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Abstract. The disciplines covered by the proposed Initiativkolleg include

differential geometry, groups of symmetries, (non-linear) PDEs, singular-

ities, and mathematical relativity. The local expertise together with the

obvious synergies between these fields has the potential of creating a group

of students who have close interaction both among themselves and with

the existing research groups. The organizers’ scientific connections allow

international co-supervision of the PhD theses. The Initiativkolleg would

also provide students with the opportunity to gain experience in scientific

presentation, to visit international conferences and establish contacts with

distinguished scientists.

1. Description of mathematical subfields and collaboration

between them

We describe several mathematical subfields, list the scientists working in

them or interested, beginning with the main investigators of these subfields.

Citations solely made of numbers ([1], [2], etc.) refer to the references at the

end of this proposal. If they are preceeded by a letter ([Bu1], [C1], etc.) they

refer to the literature in the corrsponding individual curriculum vitae (CV)

attached to this document.
1



DIFFERENTIAL GEOMETRY AND LIE GROUPS 2

Mathematical Relativity. (Robert Beig, Michael Kunzinger, Roland Stein-

bauer, Andreas Čap, Dietrich Burde, Peter Michor) Robert Beig is a leading

expert in mathematical relativity, in particular for applying modern PDE the-

ory to solve Einstein’s equations. See the list of recent publications in his CV

and his research statement for a succinct description of the field. Michael Kun-

zinger and Roland Steinbauer are interested in relativity and are actively work-

ing on applying their well developed multiplicative theory of generalized func-

tions to solutions of Einstein’s equations near singularities (like black holes).

The interest of Andreas Čap stems from the importance of conformal geome-

try, which is one of the main examples of a parabolic geometry, in relativity.

Dietrich Burde’s interest is deformation and degenerations of groups and Lie

algebras which happen during taking the non-relativistic limit of certain rela-

tivistic equations. Peter Michor’s interest is directed towards the orbit space

of Lorentzian metrics under the action of the diffeomorphism group, where

Einstein’s equations really live.

Nonlinear distributional geometry. (Michael Kunzinger, Roland Stein-

bauer, interested is Peter Michor) Linear distributional geometry, i.e., the

extension of methods from differential geometry to the generalized functions

setting was initiated by L. Schwartz and G. de Rham. Soon, however, the in-

herent limitations of distribution theory with respect to nonlinear operations,

began to be felt increasingly (cf. [10] in case of general relativity). Based on

J.F. Colombeau’s construction of algebras of generalized functions canonically

extending the space of distributions ([8]) on the one hand and A. Kriegl and P.

Michor’s calculus in infinite dimensional spaces ([19]) on the other, a suitable

‘nonlinear distributional geometry’ was developed by various authors over the

past decade (cf. [15, 16, 17]). The distinguishing features of this construction

are diffeomorphism invariance, canonical embedding of spaces of distributions

and maximal compatibility with respect to classical analysis (in the smooth

setting). The current main directions of research in nonlinear distributional
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geometry (within the focus of this proposal) are nonsmooth differential geom-

etry, nonsmooth geometric analysis of partial differential operators, Lie group

analysis of partial differential equations involving singularities, and nonsmooth

general relativity.

The main guideline in the development of nonlinear distributional geometry

is to keep a close connection to relevant fields of applications, in particular to

Lie group analysis of PDEs and general relativity. Due to recent theoretical

developments new and exciting applications have come into reach and research

in that direction is currently pursued within the START project of the DIANA

group (see below). In particular, recent progress on the solvability of the wave

equation on singular static space times has been made in the course of the PhD

of E. Mayerhofer (supervised by M. Kunzinger and R. Steinbauer; cf. [14]). For

a detailed description of further active research topics see the statements of

M. Kunzinger and R. Steinbauer attached to this proposal.

Geometric Theory of PDEs. (Peter Michor, Stefan Haller, Robert Beig,

Andreas Čap, Michael Kunzinger, Roland Steinbauer) Here nearly all subfield

have a common intersection.

The search for geodesics on shape manifolds leads to very interesting non-

linear PDEs and their conserved momenta. An elementary introduction to the

methods used is [21].

Stefan Haller’s study of (complex valued) analytic torsion and its relation

to Morse, Morse–Bott, and Morse–Novikov theory theory belongs here. For

more details on the planed research and possible thesis problems we refer to

Haller’s research statement below. The computation of the Ray–Singer torsion

[26] in the presence of a compact group of symmetries with the help of an

invariant Morse–Bott–Smale function would require the computation of the

Ray–Singer torsion for certain symmetric spaces. Students involved in this

problem would certainly benefit from Burde, Čap and Michor’s expertise in

the field of representation theory. There exists an intensive collaboration with
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Dan Burghelea from the Ohio State University. This could also provide the

possibility for the students to stay abroad.

The research in parabolic geometries led to a class of geometrically overde-

termined systems of PDEs and methods to solve them involving connections

and curvatures.

Structures on Manifolds, in particular parabolic geometry. (Andreas

Čap, Peter Michor, Stefan Haller) The main contribution of the theory of par-

abolic geometries to the program of the Initiativkolleg (IK) is that it provides

a systematic way to apply techniques of Lie theory, representation theory, and

cohomology of Lie algebras to problems in differential geometry. The concept

of Cartan connections, which is a basic ingredient of the theory builds a bridge

between the geometry of homogeneous spaces (which can be described in terms

of Lie theory) and differential geometry, see [27].

Among the main successes of parabolic geometries during the last years

was a very general construction of differential operators which are intrinsic to

such structures, see [C2] and [6]. For each of the geometries, this leads to a

large number of geometric overdetermined systems of PDEs, together with an

approach to attack questions about these systems, see [C7].

Peter Michor is interested in Riemannian and symplectic geometry, the latter

is also of interest to Stefan Haller.

Cohomology, extensions, and degenerations of Lie groups and Lie

algebras. (Dietrich Burde, Peter Michor, Andreas Čap) This quite specialized

fields has connections to general relativity where the non-relativistic limit leads

to degenerations of symmetry groups and Lie algebras, see Dietrich Burde’s

contribution below. The connection to Andreas Čap’s interests is provided by

the theory of Bernstein–Gelfand–Gelfand sequences. These are a central tool

in the theory of parabolic geometries and involve cohomology of nilpotent Lie

algebras as a crucial ingredient. Peter Michor has contributed to the extension

theory of Lie super algebras.
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Group actions, orbit spaces, and invariant theory. (Peter Michor, An-

dreas Čap) Group actions play an important role in all fields described here,

in particular as symmetry groups of equations. Orbit spaces and invariant

theory are investigated as a primary research object by Peter Michor: mainly

the question of lifting smooth curves from the orbit space to the manifold

was looked into in a series of papers, see [1, 18] and [M65, M91]. The ques-

tion of choosing roots of polynomials smoothly, or of choosing eigenvalues of a

smooth curve of (even unbounded) operators belongs here. A successful thesis

was finished in this field 2 years ago.

For any parabolic geometry, there is a homogeneous model, which is endowed

with a transitive action of a semisimple Lie group. Structures which are locally

isomorphic to this homogeneous model are an interesting class which can be

studied using Lie theory. Finding invariants for parabolic geometries is a very

hard problem which has natural relations to classical invariant theory.

Geometry of the infinite dimensional shape manifolds. (Peter Michor)

Here the main question is to find reasonable metrics on spaces of plane curves

modulo reparametrizations, or spaces of surfaces in space modulo reparametriza-

tions. This is important for automated pattern recognition. Here some very

surprising results were proved recently: The L2-metric induces 0 geodesic dis-

tance on each kind of shape space, and even on each diffeomorphism group,

see [29] and [M98, M102, M107]. Here there are very tight connections to ap-

plications, via the ‘NSF-Focused Research Group: The geometry, mechanics,

and statistics of the infinite dimensional shape manifolds (based in Johns Hop-

kins and Brown University)’ where Peter Michor is an associated investigator.

This part has connections to the fields of orbit spaces, structures on manifolds,

geometric theory of PDEs, and others.
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2. Existing and planned collaborations in and outside of the

project

For several decades Andreas Čap, Stefan Haller, Peter Michor, and others

run two joint seminars: One is called Lie theory and is devoted to scan all

available literature on Lie groups and Lie algebras together with students. The

other one is devoted to jointly supervising diploma and doctoral students of

all participating faculty and to discuss common research. This has establish a

certain tradition of graduate studies in the research group differential geometry.

In the project we want to extend this tradition in a flexible way to the whole

Initiativkolleg (IK).

The newly founded Eduard Čech Center for Algebra and Geometry in Brno

and Prague, http://ecc.sci.muni.cz, is devoted to graduate and post-graduate

studies in algebra and geometry. There are strong research groups working on

parabolic geometries at the Masaryk University in Brno and the Charles Uni-

versity in Prague associated to this center. There is a regular joint seminar

between Andreas Čap and these two research groups which takes place in Brno

three times per semester. Peter Michor is member of the scientific board of

this center.

Peter Michor is also member (2004–2008) in the ‘comite scientifique du Col-

lege Doctoral Europeen des Universites de Strasbourg’, see http://edc.u-strasbg.fr/.

This opens the possibility of exchanging doctoral students for certain periods

with this College.

Robert Beig is member of ‘Fachbeirat des MPI für Gravitationsphysik ’ in

Potsdam, and has close scientific ties with members of the mathematical rel-

ativity group there, in particular Bernd G. Schmidt. He also collaborates

with Piotr T. Chrusćiel (Departement de Mathématique, University of Tour,

France.)

Peter Michor is associated investigator of ‘NSF-Focused Research Group:

The geometry, mechanics, and statistics of the infinite dimensional shape man-

ifolds’ based in Johns Hopkins and Brown University.
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Andreas Čap and Peter Michor have co-organized several scientific programs

at the Erwin Schrödinger Institute of Mathematical Physics (ESI) in Vienna.

Former Doctoral students have profited considerably from these programs.

For decades Andreas Čap and Peter Michor have participated and have

organized yearly trips of groups of students to the traditional Winter School

on Geometry and Physics which takes place for a full week each mid-January

in a small Village (Srni) in the Bohemian woods in the Czech republic. Many

former doctoral students have profited a lot from the winter school, and have

used it to present their results for the time to an international audience and

to gain experience in international scientific conferences.

Michael Kunzinger and Roland Steinbauer are members of the Vienna-

branch of the research group DIANA (DIfferential Algebras and Nonlinear

Analysis, www.univie.ac.at/~diana) formed by mathematicians from Inns-

bruck, Torino, Southampton and Vienna with their research interests cen-

tered around nonlinear theories of generalized functions and their applica-

tions. These include, in particular, M. Grosser (Univ. Vienna), working in the

structural theory of nonlinear generalized functions, Günther Hörmann (Univ.

Vienna), an expert in nonsmooth geometric analysis of PDEs, Michael Ober-

guggenberger (Univ. Innsbruck), one of the main architects of the theory, as

well as James Vickers, a relativist working at the University of Southampton.

The START-group also includes two Post-docs (James Grant, relativist and

differential geometer, Shantanu Dave, PhD at Penn State with V. Nistor), as

well as 4 current PhD students.

Further international cooperations relevant to the proposal include scientists

working in the structural theory of nonlinear generalized functions, in particu-

lar, the groups of S. Pilipović (University of Novi Sad, Serbia and Montenegro)

and J.A. Marti (Université des Antilles et de la Guyane, Guadeloupe, France)

as well as specialist in the respective fields of applications such as J. Podolsky

(relativist at the Charles University, Prague), J.M. Heinzle (relativist; AEI

Golm, Germany, to return to the Faculty of Physics at Vienna University at
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the beginning of next year) and M. de Hoop (mathematical geophysics; MIT

and Purdue University, USA). The START-project will allow frequent visits

of these scientists which will certainly benefit the proposed PhD program.

3. Training aspects

The proposed Initiativkolleg (IK) aims at employing nine students for a

period of three years (14000 Euro each per year.) One of the guiding principles

of the program will be co-supervision of the PhD students. On the one hand,

this means joint PhD projects of the research groups sustaining the program.

Additionally, as can be seen from the individual research statements we will

provide PhD topics co-supervised by distinguished outside scientists. This

conforms with the second major goal of the IK, namely to involve the students

as early as possible into up-to-date research on an international level and make

contact with the scientific community.

Apart from a variety of advanced lecture courses given by the organizers

and geared to the needs of the IK students, the main foundation of the pro-

posed training program are regular joint seminars providing a platform for all

members (students as well as supervisors) of the IK. These will allow the PhD

candidates to profit in an optimal way from the local expertise.

The IK will provide the opportunity of inviting top class international scien-

tists, both as guest lecturers and as co-supervisors. The budget for financing

guests is estimated rather low (7000 Euro per year) in view of the fact that

several of the organizers are principal investigators of substantial third party

funded research projects, and thus have additional funds at their disposal to

support this purpose. Another cornerstone of the proposed program is the

student’s participation in international conferences on a regular basis. The

budget to cover the students’ travel expenses is assessed so that every student

can be supported by 1000 Euro per year.



DIFFERENTIAL GEOMETRY AND LIE GROUPS 9

An additional training aspect (which, nevertheless, we consider central to

the program’s success) is a careful introduction into techniques of scientific pre-

sentation and teaching. Based on these foundations, students will be expected

to regularly give talks in the joint seminars and at the Dissertantenkolloquium

of the University of Vienna. Participation in international conferences, eg. the

Winter School on Geometry and Physics, will help them gain confidence in

addressing international audiences.

Progress of the PhD theses will receive feedback on a regular basis by the

team of supervisors, as well as by the IK-fellows in the weekly seminars and

talks. Additionally, once per year the team of organizers will discuss with

each student his/her individual progress. In this way it should be possible to

closely keep track of each student’s advances and to avoid most of the common

problems which PhD students working alone usually have to face.

Selection of candidates for the IK will be based on standard web-based job

markets (e.g., mathjobs.com), as well as personal international contacts. Selec-

tion criteria primarily are mathematical quality, but also additional skills like

team-orientation and communicative skills will be taken into account. Wher-

ever possible, personal interviews will provide additional input for the selection

process.

4. Infrastructure

The IK will be situated at the Faculty of Mathematics (the largest Mathe-

matics department in Austria offering a broad variety of mathematical disci-

plines, cf. www.mat.univie.ac.at), jointly with the department of theoretical

physics of the University of Vienna (www.thp.univie.ac.at, accommodating

the gravitational physics group co-organizing the program). The full infras-

tructure of both organizations will be made available to the students of the

proposed IK. In particular, each student will obtain a fully equipped workplace

at one of the departments, and full access to both libraries (also outside the

opening hours). Complying with one of the main features of the program, the
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students will be given the opportunity of acquiring teaching experience in the

course of the PhD program.

A significant enhancement of the opportunities presented to the PhD candi-

dates of the IK is provided by a number of research projects of the applicants:

• Robert Beig: FWF Project P16745 Elasticity as Matter Model in Rel-

ativity, January 2004 – June 2006.

• Andreas Čap: FWF-Project P15747 Parabolic Geometries, October

2002 – September 2006.

• Michael Kunzinger: FWF-Project P16742 Geometric Theory of Gen-

eralized Functions, February 2004 – February 2007. START-Project

Y237 Nonlinear Distributional Geometry, February 2005 – February

2011.

• Peter Michor: FWF Project P17108-N04: Lie Theory and Applica-

tions II, October 2004 – September 2007.

5. Research statement of Robert Beig

Mathematical Relativity. I am a theoretical physicist working on Mathe-

matical Relativity (MR). In MR one studies problems arising in a theory of

physics, namely Einstein’s general relativity (GR), in a rigorous fashion. The

nature of this study, in very broad terms and from the mathematical point

of view, is as follows. The basic object is a symmetric 2-tensor of Lorentzian

signature on a manifold, which models the gravitational field on the spacetime

manifold. This spacetime metric is subject to Einstein’s equations (EEs), a

system of quasilinear partial differential equations (PDEs) of second order. In

the presence of sources (“matter”) these equations are coupled to a further

system of equations, which depends on the nature of these sources, and is also

quasilinear and of first or second order. Much of MR concerns solutions of

EEs in vacuo or with different matter sources: their existence and uniqueness

under appropriate boundary conditions and their properties, e.g. their asymp-

totic behavior, presence of symmetries, etc. There are two main difficulties in
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solving EEs: One is their intrinsic nonlinearity. The other one is the fact that

their solution space carries a natural action of a huge gauge group, namely the

group of diffeomorphisms of the underlying manifold. These difficulties turn

the study of EEs into a subtle undertaking, in which the time-honored search

for solutions in closed form offers little help, and for which up-to-date methods

from differential geometry, Lie group theory and PDE theory have to be used.

Nature of Research. I now list specific topics which have interested me over

the years, and which have left some loose ends, which are of current interest

and suitable for a PhD project.

• Perfect fluids: It has been an open problem to show that static, self-

gravitating perfect fluid bodies have to be spherically symmetric. Us-

ing a combination of elliptic PDE theory with methods inspired by 3-

dimensional conformal geometry, this was established in [3] for a wide

class of equations of state for the fluid. In its most general form the con-

jecture is still open and may require completely different methods. E.g.

using as fluid variable, rather than pressure or density, the deforma-

tions of some reference state, the system becomes a gauge theory with

the volume preserving diffeomorphisms as gauge group. This viewpoint

has so far not been exploited.

• Asymptotics of time-independent solutions of EEs: It has been proved

in [4] that static, asymptotically flat solutions of the vacuum EEs are

in a suitable sense conformally analytic near infinity. With the recent

developments in string theory there is now interest in versions of this

result for spacetime dimension higher than d = 3 + 1. This should

crucially involve the set of conformally invariant tensors recently con-

structed by Fefferman and Graham (see [13]) and hence is intimately re-

lated to the theory of parabolic geometries, see the statement of A. Čap

below. The case d = 5 has been recently solved by P.T. Chruściel and

R. Beig (unpublished). At present it is conjectured that there exists

a generalization for d = 1 + 2k, k = 2, 3 . . . . Even if a proof can be
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found soon, there exist wide possibilities for further generalizations —

such as the inclusion of certain matter fields or replacing “static” by

“stationary” — which furnish possible PhD projects.

• Causality in continuum mechanics: The characteristic polynomial as-

sociated with the leading-order symbol of the PDEs describing matter

sources in GR gives rise to a geometry [2] which vastly generalizes

Lorentzian geometry and which would furnish a topic worthy of fur-

ther study. In this context Michor’s expertise should be helpful, cf.

[M91].

6. Research statement of Dietrich Burde

Affine structures on Lie groups. Affine manifolds and their fundamental

groups play an important role within the theory of compact manifolds with

geometric structure. Milnor (see [22]) has posed in connection with Auslan-

der’s conjecture on affine crystallographic groups, the following question:

Does every solvable Lie group admit a complete left-invariant affine structure?

Despite of the evidence for the existence of such structures, Yves Benoist con-

structed in 1993 a counterexample in dimension 11 consisting of a filiform

nilpotent Lie group without any left-invariant affine structure. We have pro-

duced a whole family of counterexamples [Bu1], [Bu3], [Bu7] for the dimensions

10 ≤ n ≤ 13, out of which Benoist’s example emerges as just one in a series.

The goal here is to establish new criteria for the existence question of left-

invariant affine structures on Lie groups. Among the open questions we will

study the conjectures saying that any two-step solvable Lie group, respectively

any four-step nilpotent Lie group admits a left-invariant affine structure. For

recent results see [Bu12].

The question for reductive Lie groups asks for semisimple connected, simply

connected algebraic groups S possessing a module V with an orbit of codimen-

sion 1 and dim V = dim S + 1. For results where S = SL(n) see [Bu2].
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Crystallographic groups. A classical crystallographic group is a uniform

discrete subgroup of Isom(Rn). Such groups act properly, discontinuously and

cocompactly on Rn. Their structure is well known by the three Bieberbach

theorems. In fact, all these groups are finitely generated virtually abelian. As

a generalization of this concept, one also studies affine crystallographic groups.

These are subgroups of Aff(Rn) = RnoGLn(R) acting crystallographically (by

which we will mean properly discontinuously and cocompactly) on Rn. The

structure of these affine crystallographic groups is not at all as well known as in

the case of the classical crystallographic groups. A prominent open question

here is the conjecture of Auslander and its generalizations. For our recent

results in this question see [Bu10].

Degenerations of Lie algebras and algebraic groups. Let µ ∈ Hom(Λ2V, V )

be a Lie algebra structure over a vector space V . The set of such µ forms an

algebraic subset Ln(K) of the variety Hom(Λ2V, V ). The group GLn(K) acts

on Ln(K) by (g ∗ µ)(x ∧ y) = g(µ(g−1(x) ∧ g−1(y))). The orbits under this

action are the isomorphism classes of n-dimensional Lie algebras. The closure

of the orbits are called degenerations, i.e., λ degenerates to µ, if µ ∈ O(λ).

The classification of Lie algebras and their degenerations is rather difficult.

We have obtained such a classification in dimension 4, see [Bu6], and a partial

classification for nilpotent Lie algebras in dimension 7, see [Bu9], [Bu5]. The

invariants and coinvariants given there can be generalized. An open question

of Vergne is, whether every nilpotent Lie algebra is the degeneration of some

other Lie algebra. A very interesting concept, due to Slodowy, is the study of

orbit closures for algebraic groups.

Representation theory and cohomology of Lie algebras. We want to

obtain new results on Betti numbers, Lie algebra cohomology and representa-

tion theory. To be more explicit, we will study the spaces Hp(g, K), Hp(g, g∗),

the toral rank conjecture of Alperin and the invariant µ(g), the minimal di-

mension of a faithful module of a finite-dimensional Lie algebra g. The toral



DIFFERENTIAL GEOMETRY AND LIE GROUPS 14

rank conjecture of Alperin claims that 2dim Z(g) does not exceed the sum of all

Betti numbers bp(g), where g denotes a finite-dimensional nilpotent Lie alge-

bra. This is only proved in special cases. For affine and symplectic structures

on Lie algebras, the spaces H2(g, K) are of interest. In [Bu8] we have classified

these spaces for filiform Lie algebras of dimension n ≤ 11, and for important

series of nilpotent Lie algebras of dimension n ≥ 12. Another interesting prob-

lem which is connected with affine structures is a refinement of Ado’s theorem,

i.e., to determine µ(g). If g admits an affine structure, then µ(g) ≤ dim g + 1.

However, it is rather difficult to verify this condition for a given Lie algebra g,

see [Bu1], [Bu3]. The invariant µ(g) may or may not grow polynomially with

dim g.

7. Research statement of Andreas Čap

My main field of research is the theory of parabolic geometries. The basis

this theory is the general concept of Cartan geometries, which builds a bridge

from geometry in the classical sense of F. Klein’s Erlangen program to differen-

tial geometry. Starting from a Lie group G and a closed subgroup H ⊂ G one

obtains the concept of a Cartan geometry of type (G, H) whose instances can

be thought of as “curved analogs” of the homogeneous space G/H. Parabolic

geometries are the special case of this concept in which G is semisimple and

H ⊂ G is a parabolic subgroup, so G/H is a generalized flag variety. This

gives rise to a strong connection to semisimple representation theory, which is

a characteristic feature of the theory. The other main feature is that one may

study a large variety of seemingly very diverse geometric structures in a uni-

form manner. Among these structures are important examples like conformal

and quaternionic structure, hypersurface type CR structures, and quaternionic

contact structures.

Some of the examples of parabolic geometries, particularly conformal struc-

tures and CR structures, have been studied independently for a long time.

This leads to an interesting interplay between the general theory of parabolic
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geometries and results on specific examples of such structures. During the last

years the concepts of parabolic geometries have established themselves not

only as a unified approach to various structures but also as a source of new

ideas and results for the classical examples, see e.g. [C1]–[C8], [6], [11], [12],

[9].

The projected IK would provide further possibilities to exploit the interplay

between the general theory of parabolic geometries and specific examples of

such structures. On the one hand, conformal geometry plays an important

role in mathematical relativity, since conformally invariant properties are par-

ticularly robust properties of Riemannian metrics. An example of an element

of the general theory of parabolic geometries which should be very useful in

relativity is provided by the multilinear invariant differential operators intro-

duced in [6]. They are known to implement helicity raising and lowering in

special cases, but in general they are not well understood, even in the special

case of conformal structures. Likewise, some of the recent general results on

infinitesimal automorphisms and deformations in [C8] could be relevant for

mathematical relativity.

On the other hand, the theory of Bernstein–Gelfand–Gelfand sequences in-

troduced in [C2] and [6] gives rise to a large number of geometric overdeter-

mined systems of PDEs. It has been shown in [C7] that for a subclass of

structures, one can use the methods developed there to explicitly prolong ar-

bitrary semi-linear systems with the same principal symbols to a closed form.

Only the simplest examples of this process have been worked out explicitly and

there are evident possibilities of generalizations of this procedure. Therefore,

this should provide an excellent basis for exchange and interaction with other

approaches to PDE problems.

There is a wide variety of future problems related to parabolic geometries

that could be worked on by participants of the projected IK. These can be

studied with different emphasis depending on the prior education and the
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interests of students taking part in the IK. As a selection of such problems, let

me mention the following.

• Study those examples of the multilinear natural operators introduced

in [6] for conformal structures, which are related to linear operators

that are of interest in relativity.

• The relation between the canonical Cartan connection and the Fefferman–

Graham ambient metric for conformal structures has been described in

[C4]. A similar description should be possible for the Poincaré metric

associated to a conformal structure. This should lead to advances in

the theory of conformally compact Einstein manifolds.

• On the homogeneous models for general parabolic geometries, the mul-

tilinear invariant operators of [6] can be studied using only Lie theory

and representation theory. These operators form a rather complicated

algebraic structure similar to an A∞–algebra. Improving the under-

standing of this structure is a very fruitful problem.

• Generalizations of the prolongation procedure of [C7] should lead to

results on overdetermined systems on manifolds endowed with certain

types of bracket–generating distributions, the simplest examples being

provided by contact structures. Results in that direction are also of

interest for fields like sub–Riemannian geometry.

8. Research statement of Stefan Haller

The Ray–Singer analytic torsion [26] essentially is the super determinant of

the deRham complex associated to a flat vector bundle over a closed manifold.

It is defined with the help of zeta regularized determinants of Laplacians asso-

ciated with a Riemannian metric on the base manifold and a Hermitian fiber

metric on the vector bundle. As shown in [H8] the analytic torsion can be

modified so that it provides an invariant (essentially a positive real number)

depending only on the flat connection and a coEuler structure, i.e. an element
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in an affine version of Hn−1(M). CoEuler structures are Poincaré dual to Eu-

ler structures, which have been introduced by Turaev [28] in order to remove

the ambiguities involved in the definition of the combinatorial Reidemeister

torsion (essentially a non-vanishing complex number.) A result of Cheeger [7],

Müller [23] and Bismut–Zhang [5] tells that the analytic torsion is the absolute

value of the combinatorial torsion. Replacing the Hermitian fiber metric by a

fiber wise symmetric non-degenerate bilinear form one can define generalized

Laplacians and use them to define a complex valued Ray–Singer torsion. One

can show that this analytic torsion coincides with the combinatorial torsion.

Particularly, it computes the phase of the combinatorial torsion in analytic

terms. For trivial line bundles this is contained in [H11], the general case is

in preparation. An obvious question and possible thesis problem(s) is how

to extend this picture to the case of bordisms. What is the right concept of

coEuler structures in this relative setting? How to define the relative complex

valued analytic torsion? Show that it coincides with the relative combinatorial

torsion.

In [H9] we extended the result of Cheeger, Müller and Bismut–Zhang to the

Morse–Bott situation. This can be interpreted as a localization result for the

Ray–Singer torsion. It immediately permits to recover (and slightly generalize)

a theorem of Lück, Schick and Thielmann [20] about the analytic torsion of

fiber bundles. Another application we have in mind is the computation of

the Ray–Singer torsion in the presence of a compact group of symmetries. In

such a situation one typically does not have an invariant Morse–Smale function.

However, in many cases there is an invariant Morse–Bott–Smale function which

can be used to compute the analytic torsion.

In [H3] and [H11] we studied the Morse–Novikov complex from an analytic

point of view. Recall that the Novikov incidence numbers [24] replace the

Morse incidence numbers when passing from the gradient of an exact one form

to the gradient of a closed one form. Novikov incidence numbers are elements

of a large formal completion of a group ring. We showed that if the vector field
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satisfies the so-called exponential growth condition then the Novikov incidence

numbers actually are elements in a small subring and have a Laplace transform

which is related to spectral geometry. The question whether this exponential

growth condition is true or not is a very basic yet open problem. Precisely,

consider the unstable manifold of a vector field corresponding to a closed one

form via a Riemannian metric on a closed manifold. Let V (r) denote the

volume of the ball of radius r in this unstable manifold. Does one have an

estimate of the form V (r) ≤ eCr, C a constant? If this was always the case it

would, together with [H11], prove a conjecture of Novikov. In view of [25] the

latter conjecture is known to be true C0-generically. A possible (tough) thesis

problem would be to study this exponential growth condition. Prove that it is

satisfied for all vector fields; or come up with a counter-example; or show that

the vector fields with this property are at least C1-generic.

9. Research statement of Michael Kunzinger

Nonsmooth differential geometry. The theory of nonlinear of generalized

functions (in the sense of J.F. Colombeau) has seen a fundamental restruc-

turing over the past decade. The main objective which was achieved in the

course of this development was the creation of a fully diffeomorphism invariant

version of an algebra of generalized functions canonically containing the space

of distributions while at the same time being optimally consistent with the

smooth setting. Based on pioneering work by Colombeau, Oberguggenberger,

Jelinek, Pilipović, Vickers, Wilson and others, this aim was finally achieved

in [K2] and [K13], see also [K1] for a comprehensive survey. Moreover, global

analysis and differential geometry in the so-called ’special’ (not allowing for a

canonical embedding of spaces of distributions, as opposed to the ’full’ version

addressed above) version of Colombeau’s construction was initiated, among

others, in [K4, K6, K8, K9, K10, K12]. Based on these foundations, the
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following research topics will be pursued in our research group DIANA (Dif-

ferential Algebras and Nonlinear Analysis) in the coming years, each providing

possible topics of doctoral theses under my supervision:

• Development of a theory of vector valued sections in the full version

of the construction, canonically extending the distributional setting

(based on [K2] and [K13]).

• Transferring differential geometric concepts from the special setting of

the theory of algebras of generalized functions ([K6], [K9], [K12]) to

the full version as developed in the previous item.

• Relating the theory of generalized connections on principal fiber bun-

dles introduced in [K4] to the theory of characteristic currents of sin-

gular connections of Harvey and Lawson.

• Studying sheaf and embedding properties of the space of manifold val-

ued generalized functions ([K8], [K10]).

• Continuing the study of generalized pseudo-Riemannian geometry ini-

tiated in [K9].

Lie group analysis of singular differential equations. My research in

this field over the past years has been focused upon systematically extending

classical and distributional methods of symmetry group analysis in order to

allow the treatment of nonlinear differential equations involving singularities

([K3, K6, K11, K14]). The basic methods of group analysis of PDEs have

thereby been made available in the nonlinear setting of generalized functions

and have been brought to a level where methods of nonlinear distributional

geometry can successfully be employed. Building on these foundations, it

is now possible to pursue the following main directions, each giving rise to

possible topics for doctoral theses:

• Connecting to the global distributional theory of Lie group actions

developed by Ziemian and Schmidt.
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• Studying group invariant generalized solutions of linear and nonlinear

PDEs, as well as applications to calculating group invariant fundamen-

tal solutions ([K11], [K1]).

• Developing a theory of variational symmetries in the framework of al-

gebras of generalized functions.

Applications to general relativity. Nonlinear distributional geometry has

already found a number of interesting applications in general relativity, initi-

ated by R. Steinbauer, and followed by Balasin, Vickers, Wilson, and myself.

I refer to Roland Steinbauer’s list of research topics for a more detailed de-

scription of future work in this area. I am interested in co-supervising doctoral

dissertations in this field (in collaboration with R. Steinbauer, J. Grant (Uni-

versity of Vienna), and J. Vickers (University of Southampton)).

10. Research statement of Peter W. Michor

I am active in several fields and I offer topics for doctoral and diploma theses

in most of them, usually after thorough discussions with the student. Some of

these fields are shortly described in the following.

Infinite dimensional differential geometry. Based on convenient calculus

in infinite dimensions which was jointly developed by A.Frölicher, A.Kriegl,

L.Nel, and myself (see [MF]), this is probably the center of my mathematical

expertise. Manifolds of mappings, diffeomorphism groups, various orbit spaces

and weak symplectic and Riemannian metrics on these are the center of my

interest. In particular, shape spaces are orbit spaces of plane curves under

reparametrization groups, or of surfaces in 3-space under reparametrizations,

are very much in the center of my interest since my collaboration with David

Mumford started in 2001, see the papers [M98], [M102], [M107], and also

[M108]. The geodesic equations we found on shape space are very interesting

nonlinear PDEs, closely related to Burgers’ equation and the Camassa-Holm

equation. Thus my strong new interest in geometric theory of PDEs, including

their conserved momenta. The lecture notes [21] of my spring 2005 lecture
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course is devoted mainly to the questions of finding conserved momenta (like

the reparametrization momentum on shape space) and using it for solving some

of these equations, following methods of Ebin, Marsden, Skoller, Constantin,

Kapeller, et.al.

After having determined the geodesic distance on shape space the question

of the Cauchy completion of shape space in this distance arises. Here one

quickly leaves the realm of smooth mappings and collaboration with Michael

Kunzinger und Roland Steinbauer is envisaged to described the shape in the

completion.

A surprising result that came out of our investigation of the geometry of

shape spaces is that the geodesic distance for the L2-Riemannian metric van-

ishes on any kind of orbit space under the action of the diffeomorphism group

of a (compact) manifold M on the space of immersions of M into a Riemann-

ian manifold (N, g). This also holds for the right invariant L2-metric on each

full diffeomorphism group. But a small change in the L2 integrand like adding

the product of the divergences of the vector fields immediately yields that

the geodesic distance is positive. Thus for volume preserving diffeomorphisms

the L2-metric (which is the metric of incompressible fluid mechanics) geodesic

distance separates distinct diffeomorphisms. See [M102] for these results.

Lie groups, algebraic groups, group actions, orbit spaces, and in-

variant theory. In [M65] we investigated the following problem: Let P (t) =

xn−σ1(t)x
n−1 + · · ·+(−1)nσn(t) be a polynomial with all roots real (a hyper-

bolic polynomial), smoothly parameterized by t in R. Can we find n smooth

functions x1(t), . . . , xn(t) of the parameter t defined near 0, which are the roots

of P (t) for each t? The answer is yes if everything is real analytic (Rellich 1940,

different proof in [M65]), or no two roots meet of infinite order [M65]. The lift

can always be chosen twice differentiable [M91] (using a result by Bronstein)

but not better. This problem can be reformulated by asking to lift smooth

curves from the orbit space of a representation over the invariants; our results
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are nearing those for polynomials, in [M73], [M99], [M105]. Some lifting results

are only possible for algebraic actions of finite groups, [M88] and [M90].

In [M87] we consider the generalized Cayley transform from the group into

the Lie algebra induced by a rational representation of an algebraic group.

Many interesting results concerning the invariance under the Cayley transform

of the Jordan decomposition of elements into the semisimple part (further into

elliptic and hyperbolic parts) and the nilpotent part are derived. Since the

Cayley transform is a regular algebraic mapping it also makes sense for finite

groups of Lie type in terms of algebraic geometry over a finite field, where the

exponential mapping does not make sense. This is completely unexplored up

to now.

In [M97] we studied reflection groups on Riemannian manifolds which also

allowed reconstruction of manifold from the Riemannian chamber. Here the

problem is that not every reflection disects the manifold (for example for the

Weyl group acting on the maximal torus of compact simple Lie groups of rank

≥ 2). This research is ongoing.

Actions of Lie algebras on manifolds. In the paper [M56] we started to

investigate the differential geometry of an action of a Lie algebra on a manifold,

i.e., only an infinitesimal Lie group action. We want to study how this action

can be extended to a Lie group action on an enlarged manifold. There always

exists a universal solution to this problem, as shown in the papers [M83],

[M92], and [M96], in a way which differs from the original solution of Palais.

In particular, in [M92] we have constructed the flow completion of Burgers’

equation which we viewed as a dynamical system on an infinite dimensional

space where the solutions run into singularities in finite time.

Cohomology of Lie algebras and groups. [M81] (unpublished) is a coher-

ent exposition of the extension theory of Lie algebras which is not easily acces-

sible in the literature, [M84] carries this over to super Lie algebras. [M101] and
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[M106] study extensions of diffeomorphism groups and Lie algebras of vector

fields which respect exact forms.

11. Research statement of Roland Steinbauer

General Relativity in a non-smooth setting. The significant advances of

the theory of nonlinear generalized functions (in the sense of J.F. Colombeau)

and especially the development of a nonlinear distributional geometry in recent

years (see also M. Kunzinger’s list of research topics and [S1] for an overview)

were achieved in close connection with applications in a geometric context and,

in particular, in general relativity, contributed among others by J. Vickers, J.

Wilson, H. Balasin, M. Kunzinger and myself ([S12, S11, S9, S5]). Especially

due to the intrinsic construction of a diffeomorphism invariant (full) algebra

of generalized functions on differentiable manifolds ([S10]) as well as the de-

velopment of a generalized Pseudo-Riemannian geometry ([S8]) in the special

version of the theory—which, in particular, allows for a flexible modeling of

singular, i.e., distributional data—new and even more exciting applications in

relativity such as to the cosmic censorship hypothesis have come into reach.

Some of these are currently investigated in the course of several third party

funded projects within our research group DIANA (DIfferential Algebras and

Nonlinear Analysis) by J. Vickers (Southampton), J. Grant (Vienna), M. Kun-

zinger and myself. Two of these which qualify perfectly as areas for a PhD

project are in some more detail:

• The wave equation on singular space times: Local unique solvability of

the Cauchy problem for the wave equation in (weakly) singular space

times (i.e., with a metric of low differentiability as e.g. cosmic strings)

was put forward by C. Clarke as a criterion to exclude these geome-

tries as counterexamples to the cosmic censorship hypothesis. Based

upon earlier work by J. Vickers and J. Wilson an existence and unique-

ness result in nonlinear generalized functions has recently been proven

for a large class of static generalized space times ([S13]). Ongoing
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research pursued together with a PhD student (co-supervised by M.

Kunzinger and myself) and a diploma student (supervised by myself)

will also be concerned with clarifying the relationship between second

order strictly hyperbolic operators with non-smooth coefficients and

generalized pseudo-Riemannian metrics.

• Generalized singularity theorems: We study geodesics and their (non-

)extendibility in the presence of singularities, resp. in space-times of low

differentiability using, in particular, the techniques of [S12, S8, S4]. We

aim at formulating and proving analogues of the singularity theorems

by S. Hawking and R. Penrose in generalized space-times.

Nonsmooth differential geometry. My contributions in this field over the

last years were centered around providing a geometric nonlinear distributional

setting suitable for applications in mathematical physics, in particular relativ-

ity [S10, S8] and classical mechanics [S4, S3]. For more details and especially

for areas of ongoing research I refer to M. Kunzinger’s statement included in

this proposal. I have a strong interest in (co-)supervising PhD projects in this

field with M. Kunzinger, J. Vickers (Southampton) and M. Grosser (Vienna).

Local existence results in algebras of generalized functions. The aim

of this line of development is to explore the extent to which the group of (clas-

sically) equivalent local existence results: Implicit Function Theorem – Inverse

Function Theorem – Existence of Solutions of ODEs – Frobenius Theorem can

be recovered in the generalized setting. Up to date the main focus has been on

ODEs: recently a theory of generalized flows on differentiable manifolds was

developed extending the linear distributional setting of J. Marsden (see [S4],

and [S7] for the underlying concept of manifold valued generalized functions).

A second starting point for the analysis of these interconnected topics is the

encouraging fact that in a certain concrete example from relativity it has been

possible to single out “nonsmooth diffeomorphisms” and to provide a rigor-

ous description in the framework of nonlinear distributional geometry ([S11]).
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Currently a PhD thesis mainly concerned with generalizations of the inverse

function theorem is carried out within our research group and I am supervising

a diploma thesis on singular ODEs in the generalized functions setting.

Further interests. I have retained interest in several questions of classical

general relativity since the time of my PhD (started at the Department of

Theoretical Physics at Vienna University). The proposed project would pro-

vide me with the possibility of joint teaching and research perspectives in this

direction especially with R. Beig.
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