 𝑡) = 0. Hence, using Lemma B.1 again, we have⃒⃒⃒⃒

𝐷

𝜕𝑡
𝑋(𝑎, 𝑡)

⃒⃒⃒⃒
≤
∫︁ 𝑎

0

⃒⃒⃒⃒
𝐷

𝜕𝜃

𝐷

𝜕𝑡
𝑋(𝜃, 𝑡)

⃒⃒⃒⃒
d𝜃.
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Since 𝑋(𝜃, 𝑡) is the parallel transport of 𝑋(0, 𝑡) = 𝑣 along the constant
𝑡 curve, we have 𝐷

𝜕𝜃𝑋(𝜃, 𝑡) = 0, and therefore 𝐷
𝜕𝑡

𝐷
𝜕𝜃𝑋(𝜃, 𝑡) = 0. Combining

this with
𝐷

𝜕𝜃

𝐷

𝜕𝑡
𝑋 − 𝐷

𝜕𝑡

𝐷

𝜕𝜃
𝑋 = ℛ

(︂
𝜕

𝜕𝜃

𝜕

𝜕𝑡

)︂
𝑋

(see, e.g., [17, Chapter 4, Lemma 4.1]), we have⃒⃒⃒⃒
𝐷

𝜕𝜃

𝐷

𝜕𝑡
𝑋

⃒⃒⃒⃒
=

⃒⃒⃒⃒
ℛ
(︂
𝜕𝑐

𝜕𝜃

𝜕𝑐

𝜕𝑡

)︂
𝑋

⃒⃒⃒⃒
≤ 𝐾𝒩

⃒⃒⃒⃒
𝜕

𝜕𝜃

⃒⃒⃒⃒ ⃒⃒⃒⃒
𝜕

𝜕𝑡

⃒⃒⃒⃒
,

where we used the fact that |𝑋| = |𝑣| = 1 since the parallel transport is an
isometry. Since 𝑐(𝜃, ·) is a constant speed geodesic from 𝑝 to 𝑐(𝜃) = 𝑐(𝜃, 1),
and that dist(𝑝, 𝑐(𝜃)) ≤ ℓ𝑐/2, we have that⃒⃒⃒⃒

𝜕𝑐

𝜕𝑡

⃒⃒⃒⃒
≤ ℓ𝑐/2.

Combining these estimates, we obtain

|Hol𝑐 𝑣 − 𝑣| ≤
∫︁ 1

0

⃒⃒⃒⃒
𝐷

𝜕𝑡
𝑋(𝑎, 𝑡)

⃒⃒⃒⃒
d𝑡 ≤

∫︁ 1

0

∫︁ 𝑎

0

⃒⃒⃒⃒
𝐷

𝜕𝜃

𝐷

𝜕𝑡
𝑋

⃒⃒⃒⃒
d𝜃 d𝑡

≤ 𝐾𝒩
ℓ𝑐
2

∫︁ 1

0

∫︁ 𝑎

0

⃒⃒⃒⃒
𝜕𝑐

𝜕𝜃

⃒⃒⃒⃒
d𝜃 d𝑡 = 𝐾𝒩

ℓ𝑐
2

∫︁ 1

0
ℓ𝑐𝑡 d𝑡 ≤

𝐾𝒩
2

ℓ2𝑐 ,

where in the last inequality we used Lemma B.2 to estimate ℓ𝑐𝑡 . □

Using these holonomy estimates, we can now prove Lemma 4.2:
Proof of Lemma 4.2. As mentioned at the beginning of Section 4, al-
though ℎ(0) = ℎ(2𝜋) when 𝐷 = 𝑆1, it is not true that 𝐻(0) = 𝐻(2𝜋),
where

𝐻(𝜃) = Π0
𝜃ℎ(𝜃),

because of holonomy effects. Therefore, in order to prove (4.4) we cannot
use Sobolev inequalities for periodic functions verbatim, but rather use the
result of Proposition B.3, which implies that for short curves 𝐻 is ”almost”
periodic since the holonomy is small. We will do so by induction over 𝑘 and
𝑛.

Base step: the case 𝑘 = 1, 𝑛 = 2. Assume that 𝑘 = 1 and 𝑛 = 2.
When ℓ𝑐 ≥ 1, the inequality (4.2) implies (4.4) by taking 𝑎 = 1. We are left
to treat the case ℓ𝑐 < 1.

Recall that we denote by Π𝜃2
𝜃1

the parallel transport from 𝑇𝑐(𝜃1)𝒩 to

𝑇𝑐(𝜃2)𝒩 along 𝑐 (in the direction dictated by the parameter 𝜃). Now, by
applying (4.1) for ∇𝜕𝑠ℎ and using the fundamental theorem of calculus, we
have:

Π0
𝜃∇𝜕𝑠ℎ(𝜃)−∇𝜕𝑠ℎ(0) =

∫︁ 𝜃

0

𝑑

𝑑𝜎
Π0

𝜎∇𝜕𝑠ℎ(𝜎) d𝜎 =

∫︁ 𝜃

0
Π0

𝜎(∇𝜕𝜃∇𝜕𝑠ℎ(𝜎)) d𝜎.

Integrating over 𝜃 with respect to d𝑠, we obtain

∇𝜕𝑠ℎ(0)−
1

ℓ𝑐

∫︁
𝑆1

Π0
𝜃∇𝜕𝑠ℎ(𝜃) d𝑠(𝜃) = − 1

ℓ𝑐

∫︁
𝑆1

∫︁ 𝜃

0
Π0

𝜎(∇𝜕𝜃∇𝜕𝑠ℎ(𝜎)) d𝜎 d𝑠(𝜃).

Using again (4.1), we have
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𝑆1

Π0
𝜃∇𝜕𝑠ℎ(𝜃) d𝑠(𝜃) =

∫︁ 2𝜋

0
Π0

𝜃∇𝜕𝜃ℎ(𝜃) d𝜃

=

∫︁ 2𝜋

0

𝑑

𝑑𝜃
Π0

𝜃ℎ(𝜃) d𝜃 = Π0
2𝜋ℎ(0)− ℎ(0),

which is not necessarily zero since there the holonomy along 𝑐 might be
non-trivial. We therefore obtain

(B.1) ∇𝜕𝑠ℎ(0)−
1

ℓ𝑐

(︀
Π0

2𝜋ℎ(0)− ℎ(0)
)︀

= − 1

ℓ𝑐

∫︁
𝑆1

∫︁ 𝜃

0
Π0

𝜎(∇𝜕𝜃∇𝜕𝑠ℎ(𝜎)) d𝜎 d𝑠(𝜃).

Similarly,

∇𝜕𝑠ℎ(2𝜋)−Π2𝜋
𝜃 ∇𝜕𝑠ℎ(𝜃) =

∫︁ 2𝜋

𝜃

𝑑

𝑑𝜎
Π2𝜋

𝜎 ∇𝜕𝑠ℎ(𝜎) d𝜎

=

∫︁ 2𝜋

𝜃
Π2𝜋

𝜎 (∇𝜕𝜃∇𝜕𝑠ℎ(𝜎)) d𝜎,

and ∫︁
𝑆1

Π2𝜋
𝜃 ∇𝜕𝑠ℎ(𝜃) d𝑠(𝜃) =

∫︁ 2𝜋

0

𝑑

𝑑𝜃
Π2𝜋

𝜃 ℎ(𝜃) d𝜃 = ℎ(2𝜋)−Π2𝜋
0 ℎ(2𝜋).

Thus, using the fact that ℎ(0) = ℎ(2𝜋) and ∇𝜕𝑠ℎ(0) = ∇𝜕𝑠ℎ(2𝜋), we have

(B.2) ∇𝜕𝑠ℎ(0)−
1

ℓ𝑐

(︀
ℎ(0)−Π2𝜋

0 ℎ(0)
)︀

=
1

ℓ𝑐

∫︁
𝑆1

∫︁ 2𝜋

𝜃
Π2𝜋

𝜎 (∇𝜕𝜃∇𝜕𝑠ℎ(𝜎)) d𝜎 d𝑠(𝜃).

Adding (B.1) and (B.2), we obtain

∇𝜕𝑠ℎ(0)−
1

ℓ𝑐

(︀
Π0

2𝜋ℎ(0)−Π2𝜋
0 ℎ(0)

)︀
=

1

2ℓ𝑐

∫︁
𝑆1

(︂∫︁ 2𝜋

𝜃
Π2𝜋

𝜎 (∇𝜕𝜃∇𝜕𝑠ℎ(𝜎)) d𝜎 −
∫︁ 𝜃

0
Π0

𝜎(∇𝜕𝜃∇𝜕𝑠ℎ(𝜎)) d𝜎

)︂
d𝑠(𝜃).

Therefore, using the fact that Π𝜃2
𝜃1

is an isometry, we obtain that

|∇𝜕𝑠ℎ(0)| ≤
⃒⃒
Π0

2𝜋 −Π2𝜋
0

⃒⃒
ℓ𝑐

|ℎ(0)|+ 1

2ℓ𝑐

∫︁
𝑆1

∫︁ 2𝜋

0
|∇𝜕𝜃∇𝜕𝑠ℎ(𝜎)| d𝜎 d𝑠(𝜃)

=

⃒⃒
Π0

2𝜋 −Π2𝜋
0

⃒⃒
ℓ𝑐

|ℎ(0)|+ 1

2

∫︁
𝑆1

⃒⃒
∇2

𝜕𝑠ℎ(𝜎)
⃒⃒
d𝑠(𝜎).

Using the estimate on the magnitude of the holonomy in Proposition B.3,
we have

|∇𝜕𝑠ℎ(0)| ≤ min

{︃
𝐶ℓ𝑐,

2
√
dim𝒩
ℓ𝑐

}︃
|ℎ(0)|+ 1

2

∫︁
𝑆1

⃒⃒
∇2

𝜕𝑠ℎ(𝜎)
⃒⃒
d𝑠,

for some 𝐶 > 0 that depends only on the injectivity radius and on the
bounds on the sectional curvature of 𝒩 . In this inequality the point 0 is
arbitrary, hence the above holds for ℎ(𝜃),∇𝜕𝑠ℎ(𝜃) instead of ℎ(0),∇𝜕𝑠ℎ(0).
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Squaring this inequality, and using the inequality (𝑎+ 𝑏)2 ≤ 2(𝑎2 + 𝑏2) and
Cauchy-Schwartz (or Jensen’s) inequality, we obtain, for every 𝜃,

|∇𝜕𝑠ℎ(𝜃)|2 ≤ min

{︂
2𝐶2ℓ2𝑐 ,

8 dim𝒩
ℓ2𝑐

}︂
|ℎ(𝜃)|2 + ℓ𝑐

2
‖∇2

𝜕𝑠ℎ‖
2
𝐿2( d𝑠)

≤ 𝐶 ′min

{︂
ℓ2𝑐 ,

1

ℓ2𝑐

}︂
|ℎ(𝜃)|2 + ℓ𝑐

2
‖∇2

𝜕𝑠ℎ‖
2
𝐿2( d𝑠).

(B.3)

Since we assumed ℓ𝑐 ≤ 1, Inequality (B.3) implies (4.4) by integrating with
respect to d𝑠.

Induction step. Now assume we have (4.4) for 𝑛 = 2, . . . ,𝑚 and 𝑘 =
1, . . . , 𝑛 − 1; we will now prove it for 𝑛 = 𝑚 + 1, 𝑘 = 1, . . . ,𝑚. Denote the
constant in (4.4) by 𝐶𝑘,𝑛. Besides 𝑘 and 𝑛, 𝐶𝑘,𝑛 will depend also on the
properties of the manifold 𝒩 as stated in the formulation of the Lemma,
but we omit this dependence as it is fixed throughout the induction.

First, assume 𝑘 = 1. If ℓ𝑐 ≥ min
{︁
1, (2𝐶𝑚−1,𝑚𝐶1,𝑚)−1/2

}︁
, then (4.2) im-

plies (4.4) for 𝑘 = 1, 𝑛 = 𝑚+1, by letting 𝑎 = min
{︁
1, (2𝐶𝑚−1,𝑚𝐶1,𝑚)−1/2

}︁
.

If ℓ𝑐 ≤ min
{︁
1, (2𝐶𝑚−1,𝑚𝐶1,𝑚)−1/2

}︁
, we have

‖∇𝜕𝑠ℎ‖2𝐿2( d𝑠) ≤ 𝐶1,𝑚ℓ2𝑐

(︁
‖ℎ‖2𝐿2( d𝑠) + ‖∇𝑚

𝜕𝑠ℎ‖
2
𝐿2( d𝑠)

)︁
≤ 𝐶1,𝑚ℓ2𝑐

(︁
‖ℎ‖2𝐿2( d𝑠) + 𝐶𝑚−1,𝑚

(︁
‖∇𝜕𝑠ℎ‖2𝐿2( d𝑠) + ‖∇𝑚+1

𝜕𝑠
ℎ‖2𝐿2( d𝑠)

)︁)︁
,

where in the second line we applied the induction hypothesis to ∇𝜕𝑠ℎ.
Moving the 𝐶1,𝑚𝐶𝑚−1,𝑚ℓ2𝑐‖∇𝜕𝑠ℎ‖2𝐿2( d𝑠) to the other side, and noting that

𝐶1,𝑚𝐶𝑚−1,𝑚ℓ2𝑐 ≤ 1/2 by assumption, we obtain that

‖∇𝜕𝑠ℎ‖2𝐿2( d𝑠) ≤ 2𝐶1,𝑚ℓ2𝑐

(︁
‖ℎ‖2𝐿2( d𝑠) + 𝐶𝑚−1,𝑚‖∇𝑚+1

𝜕𝑠
ℎ‖2𝐿2( d𝑠)

)︁
,

which completes the proof for 𝑘 = 1.

We now assume 𝑘 > 1. If ℓ𝑐 ≥ min
{︁
1, (2𝐶𝑘−1,𝑚𝐶1,𝑘)

−1/2
}︁
, then (4.2) im-

plies (4.4) for 𝑘 = 1, 𝑛 = 𝑚+ 1, by letting 𝑎 = min
{︁
1, (2𝐶𝑘−1,𝑚𝐶1,𝑘)

−1/2
}︁
.

If ℓ𝑐 ≤ min
{︁
1, (2𝐶𝑘−1,𝑚𝐶1,𝑘)

−1/2
}︁
, we have (by applying the induction

hypothesis for ∇𝜕𝑠ℎ),

‖∇𝑘
𝜕𝑠ℎ‖

2
𝐿2( d𝑠) ≤ 𝐶𝑘−1,𝑚ℓ2𝑐

(︁
‖∇𝜕𝑠ℎ‖2𝐿2( d𝑠) + ‖∇𝑚+1

𝜕𝑠
ℎ‖2𝐿2( d𝑠)

)︁
≤ 𝐶𝑘−1,𝑚ℓ2𝑐

(︁
𝐶1,𝑘

(︁
‖ℎ‖2𝐿2( d𝑠) + ‖∇𝑘

𝜕𝑠ℎ‖
2
𝐿2( d𝑠)

)︁
+ ‖∇𝑚+1

𝜕𝑠
ℎ‖2𝐿2( d𝑠)

)︁
.

Moving the 𝐶𝑘−1,𝑚𝐶1,𝑘ℓ
2
𝑐‖∇𝑘

𝜕𝑠
ℎ‖2𝐿2( d𝑠) to the other side, and noting that

𝐶𝑘−1,𝑚𝐶1,𝑘ℓ
2
𝑐 ≤ 1/2 by assumption, we obtain that

‖∇𝑘
𝜕𝑠ℎ‖

2
𝐿2( d𝑠) ≤ 2𝐶𝑘−1,𝑚ℓ2𝑐

(︁
𝐶1,𝑘‖ℎ‖2𝐿2( d𝑠) + ‖∇𝑚+1

𝜕𝑠
ℎ‖2𝐿2( d𝑠)

)︁
,

which completes the proof for 𝑘 > 1.
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Appendix C. Proof of Lemma 5.12

First, we note that for a function 𝑓 ∈ 𝐿2(𝐷) we have, for every 𝑐 ∈
ℐ𝑛(𝐷,𝒩 ),

‖𝑓‖𝐿2( d𝜃) ≤ |𝐷|1/2‖𝑓‖𝐿∞

hence boundedness on metric balls of ‖∇𝑘
𝜕𝑠
|𝑐′|‖𝐿∞ implies boundedness of

‖∇𝑘
𝜕𝑠
|𝑐′|‖𝐿2( d𝜃). Lemma 5.9 implies that under the assumption (5.1), the

𝐿2( d𝜃) and 𝐿2( d𝑠) norms are equivalent on metric balls, hence boundedness
on metric balls of ‖∇𝑘

𝜕𝑠
|𝑐′|‖𝐿∞ also implies boundedness of ‖∇𝑘

𝜕𝑠
|𝑐′|‖𝐿2( d𝑠).

Therefore, by Lemma 5.7, our goal is to show that

‖𝐷𝑐,ℎ(∇𝑘
𝜕𝑠 |𝑐

′|)‖𝐿𝑝 ≤ 𝐶(1 + ‖∇𝑘
𝜕𝑠 |𝑐

′|‖𝐿𝑝)‖ℎ‖𝐺𝑐 ,

where 𝑝 = ∞ for 𝑘 = 0, . . . , 𝑛 − 2 and 𝑝 = 2 for 𝑘 = 𝑛 − 1. We will first
prove the case 𝑝 = ∞ by induction on 𝑘, and then treat the case 𝑝 = 2,
𝑘 = 𝑛− 1 (in which the cases 𝐿2( d𝜃) and 𝐿2( d𝑠) are similar, so for brevity,
we simply write 𝐿2).

The claim for 𝑘 = 0 was proven in Lemma 5.10. We now assume the
claim is true up to 𝑘 − 1 and prove it for 𝑘. First, note that

𝐷𝑐,ℎ(∇𝑘
𝜕𝑠 |𝑐

′|) = ∇𝑘
𝜕𝑠(𝑔(𝑣,∇𝜕𝑠ℎ)|𝑐′|)−

𝑘−1∑︁
𝑖=0

(︂
𝑘

𝑖+ 1

)︂
∇𝑖

𝜕𝑠𝑔(𝑣,∇𝜕𝑠ℎ)∇𝑘−𝑖
𝜕𝑠

|𝑐′|

=
𝑘∑︁

𝑖=0

(︂(︂
𝑘

𝑖

)︂
−
(︂

𝑘

𝑖+ 1

)︂)︂
∇𝑖

𝜕𝑠𝑔(𝑣,∇𝜕𝑠ℎ)∇𝑘−𝑖
𝜕𝑠

|𝑐′|,

where we use the convention
(︀

𝑘
𝑘+1

)︀
= 0. This can be easily proved by

induction using (3.6). From this it follows that

(C.1)
⃒⃒⃒
𝐷𝑐,ℎ(∇𝑘

𝜕𝑠 |𝑐
′|)
⃒⃒⃒
≲

𝑘∑︁
𝑖=0

⃒⃒
∇𝑖

𝜕𝑠𝑔(𝑣,∇𝜕𝑠ℎ)
⃒⃒ ⃒⃒⃒
∇𝑘−𝑖

𝜕𝑠
|𝑐′|
⃒⃒⃒

≲
𝑘∑︁

𝑖=0

𝑖∑︁
𝑗=0

⃒⃒⃒
∇𝑗

𝜕𝑠
𝑣
⃒⃒⃒ ⃒⃒⃒
∇𝑖−𝑗+1

𝜕𝑠
ℎ
⃒⃒⃒ ⃒⃒⃒
∇𝑘−𝑖

𝜕𝑠
|𝑐′|
⃒⃒⃒
,

where the constant depends only on the indices 𝑖, 𝑗, 𝑘. Using the induction
hypothesis, we obtain (using the fact that |𝑣| = 1),⃒⃒⃒

𝐷𝑐,ℎ(∇𝑘
𝜕𝑠 |𝑐

′|)
⃒⃒⃒
≲ |∇𝜕𝑠ℎ|

⃒⃒⃒
∇𝑘

𝜕𝑠 |𝑐
′|
⃒⃒⃒
+

𝑘∑︁
𝑖=0

𝑖∑︁
𝑗=0

⃒⃒⃒
∇𝑗

𝜕𝑠
𝑣
⃒⃒⃒ ⃒⃒⃒
∇𝑖−𝑗+1

𝜕𝑠
ℎ
⃒⃒⃒

on every metric ball. Our assumption (5.2) implies that for 𝑖 = 1, . . . , 𝑛− 1,
we have ‖∇𝑖

𝜕𝑠
ℎ‖𝐿∞ ≤ 𝐶‖ℎ‖𝐺𝑐 on every metric ball. Therefore, we obtain,

as long as 𝑘 ≤ 𝑛− 2⃒⃒⃒
𝐷𝑐,ℎ(∇𝑘

𝜕𝑠 |𝑐
′|)
⃒⃒⃒
≲

⎛⎝⃒⃒⃒∇𝑘
𝜕𝑠 |𝑐

′|
⃒⃒⃒
+

𝑘∑︁
𝑗=0

⃒⃒⃒
∇𝑗

𝜕𝑠
𝑣
⃒⃒⃒⎞⎠ ‖ℎ‖𝐺𝑐

on every metric ball.
In order to complete the proof (for the 𝐿∞ case), we need to show that

‖∇𝑘
𝜕𝑠𝑣‖𝐿∞ 𝑘 = 0, . . . , 𝑛− 2(C.2)
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is bounded on every metric ball. The case 𝑘 = 0 is trivial, since |𝑣| = 1 by
definition. Note that

𝐷𝑐,ℎ|∇𝑘
𝜕𝑠𝑣| = 𝑔

(︃
∇ℎ∇𝑘

𝜕𝑠𝑣,
∇𝑘

𝜕𝑠
𝑣

|∇𝑘
𝜕𝑠
𝑣|

)︃
≤ |∇ℎ∇𝑘

𝜕𝑠𝑣|.

Therefore, in order to use Lemma 5.7 for the function |∇𝑘
𝜕𝑠
𝑣|, we need to

show that

|∇ℎ∇𝑘
𝜕𝑠𝑣| ≤ 𝐶(1 + ‖∇𝑘

𝜕𝑠𝑣‖∞)‖ℎ‖𝐺𝑐

on every metric ball. Using (3.9), we obtain

∇ℎ∇𝑘
𝜕𝑠𝑣 = ∇𝜕𝑠∇ℎ∇𝑘−1

𝜕𝑠
𝑣 − 𝑔(𝑣,∇𝜕𝑠ℎ)∇𝑘

𝜕𝑠𝑣 +ℛ(𝑣, ℎ)∇𝑘−1
𝜕𝑠

𝑣

= ∇𝑘
𝜕𝑠∇ℎ𝑣 −

𝑘−1∑︁
𝑖=0

∇𝑖
𝜕𝑠(𝑔(𝑣,∇𝜕𝑠ℎ)∇𝑘−𝑖

𝜕𝑠
𝑣) +

𝑘−1∑︁
𝑖=0

∇𝑖
𝜕𝑠(ℛ(𝑣, ℎ)∇𝑘−1−𝑖

𝜕𝑠
𝑣)

= ∇𝑘+1
𝜕𝑠

ℎ−
𝑘∑︁

𝑖=0

∇𝑖
𝜕𝑠(𝑔(𝑣,∇𝜕𝑠ℎ)∇𝑘−𝑖

𝜕𝑠
𝑣) +

𝑘−1∑︁
𝑖=0

∇𝑖
𝜕𝑠(ℛ(𝑣, ℎ)∇𝑘−1−𝑖

𝜕𝑠
𝑣),

where in the last line we used the fact that

∇ℎ𝑣 = ∇𝜕𝑠ℎ− 𝑔(𝑣,∇𝜕𝑠ℎ)𝑣,

which follows immediately from (3.6). We therefore have,

∇ℎ∇𝑘
𝜕𝑠𝑣 = ∇𝑘+1

𝜕𝑠
ℎ−

𝑘∑︁
𝑖=0

𝑖∑︁
𝑗=0

𝑗∑︁
𝑙=0

(︂
𝑖

𝑗

)︂(︂
𝑗

𝑙

)︂
𝑔(∇𝑙

𝜕𝑠𝑣,∇
𝑗−𝑙+1
𝜕𝑠

ℎ)∇𝑘−𝑗
𝜕𝑠

𝑣

+
𝑘−1∑︁
𝑖=0

𝑖∑︁
𝑗=0

𝑗∑︁
𝑙=0

𝑙∑︁
𝑚=0

(︂
𝑖

𝑗

)︂(︂
𝑗

𝑙

)︂(︂
𝑙

𝑚

)︂
∇𝑗−𝑙

𝜕𝑠
ℛ(∇𝑚

𝜕𝑠𝑣,∇
𝑙−𝑚
𝜕𝑠

ℎ)∇𝑘−1−𝑗
𝜕𝑠

𝑣,

where we repeatedly used

∇𝜕𝑠 (ℛ(𝑋,𝑌 )𝑍) = (∇𝜕𝑠ℛ)(𝑋,𝑌 )𝑍 +ℛ(∇𝜕𝑠𝑋,𝑌 )𝑍

+ℛ(𝑋,∇𝜕𝑠𝑌 )𝑍 +ℛ(𝑋,𝑌 )∇𝜕𝑠𝑍.

Using the fact that ∇𝑟
𝜕𝑠
ℛ is bounded for every 𝑟,8 we obtain the bound

|∇ℎ∇𝑘
𝜕𝑠𝑣| ≲ |∇𝑘+1

𝜕𝑠
ℎ|+

𝑘∑︁
𝑗=0

𝑗∑︁
𝑙=0

|∇𝑙
𝜕𝑠𝑣| |∇

𝑗−𝑙+1
𝜕𝑠

ℎ| |∇𝑘−𝑗
𝜕𝑠

𝑣|(C.3)

+
𝑘−1∑︁
𝑗=0

|∇𝑘−1−𝑗
𝜕𝑠

𝑣|
𝑗∑︁

𝑙=0

𝑙∑︁
𝑚=0

|∇𝑚
𝜕𝑠𝑣| |∇

𝑙−𝑚
𝜕𝑠

ℎ|(C.4)

≲ |∇𝑘+1
𝜕𝑠

ℎ|+ |∇𝑘
𝜕𝑠𝑣||∇𝜕𝑠ℎ|+

𝑘∑︁
𝑖=0

𝑃𝑖|∇𝑖
𝜕𝑠ℎ|,(C.5)

8Note that by Lemma 5.11, the whole analysis here is done on a compact subset of
𝒩 (the closure of the image of 𝐵(𝑐0, 𝑟)). Hence the boundedness of ℛ and its covariant
derivatives follows from the smoothness of 𝒩 , and does not require any global bounded
geometry assumption on 𝒩 (except from completeness).
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where 𝑃𝑖 are polynomials in |∇𝜕𝑠𝑣|, . . . , |∇𝑘−1
𝜕𝑠

𝑣|. The induction hypothesis

is ‖∇𝑗
𝜕𝑠
𝑣‖∞ is bounded on metric balls for 𝑗 = 0, . . . , 𝑘 − 1, hence 𝑃𝑖 is

bounded on metric balls. Using, this, and assumption (5.2), we obtain that,
as long as 𝑘 ≤ 𝑛− 2,

|∇ℎ∇𝑘
𝜕𝑠𝑣| ≲ (1 + |∇𝑘

𝜕𝑠𝑣|)‖ℎ‖𝐺𝑐 ,

which completes the proof of (C.2) and hence of (5.6).
It remains to prove (5.7) for 𝑘 = 𝑛− 1, that is, to prove that

‖𝐷𝑐,ℎ(∇𝑛−1
𝜕𝑠

|𝑐′|)‖𝐿2 ≤ 𝐶(1 + ‖∇𝑛−1
𝜕𝑠

|𝑐′|‖𝐿2)‖ℎ‖𝐺𝑐 .

Using (C.1) we have⃒⃒
𝐷𝑐,ℎ(∇𝑛−1

𝜕𝑠
|𝑐′|)

⃒⃒
≲

𝑛−1∑︁
𝑖=0

𝑖∑︁
𝑗=0

⃒⃒⃒
∇𝑗

𝜕𝑠
𝑣
⃒⃒⃒ ⃒⃒⃒
∇𝑖−𝑗+1

𝜕𝑠
ℎ
⃒⃒⃒ ⃒⃒
∇𝑛−1−𝑖

𝜕𝑠
|𝑐′|
⃒⃒

≲
⃒⃒
∇𝑛

𝜕𝑠ℎ
⃒⃒
|𝑐′|+ ‖ℎ‖𝐺𝑐

𝑛−1∑︁
𝑖=0

𝑖∑︁
𝑗=0

⃒⃒⃒
∇𝑗

𝜕𝑠
𝑣
⃒⃒⃒ ⃒⃒
∇𝑛−1−𝑖

𝜕𝑠
|𝑐′|
⃒⃒

≲
⃒⃒
∇𝑛

𝜕𝑠ℎ
⃒⃒
|𝑐′|+ ‖ℎ‖𝐺𝑐

⎛⎝⃒⃒∇𝑛−1
𝜕𝑠

|𝑐′|
⃒⃒
+ |𝑐′|

⃒⃒
∇𝑛−1

𝜕𝑠
𝑣
⃒⃒
+

𝑛−2∑︁
𝑖,𝑗=0

⃒⃒⃒
∇𝑗

𝜕𝑠
𝑣
⃒⃒⃒ ⃒⃒
∇𝑖

𝜕𝑠 |𝑐
′|
⃒⃒⎞⎠

≲
⃒⃒
∇𝑛

𝜕𝑠ℎ
⃒⃒
+ ‖ℎ‖𝐺𝑐

(︀⃒⃒
∇𝑛−1

𝜕𝑠
|𝑐′|
⃒⃒
+
⃒⃒
∇𝑛−1

𝜕𝑠
𝑣
⃒⃒
+ 1
)︀

where in the second inequality we used (5.2), and in the bounds (5.6) and
(C.2) on metric balls. Squaring this and integrating, we obtain, using (5.3)
for the first term,

‖𝐷𝑐,ℎ(∇𝑛−1
𝜕𝑠

|𝑐′|)‖𝐿2 ≤ 𝐶(1 + ‖|∇𝑛−1
𝜕𝑠

𝑣|‖𝐿2 + ‖∇𝑛−1
𝜕𝑠

|𝑐′|‖𝐿2)‖ℎ‖𝐺𝑐 .

Therefore, we are left to show that ‖|∇𝑛−1
𝜕𝑠

𝑣|‖𝐿2 is bounded on metric balls.
As before, we need to show that

‖∇ℎ∇𝑛−1
𝜕𝑠

𝑣‖𝐿2 ≤ 𝐶(1 + ‖∇𝑛−1
𝜕𝑠

𝑣‖𝐿2)‖ℎ‖𝐺𝑐 ,(C.6)

and we have shown that

|∇ℎ∇𝑛−1
𝜕𝑠

𝑣| ≲ |∇𝑛
𝜕𝑠ℎ|+ |∇𝑛−1

𝜕𝑠
𝑣||∇𝜕𝑠ℎ|+

𝑛−1∑︁
𝑖=0

𝑃𝑖|∇𝑖
𝜕𝑠ℎ|

where 𝑃𝑖 are polynomials in |∇𝜕𝑠𝑣|, . . . , |∇𝑛−2
𝜕𝑠

𝑣|, which are bounded on met-

ric balls. We therefore have, using (5.2) that

|∇ℎ∇𝑛−1
𝜕𝑠

𝑣| ≲ |∇𝑛
𝜕𝑠ℎ|+ ‖ℎ‖𝐺𝑐

(︀
1 + |∇𝑛−1

𝜕𝑠
𝑣|
)︀
.

Squaring, integrating and using (5.3), we obtain (C.6), which completes the
proof.
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