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Zusammenfassung

Die vorliegende Arbeit behandelt die Frage ob gewisse Gruppen von Diffeomorphismen
einfach, oder wenigstens perfekt, sind. M. R. Herman und W. Thurston haben gezeigt,
daB} die Zusammenhangskomponente der Identitat der Gruppe aller Diffeomorphismen mit
kompakten Trager einer Mannigfaltigkeit einfach ist. Fiir volumserhaltende Diffeomorphis-
men hat W. Thurston ein analoges Resultat bewiesen. A. Banyaga hat ahnliche Methoden
auf die Automorphismengruppe einer symplektischen Mannigfaltigkeit angewandt. Auch
auf die infinitesimale Version davon, ndmlich die Perfektheit von Lie Algebren von Vek-
torfeldern, wird eingegangen. Diese ist um einiges einfacher zu behandeln, es scheint aber
keine Moglichkeit zu geben aus ihr die Perfektheit der Gruppe zu erhalten. Trotzdem ist
in allen bekannten Féllen die Gruppe genau dann perfekt, wenn es die entsprechende Lie
Algebra ist. Fiir die Einfachheit gilt dies bei weitem nicht. Zum Beispiel hat die Lie Al-
gebra aller Vektorfelder mit kompakten Trager sehr viel Ideale, obwohl die Gruppe dazu
einfach ist.

Im ersten Kapitel wird gezeigt, unter welchen Voraussetzungen man von der lokalen Per-
fektheit einer Diffeomorphismengruppe zu deren Einfachheit gelangt. Auflerdem wird ein
simplizialer Komplex konstruiert, dessen erste Homologiegruppe gleich der Abelisierung der
universellen Uberlagerung der Diffeomorphismengruppe ist. Verschwindet diese Homolo-
giegruppe, ist die Diffeomorphismengruppe also perfekt. Danach wird ein Resultat von
M. R. Herman und F. Sergeraert diskutiert, welches besagt, dafi die Diffeomorphismen-
gruppe des Torus perfekt ist. Daraus folgt auch leicht, dal die Gruppe der Diffeomorphis-
men des Torus, die die Blatter der Standardblatterung erhalten, perfekt ist. Dies wurde
erstmals von T. Rybicki gezeigt, sein Beweis benotigt allerdings eine geblatterte Version
des Theorems von Herman.

Im zweiten Kapitel wird zuerst eine modifizierte Unterteilung des Standard Simplex
konstruiert. Diese ist etwas umstandlicher zu handhaben als die baryzentrische Unterteil-
ung, aber sie erlaubt es eine Fragmentierungsabbildung fiir modulare Diffeomorphismen-
gruppen zu definieren, welche kettenhomotop zur Identitat ist. Dies vereinheitlicht zwei
Methoden, namlich das Fragmentierungs- und das Deformierungslemma, die iiblicherweise
verwendet werden um Perfektheit der Diffeomorphismengruppe einer Mannigfaltigkeit auf
die Perfektheit der entsprechenden Diffeomorphismengruppe des Torus zuriickzufiihren.
Dies wird dann auf den Fall der vollen Diffeomorphismengruppe angewandt, und liefert
deren Perfektheit, und in weiterer Folge auch deren Einfachheit. Auch die Gruppe aller
Diffeomorphismen, die die Bléatter einer Blatterung invariant lassen ist modular, und so
liefert diese Methode auch die Perfektheit letzterer Gruppe.

Im dritten Kapitel werden sogenannte lokal konform symplektische Mannigfaltigkeiten
behandelt. Das sind Mannigfaltigkeiten mit einer Struktur, die lokal bis auf konforme
Aquivalenz wie eine symplektische Struktur aussieht. Thre Bedeutung riihrt einerseits da-
her, daBl jedes gerade dimensionale Blatt einer Jacobi-Mannigfaltigkeit eine lokal konform
symplektische Struktur besitzt, und andererseits daher, dafl sie als Phasenraume in der
Hamiltonschen Mechanik auftreten, siehe [Vai85]. Es wird auch ein Beispiel einer solchen
Mannigfaltigkeit gegeben, die keine symplektische Struktur besitzt. Im Weiteren wird die



Automorphismengruppe einer lokal konform symplektischen Struktur betrachtet. Es stellt
sich heraus, dafl dies eine unendlich dimensionale Lie Gruppe im Sinn von [KM97] ist. Im
allgemeinen ist diese Gruppe, wie im symplektischen Fall auch, weder einfach noch perfekt.
Der Flux-Homomorphismus und die Calabi-Invariante lassen sich vom symplektischen Fall
auf den lokal konform symplektischen Fall verallgemeinern, sie haben jetzt allerdings Werte
in getwisteten de Rham Cohomologiegruppen. Auflerdem tritt eine neue solche Invariante
auf, die im symplektischen Fall immer verschwindet. Das erste Hauptresultat besagt, daf3
der Kern der Calabi-Invariante eine einfache, also auch perfekte Gruppe ist. Dies verall-
gemeinert ein bekanntes Resultat von A. Banyaga fiir symplektische Mannigfaltgkeiten,
siche [Ban78|. Genauer wird die derivierte Reihe der Automorphismengruppe sowie die
infinitesimale Version davon, d.h. die derivierte Reihe der entsprechenden Lie Algebra,
berechnet. Schlulendlich wird noch gezeigt, dafl die Gruppe der Automorphismen schon
die Mannigfaltigkeit und die lokal konform symplektische Struktur bestimmt. Im symplek-
tischen Fall wurde dies von A. Banyaga bewiesen.

Im letzten Kapitel wird gezeigt, dafl zwei der Invarianten aus dem dritten Kapitel auf
die Fundamentalgruppe groflerer Diffeomorphismengruppen ausgedehnt werden koénnen,
und wie diese Ausdehnungen mit gewissen Erweiterungen von Diffeomorphismengruppen
zusammenhangen.
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1. Basic Setup

1.1 Introduction

This work deals with the question, whether certain groups of diffeomorphisms are simple, or
at least perfect. M. R. Herman and W. Thurston have shown that the connected component
of the group of all compactly supported diffeomorphisms of a manifold is simple, and hence
perfect. For the group of volume preserving diffeomorphisms W. Thurston has shown an
analogous statement, but it involves the concept of the flux homomorphism. In fact, he
showed that the kernel of the flux homomorphism is a simple group. A. Banyaga adapted
his methods to the symplectic case and obtained similar simplicity results, although another
invariant, the Calabi invariant, appears in the non-compact symplectic case. There are also
lots of perfectness results for Lie algebras of vector fields. These are much more easier to
prove, but there does not seem to exist a method to obtain the perfectness of the group
from the perfectness of the Lie algebra, although in all known cases the group is perfect if
and only if the Lie algebra is. This is far from being true for simplicity. For example the
Lie algebra of compactly supported vector fields has many ideals, but the corresponding
group is simple.

In the first chapter we fix some notation and discuss under which assumptions one
obtains simplicity of the group from so called local perfectness. In addition a simplicial
complex is introduced. Its first homology group equals the abelianization of the universal
covering of the diffeomorphism group in question. Consequently, if this homology group
vanishes, the diffeomorphism group is perfect. Then we discuss a well known theorem
of Herman, which immediately implies that the group of diffeomorphisms of the torus is
simple. Finally we show how this yields the perfectness of the group of leaf preserving dif-
feomorphisms of the torus with the standard foliation. This is originally due to T. Rybicki,
but his proof uses a foliated version of Hermans theorem.

In the second chapter we define a modified subdivision of the standard simplex. Com-
binatorically it is more difficult to handle than the barycentric subdivision, but it allows to
define a fragmentation mapping for all modular groups of diffeomorphisms which is chain
homotopic to the identity. This method unifies two main tools, usually used when one
tries to reduce the problem of perfectness of a diffeomorphism group of a manifold to the
perfectness of the corresponding diffeomorphism group of the torus. We apply this method
and obtain simplicity of the full diffeomorphism group and perfectness of the group of leaf
preserving diffeomorphisms.

In the third chapter we discuss locally conformally symplectic manifolds. These are
manifolds together with a structure which locally, up to conformal equivalence, looks like a
symplectic structure. There are two reasons why this structures may be interesting. First,
every even dimensional leaf of a Jacobi manifold possesses a locally conformally symplectic
structure and second, they occur as phase spaces in Hamiltonian mechanics, cf. [Vai85].
We also give an example of a locally conformally symplectic manifold, which does not
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admit a symplectic structure. Furthermore we show that the group of automorphisms of a
locally conformally symplectic manifold is a Lie group in the sense of [KM97]. In general
this group is neither simple nor perfect. The flux homomorphism and the Calabi invariant
generalize to the locally conformal case, although they now have values in twisted de Rham
cohomology groups. In addition another invariant appears, which is always zero in the
symplectic case. The main result of this chapter is that the kernel of the Calabi invariant
is simple. This generalizes a well known theorem of A. Banyaga. More precisely we compute
the derived series of the automorphism group of a locally conformally symplectic manifold.
We also compute the derived series of the corresponding Lie algebra. Finally we show that
the automorphism group determines the manifold and the locally conformally symplectic
structure, up to conformal equivalence.

In the last chapter we show how one can extend two of the invariants of the third
chapter to the fundamental group of larger groups of diffeomorphisms, and how these are
related to certain extensions of diffeomorphism groups.

1.2 The Lie Group Diff}"(M)

Let M be a smooth, paracompact, boundaryless manifold and denote by X.(M) the Lie
algebra of compactly supported vector fields. We equipped it with the inductive limit
topology X.(M) = lim Xk (M), where the limit is over all compact subsets K C M
and Xg(M) :={X € X(M) : supp(X) C K}. By Diffo°(M) we denote the group of all
compactly supported diffeomorphisms of M equipped with the inductive limit topology
Diff2* (M) = lim g Diff 2 (M), where Diff ¥ (M) := {f € Diff™(M) : supp(f) € K}. Recall
that X.(M) is a strict inductive limit of Fréchet spaces and that Diff2°(M) is a Lie group
modeled on X.(M). See [KM97| for this. By Diff>°(M), we denote the connected com-
ponent of Diff>°(M) containing idys. It consists exactly of those diffeomorphisms f that
are compactly diffeotopic to id,;, i.e. there exists a compact set K C M and a smooth
mapping H : M x I — M, such that H : I — Diff33(M), H(0) = idy; and H(1) = f. The
kinematic tangent space of Diff>°(M) at f is

Ty Dt (M) =To(f*ma - ff'TM — M) ={X € C(M,TM) : mpy 0 X = f},

i.e. Ty Diff°(M) consist of all compactly supported vector fields along f. In particular
we have Tiq,, Diff2>°(M) = X.(M). Diff;°(M) admits a smooth exponential mapping exp :
X.(M) — Diff°(M) namely exp(X) = FI¥, but it is not even locally surjective around
idys, although Thexp = id. This can be found for example in [Gra88] or [KM97]. The
adjoint representation Ad : Diff>*(M) — GL(X.(M)) is given by g +— (g~')* since we have

Ad(g) - X = TidM
=dl(goFf og™ ) =TgoXog™' = (g ") X.

conj, X = %|0(g oexp(tX)o g_l)

Thus for ad : X.(M) — L(X.(M),X.(M)) we have

ad(X)(Y) = (Tha,, Ad-X)(Y) = §lo Ad(exp(tX))(Y)
= siloexp(—tX)"Y = g[o(FI%)Y = —[X,Y]

and hence the Lie bracket [+, -|x, ) : Xo(M) x Xo(M) — X.(M) is the negative of the usual
Lie bracket on vector fields.



L.&. L Lddy 1117 \JiuvJUL JJlllC \ll/l} J

The space of X.(M)-valued k-forms on Diff2°(M) is
QF (DI (M); X(M)) = (L, (T DIff2® (M), DI (M) x X.(M)))
the space of smooth sections of the smooth vector bundle
LE, (T Diff° (M), Diff2° (M) x X.(M)) — Diffe°(M).

Notice that the right translation p¢ : Diff>°(M) — Diffo°(M), h +— h o g has the following
derivative Tppd : T}, Diff7°(M) — Thoe Diff°(M), X}, — X, 0 g. Thus the right Maurer
Cartan form &" € Q' ( Diff°(M); X.(M)) is

K (Xy) = gﬂgil Xy =X 097"

Recall that for any manifold N the space Q*(NV; X.(M)) is a graded Lie algebra with Lie
bracket

1

[\IJ @] <X1’.”’Xp+q):p!—q!

> sign()[U(Xony, - ), OXopinys -z

o€S(p+q)

where ¥ € QP(N;X.(M)), © € QI(N;X.(M)) and X; € X(IN). Moreover the exterior
derivative d : QF(N; X.(M)) — QFFL(N; X.(M)) is defined by:

k
dV(Xo, ..., X) :Z(—nix W (Xoy ety Xg)

+Z D) HIU([X, XS], Xoy ooty e Xi).

1<j

In the first term X; - ¥(X,,...,4,..., X)) denotes the derivative of W (X, ...,7,...,X;) €
C*(N;X.(M)) in direction X;. K" satlsﬁes the left Maurer-Cartan equation:

di” — 5[, K ]x.(ar) = 0 € QO (DI (M); X(M)) (1.1)

For a mapping f : N — Diff°(M) the right logarithmic derivative §"f = f*k" €
QYN; X.(M)) looks like

0 f(Xe) = (f*R)(Xe) = K" (Tof - Xo) = Tof - Xo0 f(2)7!
where X, € T, N. For a curve ¢ : R — DiffS°(M) this yields ¢ :=i5,6"c: R — X.(M) and
¢(t) =06"c(0,)(t) = Tye- 9o c(t) ™ = Lie(s) o c(t) .
Pulling back (1.1) via f : N — Diff;°(M) we obtain
457 = 3071, Flx.n) = 0 € QN X (M) (12)
The special case we will need later is f : R? — Diff>°(M). For a € Q'(R?; X.(M)) we have

(da = Lo, alx,an)) (85, 0p) = O - a(8y) — 0y - a(Ds) — ([0s, By))
—

= 5([2(05), () xe0n) = [0(D0), @(0)]x.a) (1.3)
=0, a(d) — ;- (&)—i—[a(@s), ()]
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and so (1.2) yields
Os - 0" f(O) — 0y - 0" f(0s) + [0" f(05),0" f(Or)] = 0. (1.4)
For f,g: N — Dift>°(M) and fg := po(f,g) : N — Diff2°(M) that is (fg)(z) = f(x)og(x)

we have the Leibniz rule

0" (fg)(x) = 0" f(x) + Ad(f(x)) - 6"g(x). (1.5)

Finally recall that Diff>° (M) is a regular Lie group, i.e. there exists a smooth right evolution
mapping
Evol” : Q' (R; X.(M)) — C*((R,0), (DIffX (M), id))

inverse to 6" : C*°((R,0), (Diff*(M),idp)) — Q(R; X.(M)). f := Evol’(«) is simply the
integral curve of the tlme dependent vector field X = ig,a € C®(R,X.(M)) on M, i.e.
%ft =X;of.

1.2.1. Lemma. Let X,Y : R — X.(M) be smooth curves. Then the inhomogeneous
linear, differential equation Z'(t) = [X(t), Z(t)])x.cm) +Y (t) has a unique solution Z : R —
X.(M) with initial value Z(0) and it is given by

Z(t) = Ad(g(t)) - ([, Ad(g(s)~") - Y(s)ds + Z(0))
where g : R — Diff>° (M) is such that g(0) = idy and 0"g(0;) = X, i.e. g = Evol"(Xdt).
Proof. Notice first that we have for g € Diff °(M), X € X.(M) and Y, € T, Diff;°(M):
T, (Ad()(X))Y, = T, ( Ad() (X)) Tt Ty,
= T.(Ad()(Ad(g) (X)) Ty Yy = [Tyn® Yy, Ad(9)(X)]x.an
So we have

Z'(t) = [Tg(t)ug(t)_l (1), A (g(t))(f d(g(s)™)Y (s)ds + Z<O))}3€C(M)
+Ad(g(1)) Ad(g(t) ) (Y'(1)
= [X(1), Z(t)]x.con) + Y (t)

and Z solves the differential equation. Remains to check uniqueness. Suppose C' : R —
X.(M) is another solution with initial value C'(0) = Z(0). Then D : R — X.(M), D(t) :=
Z(t) — C(t) solves D'(t) = [X(t), D(t)]x.m) with D(0) = 0. Let us compute
0 - (Ad(g(t)")(D(1)))
Ty BTt Ty 1/ (8), Ad(9(0) N D) g o

+Ad(g(t)")(D'(t))
= — Ad(g(t) [Ty ™ g (t), D))z + Ad(g(8) X (1), D)z 0n
= — Ad(g(t) )X (1), D(t)]x.an) + Ad(g(t) X (1), D(t)] a1y = 0

So Ad(g(t)~")(D(¢)) = Ad(g(0)~1)(D(0)) = 0 and therefore D(t) = 0 which yields Z(t) =
C(t). O
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The following can be found in [KM97], where it is proved using principal bundle theory.

1.2.2. Lemma. Let N be a simply connected manifold, let o € Q(N;X.(M)) satisfying
the Maurer-Cartan equation do — ;[a a)x. oy = 0 and let x € N. Then there exists a
unique g € C*°((N, z), (Diff°(M),idy)) such that g = a.

Proof. Let y € N and choose a path ¢ € C*(I, N) from z = ¢(0) to y = ¢(1). If such a g
exists then we must have (goc)(0) = idy and ¢*a = ¢*6"g = 6" (goc), i.e. goc = Evol"(c*a).
Especially we get g(y) = Evol”(¢*«)(1) and therefore g is unique.

Let H € C*(I x I,N) be a homotopy with H(s,0) = = and H(s,1) = y. Define
h € C*(I x I,Diff*(M)) by h(s,0) = idy and 0"h(0;) = H*a(0;), in other words
h(s,t) = Evol”(inc; H*«)(t). Pulling back do — 3|, a]x. () = 0 we obtain dH*a —
%[H*Oz H*a]x vy = 0 and in view of (1.3) this yields:

as . H*a(@t) — 3t . H*Oé(as) + [H*Oé(as>, H*a<at)] =0
Using this equation and (1.4) for A we obtain

Or-("h(D,) — H' (D)) =
— 0, 8"h(D)) + [6"h(Ds), 8"h(D))] — O, - H* () — [H*(dy), H* (D))
= [6"h(0s) — H a(0s), 6"h(9y)] = [6"h(0r), 6"h(Ds) — H"u(0s)]x. ()

that means ¢ € C*(1,X.(M)) given by @s(t) := 0"h(0s)(s,t) — H*a(0s)(s, ) satisfies the
linear differential equation ¢/ (t) = [0"h(0)(s,1), @s(t)]x.(ar) With initial condition ¢4(0) =
d"h(0s)(s,0) — H*a(0s)(s,0) = 0—0 = 0. Hence by the uniqueness part of lemma 1.2.1 we
get ps(t) =0 for all t € I, hence 6"h(0s) = H*a(0s) and therefore 6"h = H*a. Especially
we have 6"h(0s)(s,1) = H*«(0s)(s,1) = 0 and thus h(s,1) is constant in s. Further for
¢;(t) :== H(i,t), i = 0,1 we have
cia = (H oing)*a = inc; H*a = inc} 0"h = §"(h o inc;)

and thus

Evol"(c¢;a)(1) = Evol"(§"(h o in¢;))(1) = hoinc;(1) = h(i, 1)
So Evol"(¢ja)(1) = Evol"(c¢ja)(1) and since N is simply connected we may define g by
g(y) := Evol"(¢*a)(1) where ¢ is any path from x to y.

Next consider the mapping ms : (1,0) — (1,0) defined by my(t) = st where s € I.
For every 3 € QY (I, X.(M)) we have §"(Evol"(3) o m,) = m*§" Evol”"(8) = m*3 and hence
Evol"(m%(3) = Evol"(8) o ms. So

Evol"(c*a)(s) = (Evol"(¢*a) o my)(1) = Evol"(m}c*a)(1)
= Evol"((c oms)"a)(1) = g(c(s))
that is g o ¢ = Evol"(c¢*«). Hence g maps smooth curves to smooth curves and is thus
smooth.

Remains to show that 6"g = a. But for X,, € T, N we choose a curve c form z to y
such that ¢(1) = X, and obtain:

0"g(Xy) = 8"g(Trc- 0;) = (¢"0"g)(9)(1) = 6" (g 0 )(D;)(1)
= a(9)(1) = a(Tic- 0)) = a(X,)

This shows 0"g = a. O
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1.2.3. Lemma. Let N be a manifold, g € C*(N,Diff>**(M)), w € C>(N,QF(M)) and
X, € T,N. Then we have

Xo (y 9)w®) = 9(@)" (Lsrgx,) (w(z)) + (X, - w))
for allz € N.

Proof. Notice that o : R — QF(M), o(t) := w(x) + t(X, - w) is a smooth curve satisfying
0(0) = w(z) and ¢'(0) = (X, - w). Moreover 7 : R — Diff>°(M), 7(t) := exp(tx"(T,g -
X)) o g(z) is a smooth curve satisfying 7(0) = g(z) and

7'(0) = %!oug@)(exp(mr(ng.Xm)>) = Tap’™ - K" (Tog - X.)

= Tiqpt? 9(z )Tg(w)ug(x)‘ Tog Xe=Tog - X,.
Hence we obtain

Xo (¥ = 9()'wy)) = lor(t) w(z) + %Iog(iv)* (t)

and thus the lemma is proved. O

A well known special case of lemma 1.2.3 is 2 (gjw;) = g; (Lgw: + 2w;) for smooth
curves g : R — Diff*(M) and w : R — QF(M).

1.2.4. Definition. Let G C Diffo°(M) be a subgroup. Then we set
C®(N,G) :={f € C*(N,Diff*(M)) : f(zx) € G Ve N}

We denote by G, the normal subgroup of all elements g of G' that can be joined with the
identity by a smooth path in G, i.e. there exists ¢ € C*(I, G) with ¢(0) = id and ¢(1) = g.
We call G connected by smooth arcs if G, = G. Moreover we denote by G the group
C>((1,0),(G,id))/ ~, where two such curves c,¢; are equivalent iff they are smoothly
homotopic relative endpoints in G, i.e. there exists H € C*([ x I,G) with H(s,0) = id,
H(s,1) = co(1) = ¢ (1), H(0,t) = co(t) and H(1,t) = ¢, (t). Notice that 7 := ev, : G — G,
¢ — ¢(1), is surjective iff G is connected by smooth arcs. Finally set m(G) = kerm.
If G C Diff°(M) is a submanifold then G, is the connected component containing id,
7: G — G is the universal covering of G, and 71(G) is the first homotopy group of G.

1.2.5. Definition. Let G C Diff>*(M) be a subgroup, and k£ € N. We say G acts k-
transitive on M if the following holds: For distinct points xq,...,x; € M and distinct
points yq,...,yx € M there exists ¢ € G such that g(z;) = y; for all 1 < i < k. A
Lie subalgebra g C X(M) is said to act infinitesimal k-transitive if for distinct points
Z1,...,x, € M and Y; € T,,;, M there exists X € g with X (z;) =Y forall 1 <i<k.

The proof of the following is due to P. W. Michor and C. Vizman, see [KM97].
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1.2.6. Proposition. Let M be a connected manifold of dimension greater than 1. Let
G C Diff°*(M) be a subgroup and g C X.(M) a Lie subalgebra such that FIX € G for all
X egandallt € R. If g acts infinitesimal k-transitive on M then G, acts k-transitive
on M.

Proof. Consider

M= {(z1,...,zp) cx; #Fajfori#j} CMx--x M

G actson M by g-(zy,...,z3) := (9(21),...,9(z)). It is clear that G acts k-transitive on
M iff G acts transitive on M. Notice that M is connected, since we have the assumption
dim(M) > 1. So it suffices to show that the G-orbits on M are open, for then they are
closed too, and connectedness yields that there exists only one orbit. Let (z1,...,xx) € M
and choose X;; € g, 1 <@ <k, 1 <j<nsuchthat {X;i(z;),...,X;,(x;)} is a basis of
T, M for all 1 <i <k and X, ;(x;) =0 for [ # i. Consider the mapping:

k factors

———— ~
fR"x - xR"—= M

t1,1 t,1

. . X11 Xi,n X1 Xi,n

S P H(Fltlylo---oFIth o---oFltk’lo---oFltk‘n)-(xl,...,xk)
tl,n tk,n

We have f(0,...,0) = (z1,...,2%) and
f(O, .. ati,jeja- .. ,0) = Flfizjj '(ZEl,. .. ,l’k) = (l‘l, ce ,Flfiz’](l‘z), Ce ,Zlfk)

where e; € R™ is the j-th unit vector. So 32 f(0) = (0,...,X;;(z;),...,0) € T(y,
2,7

and Ty f is surjective. Using the inverse function theorem we see that f is a local diffeo-

morphism and so (z1,...,xx) is in the interior of the G-orbit through (z1,...,x). Since

(x1,...,2x) was arbitrary the G-orbits are open. O

,,,,,

1.2.7. Remark. If dim(M) = 1 the statement of proposition 1.2.6 remains true for k = 1.
The proof is the same, since M is connected in this case, too. Easy examples show that
proposition 1.2.6 is false for dim(M) =1 and k > 1.

1.3 From Perfectness to Simplicity

The following result slightly generalizes a result due to W. Thurston (cf. [Ban97]).

1.3.1. Proposition. Let X be a Hausdorff topological space, U be a basis of the topology
and G C Homeo(X) be a subgroup of homeomorphisms on X. Assume we have for all
U €U a perfect subgroup Gy € G N Homeoy (X)), satisfying:

1. every G-orbit is dense in X (weak transitivity)
2. if YV CU is a covering of X then Uy o, Gv generates G (fragmentation)
3. ifUV eU,ge G, glU)CV then gGyg™ C Gy

Then G is simple.
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Proof. Let id # g € G. We want to show N(g) = G, where N (g) denotes the normal
subgroup in G generated by g. Since id # g we find # € X with g(z) # x and by
1 we also find h € G with h(x) # z and h(z) # g(z). Since X is Hausdorff we can
separate x, g(x), h(x) by open neighborhoods W7y, Wy, W3 of z, g(x), h(x) respectively. We
let U := WiNg Y (Wy)Nh~H(W;3). Then U is an open neighborhood of z and U, g(U), h(U)

are pairwise disjoint. We claim
[u,v] = [[u, g], [v, h]] Vu,v € Homeoy (X) (1.6)

Indeed, since U N g(U) =0 and U N h(U) = () we have

U on U v on U
[u,g] = < gu~tg™" on g(U) [v,h] = < ho~th™t on h(U) (1.7)
id elsewhere id elsewhere

and so (1.6) holds on M \ (¢(U) Uh(U)). Remains to check [[u, g], [v, h]]| g yun@w) = id but
this follows again from (1.7) and the fact g(U) N h(U) = 0.
From (1.6) we especially obtain

Gy = [Gu, Gy] C [[Gu, 9], [Gu, h]] € [N(g),G] € N(g)

Now let y € X be arbitrary. From 1 we obtain a neighborhood U, € U of y and o, € G
with o, (U,) C U. Using 3 we get

Gy, € a;lGUay - a;lN(g)ay C N(g)

Since {U, : y € X'} covers X, |J, .y Gu, generates G by 2 and so G C N (g). O

yeX
The following is another famous result in this direction, due to D. B. A. Epstein, but
we will not use it in the sequel. See [Eps70] for the completely elementary proof.

1.3.2. Theorem. Let X be a paracompact Hausdorff topological space and G C Homeo(X)
a subgroup of homeomorphisms on X. Assume there exists a basis U of the topology of X
such that the following conditions (Epstein’s axioms) are satisfied:

1. ifU el and g € G then g(U) e U
2. G acts transitively on U

3. ifge G, U el andV is an open covering of X then there exist N € N, g1,...,gn €
G and Vi,...,Vy € V such that g = g1---gn, supp(g;) € Vi and supp(g;) U
Gic1+-91(U) #£ X forall1 <1< N.

Then every non-trivial subgroup H C G, with [G,G] C Ng(H) :=={g € G : gHg™' C H},
contains |G, G].

1.3.3. Corollary. In the situation of theorem 1.3.2 the commutator subgroup [G,G| is
simple.

Proof. If H is a non-trivial normal subgroup of [G, G| we have [G, G] C N¢(H) and hence
by theorem 1.3.2 we obtain [G,G]| = H. O
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1.3.4. Corollary. In the situation of theorem 1.3.2 the commutator subgroup |G, G] is the
minimal normal subgroup of G.

Proof. For a normal subgroup H of G we have [G,G] C G = Ng(H) and hence theo-
rem 1.3.2 yields [G,G] C H. So any non-trivial normal subgroup contains [G, G]. O

1.3.5. Remark. The problem about theorem 1.3.2 is that it is not applicable to groups of
diffeomorphisms that preserve e.g. a volume form or a symplectic form since the second
axiom does not hold.

1.4 The Simplicial Set BG

Let A™ := {(to,...,t,) € R" :0 <t <1,> t; = 1} denote the standard n-simplex and
recall that the mappings 6% : A" — A" 0 <i<nando! ': A" - A" 1 0<i<n—1,
given by

(t,... S1) = (toy . tim1, Oty tna)
(to,... n) = oy i+ tivt, . 1)
satisfy the relations:

oo = ortter 0<i<j<n+l
a”lan_anlgﬂ 0<i<j<n-1
ngptl = §rot] 0<i<j<n
yw“_ﬂ" nt 1<j+1<i<n+1
or oIt = naﬁf idan 0<j<n

For a subgroup G C Diff:°(M) we let S, (G) := C*(A",G) denote the set of smooth
mappings A" — Diff>°(M) that take values in G. Then 9} := (]")* : S,(G) — S-1(G)
and s? := (o7)* : S,(G) — S,41(G) satisfy the well known relations:

(2

oot = o opt! 0<i<j<n+1
s”il—sﬂlsnl 0<i<j<n-1
oSt = st O 0<i<j<n

55 J—1 — —
8"“?:5‘? 13” 1<j+1<i<n+1
8”“ " 8;1111? ldSn(G) OSJ STL

That means S, (G) together with s and 9 form a simplicial complex, which we will denote
by S(G). A good reference for simplicial complexes is [May75]. In the sequel we will write
0; resp. s; for OF resp. s if no confusion is possible.

1.4.1. Lemma. For any subgroup G C Dift:°(M) the simplicial complex S(G) is a Kan
complex. That is, it satisfies the following extension condition: For n + 1 n-simplices
G0y -+ > Gk—1> Jk+15 - - - » Gnt1 Which satisfy the compatibility condition 0;g; = 0;_1g;, 0 < i <
j<n+1,i#k, j+#k there exists a (n+ 1)-simplex g such that 0;g = g; for i # k.

Proof. For 1 < i <n we consider the mapping

ri s A" — AL Ti(to, -y tn) == (to + tist, oo tict, tivts - -5 1)
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and p; ;=17 S—1(G) — S«(G). An easy calculation shows:

(2

Oipi = pi—10; 1 <7<
O;pi = pi0j—1 1 <]

Suppose first the case k£ = 0, i.e. we have n-simplices ¢1,...,gn+1. Define \; := p1g1 €
Sp+1(G) and inductively

Ai = Xic1(piOiN ) (pigi) € Sns1(G)

for 2 < ¢ < n+ 1. Here the multiplication and inverse of simplices is point wise, i.e.
(af)(to... tn) == alto,...,tn)B(to, .- tn) and a  (tg, ..., tp) = alt,...,t,)" " Clearly
this multiplication commutes with the operators s;, 0; and p;.

We claim that 9;\; = g; for 1 < 7 <1i <n+ 1. We will prove the last statement by
induction on i. For ¢ = 1 this follows immediately from the second equations of (1.8). For
the inductive step we calculate

DN = (ai)‘i—l)(aipiai/\i_—ll)(aipigi) = (ai)\i—l)(ai)\i_—ll)gi = Gi
where we used again (1.8). For 1 < j < i we have
9jNi = (050i-1) (950100 "1) (D5i9s) = 95 (Pi10;0,071) (pi-10595)
= gj (pi—lai—laj)\i_,ll)(pi—lai—lgj) = gj (pi—lai—lgj_l)(pi—lai—lgj) =9;

This ends the proof in the case k£ = 0, for g := A,,.1 has the desired property.
To cope with the case k # 0 we define mappings

p: A" — A" p(to, .-y tn) == (tn, toy -y tn_1)
and 7 :=p* : S,(G) — S«(G). An easy calculation shows

aﬂ(’:ﬂ'a@'+1 0<i<n

9.1 = 8o (1.9)

We proceed by induction on k. So we have n-simplices go, ..., 9k—1, Gkt+1,--->Gnr1 With
0,9 = 0j_1g; for 0 <i < j<n+1,i#k,j#k. Define f,11 := go and f; := mg;11 for
0 <i<mn,i#k—1,ie wehaven-simplices fo,..., fi_2, &, - -fns1. Using equations (1.9)
we obtain for 0 <i<n+1,i#k—1

Oi fns1 = 0i90 = Qogiv1 = OnTgiy1 = Onfi
and for0<i<j<n,i#k—1j#k—1
0ifj = 0imgj11 = 0it19j41 = 70;Giy1 = 05-17Git1 = Oj_1 f;

So f; satisfy the compatibility conditions for £ — 1 and by induction there exists an n + 1-
simplex f with 9;f = f; for i # k — 1. If we define g := (p~!)* f we get

dog = 0(p™ ") f = Oni1f = far1 =0
and for 0 <i<n+1,i1#k
0ig=0(p )V f=0 )0 af=0")fi1=g

hence g is the desired extension. O
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1.4.2. Definition. Consider the left action of G on S(G) by simplicial maps G x S,,(G) —
Su(G), (h,g) — (uh_l)*g, where "' : G — G denotes right multiplication with h~!. Since
0; and s; are G-equivariant we can define a new simplicial set S(BG) := S(G)/G.

1.4.3. Lemma. Let G C Diff>°(M) be a group with Lie algebra g C X.(M) in the sense
that g € C*((1,0),(G,id)) € C>((I,0), (Diff(M),id)) if and only if 6"g € Q'(I;g) C
QNI;X.(M)), ice. g € g for allt € T (cf. page 3). Then there exists a natural one-to-one
correspondence between

1. S,(BG)
2. C=((AP, e), (G,id))

5. o € (AP, g) satisfying do — 5[0, 0]g =0

4. dim(M)-codimensional foliations on AP x M, transversal to {t} x M for allt € A
which have the following property: if Y, € TyAP and X € X.(M) such that (Y;, X) is
tangential to this foliation, then X € g.

l9] € Sp(BG) corresponds to g - gleg)™ € C((A, ), (G,id)), to 6"g € Q*(AP;g) and
to the foliation with leaves {(t,g(t)(x)) : t € AP}, If o € QYAP;g) then Ey,y =
{(Y,o(Yy)(x)) : Yy € TLAP} C T (Ap X M) is a distribution, transversal to {t} x M
for all t € AP. It is integrable iff do — [0 olg = 0 and the foliation corresponding to o is
the foliation tangential to this dzstmbutzon.

Proof. The correspondence between 1 and 2 is obvious. Notice that the right logarith-
mic derivative 0"¢g does not depend on the representative g of [g] € S,(BG). For g €
C>=((AP, ep), (Diff;°(M),id)) we have:

g€ C¥((A%e0), (G,id)) &  d"geQ'(A%g)

Indeed if g € C((AP?, ep), (G,id)) and Y; € T,A? we choose a path ¢ : I — AP connecting
eo and t with ¢(1) = Y;. Then

0"g(Y1) = (¢6"9)(0)(1) = 0"(g 0 ¢)(A)(1) € g

for goc: I — G. Suppose conversely 6"g € Q'(AP; g) and let t € AP. We have to show
g(t) € G. Let again ¢ : [ — AP be a path from ey to t. Then §"(goc) = c*d"g € Q(I;g)
and thus g(t) = (goc)(1) € G. The correspondence between 2 and 3 now follows from
lemma 1.2.2.

If 0 € QY(AP; X.(M)) then Ey .y = {(V;,0(Y;)(x))} is a dim(M)-codimensional dis-
tribution on AP x M which is transversal to {t} x M for all ¢ € AP. Conversely every
such distribution is of this form. It remains to show that this distribution is integrable iff
do — 3]0, 0]g = 0. Choose a global frame of vector fields Y7, ...,Y, € X(AP) and consider
X, = (Yi, U(Yi)) € X.(AP x M). Then X; span the distribution and it is integrable if and
only if [X;, X;] is tangential to the distribution Vi, j, i.e.

0= —a([Y;AG])+TpM[(E,a<Y)) (Y5, 0(Y;))]
—o([Yi, Vj]) +Yi-0(Y;) = Y- o(Yi) + [0(Yi), o (Y])]

iy Ly

= (dU— [0,016) (V3. Y7)

and since Y1,...,Y) is a frame this is equivalent to do — 5[0, o]y = 0. O
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1.4.4. Corollary. For any subgroup G C Diff>°(M) the complex S(BG) is a Kan complex.

Proof. Let 0 < k < n+ 1 and given n + 1 n-simplices go .. ., Gk—1, Gkt1s - - - » Gns1 € Sn(BG)
such that 0,g; = 0;_19; € Sp_1(BG) for 0 <i < j<n+1,i#k,j+#k, ie 0;g; and
0;-19; equal up to right multiplication by some element of G. We claim that there exist
representatives f; € S,(G) of g; € S, (BG) with Oifj = 0j-1fi € Spa(G) for 0 <i < j <
n+1,17#k, j#k. To see this suppose first k # 0. Then we can choose f; such that
Oofj = 0j_1fo € Sp1(G) for 1 < j <n+1,j#k. Thenforl1 <i<j<n+1,i#k,
j # k we get

000i f; = 0i—100f; = 0;-10;-1fo = 0j—20i_1 fo = 0;—200 f; = O0j_1 f;

and since 8Zf] = 8j_1fj € Sn_l(B§> we obtain azf] = 8j_1fj € Sn_l(G) If K =0 one
has to define the representatives f; of g; by f; by 0i1f; = 0j_1f1 € Sp—1(G). A similar
calculation shows 0,0;f; = 010,_1 f; and hence again 0, f; = 0;_1f; € S,_1(G). Since S(G)
is a Kan complex by lemma 1.4.1 we find f € S,41(G) such that 0,f = f; € S,(G) for
i # k and especially 0;f = f; = g € Sp,(BG). O

If K is a simplicial complex let C,,(K;Z) denote the free abelian group generated by
the p-simplices K. Moreover consider the differential

0:=>" (=1)0;: Cp(K;Z) — Cp1(K;Z)
One easily checks 0 o 9 = 0 and so one has a complex:
s Oy(KG2) L Ol Z) S Co(KZ) — 0

Its homology is, by definition, the homology of K with values in Z. We will write H,(K;Z)
for it.

For a Kan complex K one can also define homotopy groups m;(K), see [May75]. For
example 71 (K) = {x € Ky : Opx = O1x}/ ~, where x ~ y iff there exists z € Ky such
that 012 = x, Oz = y and Jyz = 500y = So0py. In the case K = BG there is only one
0-simplex and we obtain 71 (BG) = C*((Al, ), (G,idw))/ ~, where g ~ h if and only if
they are smoothly homotopic relative endpoints, i.e. 7, (BG) = é, the universal covering
of G. By the Huréwitz theorem, which is also valid for Kan complexes (see [May75]), we
thus get: N

mBGz) - —™BY ¢ g
[ (BG), m(BG)] G, G]

If G is connected by smooth arcs then the projection G— G is surjective and so is the
induced mapping G/[G,G] — G/|G,G] too. So perfectness of G implies perfectness of G
and we have shown:

1.4.5. Proposition. ff G C Difft>*(M) is a group of diffeomorphisms which is connected
by smooth arcs then G is perfect if and only if H(BG;Z) = 0. In this situation G is
perfect too.

1.4.6. Remark. Since there is only one O-simplex in BG and since 0 = 0 : C,(BG;Z) —
Co(BG;Z) we have Hy(BG;Z) = Z for every G.
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1.4.7. Remark. If G = {id} then C,(BG;Z) is
7%z 7 %747 %7 .9
and so Hy(BG;Z) = Z and H,(BG;Z) = 0 for p > 0.

1.4.8. Lemma. Let G C Diff;"(M) be a subgroup and let f € Go. Then conj; : G — G,
conj(g) = fgf ™" induces a simplicial mapping (conj;), : S.(BG) — S.(BG) and we have
(conj;). =id : H(BG;Z) — H.(BG;Z).

Proof. If h € G and g € S,(BG) then
conjs(gh) = fghf™" = fgf~' fhf™" = (conj; g)(fhf ") (1.10)

and thus conj; induces a simplicial mapping (conj;), : S.(BG) — S.(BG). Moreover
left multiplication s : G — G is G-equivariant, so it also induces a simplicial mapping
(115)s + So(BG) — S.(BG) and we have (py5). = (conj;), : S.(BG) — S.(BG). Since
[ € G, we know that py is homotopic to piq = id. Consequently there exists a chain
homotopy H from uy : C.(G;Z) — C.(G;Z) to id in singular homology. Recall that H
is constructed by considering AP x I — G, (t,s) — pss9(t) together with a simplicial
decomposition of AP x I. Now the latter can be chosen to consist of affine (smooth)
simplices, cf. figure 2.5 on page 28. So H maps smooth simplices to smooth simplices.
Moreover, since py is G-equivariant, H is G-equivariant too and hence descends to a
homotopy H : C\.(BG;Z) — C.41(BG; Z) from (conj;), = (piy)s to id = (pa)s O

1.4.9. Lemma. Let My, My be two manifolds and let G; C Diff;°(M;), i = 1,2. Con-
sider the disjoint union M := M; U My and G := G1 x G3 C Diff *(M). If k > 1 and
H,(BG;;Z) =0 for all 1 <p < k then we have:

H(BG;Z) = Hy(BGy; Z) ® Hy(BGy; Z)

Proof. Arguments similar to the one in the proof of lemma 1.4.8 show that the Eilenberg-
Zilber theorem also holds for smooth simplices and descends to C.(BG;Z); that is, the
complex C,(BG1;Z) ® C.(BGy;Z) computes H,(BG;Z). From homological algebra we
obtain

H(BG;Z) = Hy(BG1; Z) ® Ho(BGs; Z) & Ho(BGy; Z) @ Hi(BGy; Z)

~ H,(BG1;Z) ® H,(BGy; Z)

since we have Hy(BGi;Z) = Z, H,(BG;;Z) = 0 for 1 < p < k, and so there is no torsion
involved. O

For a subset K C M and G C Diff;°(M) we denote by Gk the subgroup of G consisting
of the diffeomorphisms having support in K. Moreover if I/ is a set of subsets of M then
SY(BG) denotes the simplicial subcomplex of S(BG) consisting of simplices which have
support in one element of /. Let C’g (BG;Z) denote the p-chains of this complex and

HY(BG;Z) its homology.

1.4.10. Lemma. Let U be a set of sets in M. Then lim x HY(BGy;Z) = HY(BG;Z),
where the limit 1s taken over all compact subsets K C M.
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Proof. Obviously we have lim xC¥(BGg;Z) = C%(BG;Z) as chain complexes, and since
the homology functor commutes with inductive limits we obtain the result. O]

Let sd : Cu(G;Z) — C.(G;Z) be the barycentric subdivision and let H : C.(G;Z) —
C.+1(G;Z) be a natural chain homotopy satisfying sd —id = 0H + H0, such that H (idan)
consists of affine simplices. Since sd and H are natural they are G-equivariant and support
shrinking. Hence they induce mappings sd : C¥(BG,;Z) — CY(BG;Z), H : C¥(BG;Z) —
CY . (BG;Z) for every set U of sets in M.

We equip the standard simplices AP := {(tg,--- ,t,) : > o t; = 1} C RPT! with the
usual Riemannian metric. Further we define the disk bundle of A? to be DA? := {X €
TAP: || X| <1}. For a neighborhood of zero &€ C X.(M) we now define

SEU(BG) = {g € SU(BG) : (7g)(DAT) C £},
where we consider 6"g : TAP — X.(M). Since every affine mapping [ : AP — A7 is
a contraction, i.e. |T1- X| < || X| for all X € TA?, C¢Y(BG;Z) is a sub complex of
CY(BG;7Z) and the mappings sd and H preserve this sub complex. Moreover there exist
0 < b, < 1 independent of € and U such that sd (C5¥(BG; Z)) C Cy*(BG; 7).
1.4.11. Lemma. LetU be a set of sets in M and £ C X.(M) be a neighborhood of zero.
Then for every simplex g € SY(BG) there exists m € N such that sd™(g) € CY*(BG;Z).

Proof. We may assume that £ is convex. Consider ¢ := 0"¢g as smooth mapping TAP —
X.(M). DAP is a compact set and so o(DAP) C X.(M) is compact and therefore it is
absorbed by £, i.e. there exists N > 0 such that o(DA?) C NE, ie. g € CY*U(BG;Z). If

we choose m such that b)'N < 1 we obtain sd™(g) € clr N (BGLz) C CEY(BG;Z). O

The next proposition shows that the homology of S(BG), more generally S¥(BG), can
be computed via small simplices. Therefore it is sometimes called local homology of G.

1.4.12. Proposition. For every set U of sets in M and for every neighborhood of zero
E C X.(M) the inclusion induces an isomorphism in homology HEY(BG; Z) = HY(BG; 7).
Proof. For every chain g € C%(BG;Z) let m(g) € Ny denote the smallest integer such that
sd™9(g) € CEU(BG;Z). Notice that such an integer exists by lemma 1.4.11, m(dg) <
m(g) and for g € CE¥(BG;Z) we have m(g) = 0. Now we define H : CY(BG;Z) —
CY (BG;Z) by H(g) = E;.":(g)_l H sd’(g). Using sd —id = OH + HO we obtain

OH(g)= Y g - D sdig)- Y HIsd()

0<j<m(g) 0<j<m(g) 0<j<m(g)
= sdm(g)(g) —qg— Z H sd’(0g)
0<j<m(g)
Ho(g)= Y, Hsd(dg)
0<5<m(dg)

and this yields:
g+0H(g)+ Hi(g) =sd™(g)— > Hsd'(dg) € C:¥(BG;Z)

m(9g)<j<m(g)

Let i : CY(BG;Z) — CY(BG;Z) denote the inclusion and define 7 : Cf_(B@; 7) —

CEU(BG;Z) by r = id + OH + HO. Both are chain maps, r o i = id and H is a chain
homotopy i o r ~ id. So r induces an inverse of ¢ in homology. O
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1.5 The Torus

1.5.1. Definition. For k = (ki,... ,k,) € Z" and v = (v, ... ,%) € T" :=R"/Z" let
k| == Y0 k| € Z and (k,~) = n(> 1, k%) € T, where 7 : R — T" denotes the
natural projection and 4 € R™ with 7(%;) = 7. Obv1ously this doesnt depend on the
choice of 5. Further for § € T" we define ||6]] := min,ez |6 — n|, where m(6) = 6. This
doesn’t depend on the choice of 4.

We say v € T™ satisfies an diophantine equation iff there exists @ > 0 and C' > 0 such
that

BN = 7 VEEZ"\0.

||

The existence of v € T™ satisfying a diophantine equation is guaranteed by the following
result due to Kintchine, see [LanT71].

1.5.2. Proposition. The sety € T™ satisfying a diophantine equation has measure 1 with
respect to the Haar measure on T".

The following theorem is due to M. R. Herman, see [Her73]. His proof uses a deep
Nash-Moser-Sergeraert implicit function theorem, see [Ser72].

1.5.3. Theorem. Let~y € T" satisfy an diophantine equation, and consider the following
smooth mapping:

., : Diff*(T™), x T" — Diff®(T™),
(fv)\) = R)xof_lonof7

where R denotes rotation onT™ by 5 € T™. Then there exists a C*°-open neighborhood U
of R, € Diff>*(T"), and a smooth mapping s : U — Diff > (T™), x T™ satisfying ., 0s = idy
and s(R.,) = (id, 0).

In the sequel we consider T™ as a subgroup of Diff>*(7™"), via  +— Rg. Then we also

have R* = Tn C Diff (T™),. Further for every subset S of a group G we denote by Ng(.S)
the normal subgroup S generates in G.

1.5.4. Corollary. We have N'(T") := Njﬁf”(Tﬂ)o(ﬁ) = ]/)\iFfoo(Tn)o.

Proof. By proposition 1.5.2 we can choose v € T" satisfying a diophantine equation. Using
theorem 1.5.3 we obtain for every f € C*((1,0), (Diff*(1™),,id)), sufficiently close to id,
s1 = pryosoR, f € C*((1,0), (D> (T™)o,id)) and sy = praosoR, f € C*((1,0), (T™,0))
such that R, f = Ry,s7' Rys1, i.e. f = Ry,[R7',s7']. Let v : I — T™ be a path connecting
0 with 7. Then (s,t) — [Ra(ls+ 1—s)t) s1(t)7Y] is a homotopy relative endpoints from ¢ —

[R;(lt)’ si(t)7!] to t [Pw ,51(t)71], and we obtain:
[ = R, [t = R;(t 1] S N(ﬁ) - ]/)\i?foo(Tn)o

The f which are close to id generate C*°((I,0), (Diff**(T™)., id)) as a group, since they con-

tain an open neighborhood of id. Consequently Diﬂ“oo(T”)O C N(T"), the other inclusion
is trivial. O



uliAl L1414 L. DALV JiydL Ul

1.5.5. Corollary. ]/)\iFfOO(T”)O is perfect.

Proof. We have to show [/)\if/foo(T")o = []/D\i—f/foo(T”)o, [/)\iFfOO(T")O]. Consider the action of
PGL(2,C) := GL(2,C)/C*, where C* := C \ 0, on CP' given by

PGL(2,C) x CP' — CP!
(4, [v]) — [Av]

If one thinks of CP' as C U {oc} this becomes the well known action by Mobius transfor-
mations

M : PGL(2,C) x CU{o0} — CU {oc}

wb az+b
(24),2) - 2

Let HT := {z € C : ¥(z) > 0} denote the upper half plane. It is easy to see that
the subgroup of PGL(2,C) mapping H* onto H™ is PGL(2,R) := GL(2,R)/R*. Next

recall, that the Mobius transformation z — = = M(1 _Z)(z) maps H' onto D% So
1

G = (17)PGL(2,R) (] _Z.i)_l C PGL(2,C) is the subgroup of Mobius transformations

1 4
mapping D? onto D?. Certainly G preserves 9D? = T, and so we have found a subgroup

G C Diff*(T"), which is isomorphic to PGL(2,R). If § € T* C C we have Ry = M(g 0)
01
and so T' C G C Diff*(T"),. Therefore we have T" C G™ C Diff*(T"),, where G" :=

G x -+ x G. Tt is well known, see [GOV93]| for example, that G is perfect, and therefore
Gn = (é)" is perfect too. From corollary 1.5.4 we thus obtain:

Diff (T™), = N(T™) C N(G") = N (G, G"])
C N([Diff™ (™), Diff~ (T™)o]) = [Diff~ (T™)o, Diff~ (1™).]
The other inclusion is trivial. O
1.5.6. Corollary. H,; (Bﬁoo(T");Z) =0 and Dift>*(T™), is perfect too.

Proof. This follows immediately from proposition 1.4.5 and corollary 1.5.5. 0

1.6 The Foliated Torus

Let F be a regular foliation of M. Then we denote by Diff>°(M, F) the group of compactly
supported, leaf preserving diffeomorphisms of M. In this section we consider the torus
T™ x T™ with the foliation F having {pt} x T™ as leaves. Then we have

Diff>(T™ x T", F) = C>(T™, Dift>*(1™"))

as groups, where the multiplication on the latter group is point wise. Recall that we
considered T™ as subgroup of Diff**(7™"), via @ — R,, the rotation by «, and define a
subgroup:

H :=C™(T™",T"), C C®(T™, Diff*(T")) = Diff>*(T"™ x T", F),

In this situation we have the following generalization of corollary 1.5.4.
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1.6.1. Corollary. N (H) := N5a* @mxn Jr)O(I’:VT) = Diff (T™ x T, F),

Proof. Choose v € T satistying a diophantine equation. Let
feC>((1,0), (DUE*(T™ x T", F),id))
be sufficiently close to id and consider it as mapping
fe COO(([ x T™ {0} xT™), (Diffoo(T”),id)).

From theorem 1.5.3 we obtain s; = pryosoR, f € C®((I xT™, {0} x T™), (Diff*(1™),id))
and sy = prooso R, f € C((I xT™, {0} x T™),(T™,0)) such that R, f = R,s1 ' Rysq, i.e.
f = Ry,[R;',s7']. As we did in the proof of corollary 1.5.4 we choose a path « connecting
0 with v in 7™ and show that [R}',s7'] € C((1 x T™ {0} x T™), (Diff>**(1T™),id)) is
homotopic relative (I x T™) to [R;',s7']. So we get:

f=R,[R, s7! € N(H) CDift (T™ x T™, F)s

since R,,, R, € H. This shows ]S\i_f/foo(Tm x T", F)y C N(H). The other inclusion is
trivial. O

1.6.2. Lemma. Let G be a n-dimensional, perfect Lie group. Then there exists an open
neighborhood U of e € G, hy,...,h, € G and smooth mappings s; : U — G, 1 <1 < n,
such that

g = [51(9), lls2(9), ho] - - [sn(9) hu] Vg €U

and s;(e) = e.

Proof. Let h € G and consider the mapping s, : G — G, kp(g) := [g,h]. An easy
calculation shows T.x;, = id — Ad(h). For hy,..., h, € G we consider the mapping:

K(hiyeoshn) G"— G (gla"'agn) = [glvhl][gfuhn]

Tee,..e)bhr,hn) (X1, ., Xp) = (id — Ad(h1)) X7 + -+ - + (id — Ad(hn)) X

It remains to show that we can choose h; such that Tic ¢k, h,) @ 8" — @ is onto.
Then everything follows from the implicit function theorem. Since g is perfect we find
Xi,..., X, €gand Yy, ... Y, € gsuch that [X;,Y]],...,[X,, Y, is a basis of g. We have:

a%|0(id — Ad(exp(;Y7)))(X;) = —[V;, Xi] = [X;, Y]]

If we choose t; # 0 sufficiently small and let h; := exp(t;Y;) then (id — Ad(h;))(X;) is a
basis of g, i.e.
(id — Ad(h1))(g) + - - + (id — Ad(hn))(g) = o

and 8o Te, . e)K(hy,..hy,) 1S ONtO. O

1.6.3. Corollary. Ii_f/foo(Tm x T" F), is perfect.
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Proof. In the proof of corollary 1.5.5 we constructed a finite dimensional, connected, perfect
Lie group G™ with 7" C G™ C Diff**(7™). Consider now the subgroup:

K :=C>®(T™ G"), C C"’O(Tm,Diﬂ“oo(T"))O = Diff>*(T™ x T, F),

Then we have H C K C Diff>(T™ x T", F), and thus H C K C Diff (T™ x T, F),. We
claim that K is perfect. Indeed we have

K 2 C™((1,0),C%°(T™,G™))/ ~ar= C=((I x T™, {0} x T™), (G",€))/ ~a(rxTm)

and it follows from lemma 1.6.2 that the latter is perfect. From corollary 1.6.1 we now
obtain:

Diff (T x T", F), = N(H) C N(K) = N([K, K])
C N (Dt (T™ x T", F)o, Dif (T x T, F).))
= [Diff (T™ x T", F)o, Diff (T™ x T™, F),]
The other inclusion is trivial. O

Corollary 1.6.3 is due to T. Rybicki, see [Ryb95a]. He proved a slightly stronger (foli-
ated) version of theorem 1.5.3 to show it.

1.6.4. Corollary. H,; (Bﬁoo(Tm x T",F);Z) = 0 and Diff>(T™ x T", F), is perfect
too.

Proof. This is an immediate consequence of proposition 1.4.5 and corollary 1.6.3. 0]

1.6.5. Remark. Notice that Diff>(T™ x T™, F) is not simple. For example the subgroup
fixing the points of one distinguished leaf is a proper, normal subgroup.



2. Fragmentation and Deformation

2.1 Modified Subdivision

For N € N let DY = {(mg,...,m,) € NJ*' : 3" 'm; = N}. See figure 2.1 on page 19
for low dimensional special cases. If A € AYN~1 and m € D% we define 7, € A" by

Figure 2.1: The index set D%

(0,3,1)

(0,4,0)

The bold dots represent the elements of
D}. The line is just for convenience, it

. ; The bold dots represent the elements of Di. The lines
has no interpretation.

are just for convenience, they have no interpretation.

7}),} = (2\0 + e+ )\mo—y 2\m0 +oee A+ )\mo+m1—£a ooy Amgdedmg g T )‘m0+---+mnf£)

.

g

~~
mo mi mn

See figure 2.2 on page 20 for low dimensional special cases. Moreover we let
Ay ={(m,m) € Dy X &, :m+ fra)y+ -+ faj) € Dy VO<j <n}

where f; := e; — e;_1 and e; € R denote the unit vectors, i.e. the vertexes of A™ (cf.
figure 2.3 on page 20). If (m,7) € A% we define T(’\mﬂ) : A" — A" by T(}mr)(ej) =
T Frit bt i) for 0 < 7 < n and extend it affinely. This is shown in two special cases in
figure 2.4 on page 21.

2.1.1. Lemma. Let By, := A% x {0,...,n}, C% = A% x {0,...,n+ 1} and for a =
(m, i) € O% we define 6, = 0;, sgn(a) := (—1)%sgn(r), 72 = T()‘mm).

Then there erist injective mappings b : C% — B and & : By \ by H(O% ') —
B\ VYO such that

00 0T) = Tb)‘%(a) 0 Opr (o) * A" — A™ Yo e CF (2.1)
Ta © 00 = T (o) © O o) : A1 — A" Vo€ By \ by H(Cy™) (2.2)

19
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Figure 2.2: The points T();n - € A"

The bold dots represent the elements
T(i‘l,o),Té,%l),... € Al as indicated for

)\:(1 11 1)€A4_1:A3.

The bold dots represent the elements Ta’070)77'é,)’170), L EN?
8187472

as indicated for A = (%, %, i, %) e A1 = A3,
Figure 2.3: The index set AR,

_(22).0) ((1,1,2),(12)) ((1,1,2),id)

5
/OO0
O Y0 Y%

The oriented 2-simplices represent the elements of A2.
Note that ((4,0,0),id) € A3, but ((4,0,0), (12)) ¢ A3.

The oriented lines represent the ele-
ments of A}. Note that ((0,4),id) is not
contained in A} as the picture shows.

holds for every A\ € AN~ Moreover we have c%; o ¢% = id, sgnob}, = sgn and sgn oc%, =
—sgn. Especially ¢ has no fived points.

Proof. We regard &,, C 6,11, 1.e. m € &, iff 7(n+ 1) =n + 1. Next we define
Wy 2" x S, x {0, ,n+ 1} = 2" x G,y x {0,...,n+ 1}
(m,7,0) — (6om — f1,(1---n+1)oro(l---n+1)"0)
(m, i) — (6;m, (i---n+1omo(x (i) --n+1)"1 7))

and

L x G, x{0,...,n} - Z" x &, x{0,...,n}
(m,m,0) = (m+ fra),mo(1---n),n)
(m,m,1) — (m,mo (ii+1),1)

(m,m,n) = (m— frm,mo (1 -n)~1,0)
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Figure 2.4: The simplices 77\

(m,m)

O
OO
T()ES,O,l),id) G\G
N\

ODOO
NN

The oriented triangles represent the image of the sim-

A
- T((2,2),id)

The oriented lines represent the im-
age of the singular simplices 77, o 4,

A : 1 :

T -, ... in At again for A = : A A : 2 : _
(1(3,11)711d)1 ot 3g plices T((4,0,0),id)" T((3,1,0),id) -+ 1 A again for A =
(5,5:3:3) EAT =A% (1,11 1y e At = A3,

It is clear that c}; o ¢y = id, especially ¢ is injective. It is easy to see that bR, is injective.
Moreover one readily checks that sgn oby, = sgn and sgn ocy, = — sgn.

Next we check b3, (C%) C Byt If (m,m,0) € C% then mo > 1 and hence dym — f, €
D% Moreover if 7’ := (1---n+1)omo(1---n+1)~! we obtain for 1 < j <n+1

dom — fi+ frq)y+ o+ frg) =0om = fi+ fi + fryr o+ frgena
= do(m + fray + - fr(i-1)) € DR

and so b%;(m, 7,0) € B, Now let (m,w,4) € C% with 1 <4 <n+ 1. One checks

0i fr(5) = Jr(5) 1<j<m (i)
Oifr) = frri+1) + fr () j=m"(i)
Oifr() = fr(j+1) i) <j<n

where 77’ := (i---n+1)omo(n~1(7) - - -n+1)~!. Tt follows immediately from these equations
that 8;m + fory + -+ fars) € DY for j # 771(i). Moreover

Sm A+ foy + o fo1y) = 0(m+ faqy + -+ frmr0y-1)) + [ € D!
for (m + fﬂ(l) + -+ fﬂ(ﬂ—l(i),l))i,l > 1 since m + fﬂ(l) + -+ fﬂ(ﬂ—l(i),l) + fi € D}. So
we have shown that b3 (m,7,i) € Bitt.
The most difficult part is to show that ¢ (B \ b5 ' (Cv 1)) € By \ by H(Cy 1), We
do this by showing
cN(By)NOyH(CY) =0 and By \ (i)™ (By) Sy (CR).

We first show ¢ (B%) Nby H(Ont) = 0: Let (m,n,0) € BY and suppose that there exists
(m/,7',i") € Cn! such that

b’fv_l(m',ﬂ',i') =cy(m,m,0) = (m+ fray,mo(1---n),n)
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Then i' = n, n(1) = n, §;m' = m + f, but the latter is a contradiction. Next let
(m,m,n) € BY and suppose there exists (m’,7’,4') € Cy ! such that

bﬁ,‘l(m', i) = cy(m,mn) = (m — frm),mo(1- -n)~10)

Then ¢/ =0, m(n) =1, m — f1 = dom’ — f1 hence m = dym’ but this contradicts the fact
that (m,n) € A%. At last let (m,7,i) € B% and suppose there exists (m/,n’,i') € Ch*
such that

vt (m! 7 i) = cy(my i) = (mymo (i,i+ 1),4)
Then 7'~ (i') =4, n(i + 1) = and 7(i) = ' + 1. So

0 < (m+ fray + -+ fai—1) + fog1)y =my — 1

and we obtain m; > 1, but this contradicts m = d;m/.

Next we show B% \ (c) 1(B%) C Wi Y(Cv'): Let (m,m,0) € BY and suppose
(m,m,0) = (m+ fray,mo (1---n),n) ¢ BY. We show (1) = 1. Suppose conversely
m(1) # 1. For 1 < j <n we have m + frq) + - fr(;) € D} hence

m+ e, — € + €r(1) — Ex(1)—1 = m + f7r(1) +oeee fﬂ'(n) + fﬂ'(l) ¢ DJTQ

and thus myi)-1 = 0. On the other hand we have 0 < (m + fw(l))ﬁ(l)_l = Mgp)—1 — 1 a
contradiction. Since m + e, —ey € D% and m+ e, —eg + e; — eg ¢ D} we obtain mg = 1.
So we define m’ := pro(m + f1) € Dyt and 7' := (1---n)tomo(l---n) € &,_;, where
pr; : Z"*' — 7" forgets about the i-th component. Obviously we have b% *(m/,7’,0) =
(m,7,0) and it remains to show that (m’,7’,0) € Cy ', ie. (m/,7') € A%’ But for
0<j7<n-—1we have

m' + foqy+ o+ gy =0 A fag o e
=pro(m+ fi + fr@) + -+ fx+1) € Dyt

since (m + fi + fr@) + -+ frg+1))o = 0.

Next consider the case (m,m,n) € B} and suppose ciy(m,m,n) = (m — fr@),7 0
(1---n)71,0) ¢ By. For 1 <j <n—1wehave m — frp) + fam) + feq) T+ fxi) € Di
and so m — fr) € Dy hence my,) = 0. We have m — fr) + e, — ey € D}, and by looking
at the m(n)-th coordinate we get w(n) = n and m,, = 0. We define 7’ := 7 € S,,_; and
m' = pr,(m) € D% '. Obviously we have b ' (m’,7’,n) = (m,m,n) and so it remains to
show (m',7',n) € Op ' ie. (m/,7') € A% . But for 0 < j <n— 1 we have

m' + o)+ o) = Pra(m e+ fr) o0+ fry) € Dy
since (m + fry £+ fﬂ(j))n =0.

Consider now the last case (m, 7,i) € B} and suppose cj(m, m,i) = (m, mo(i,i+1),i) ¢
Bj. One easily sees m + fray + - + fri=1) + frir1) € DYy m+ fray + -+ + fror) +
fr+1) + fz@) € DR and therefore we obtain 7(i +1) — 1 = 7(i) and my = 0. We let
7= (n(i)---n)tomo (i---n) € G,y, m' = pry(m) € D%t and @' := 7(i). Then
we obviously have b% ' (m’,7',i') = (m, 7,i) and it remains to show (m’,7’,i') € Cu ', i.e.
(m/,7') € A%, but this follows easily from the equations

Pl (i) = foi) I<j<i
Py (fr()) = oG- +1<j<n
Py (fri) + frtinr) = frri)
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and the fact that the 7(i)-th coordinates of fr(;) for j # 7,4+ 1 and frqu) + fr@u41) are 0.
Since the mappings in equations (2.1) and (2.2) are affine it suffices to check them on
the vertexes e; € A", resp. e; € A", but these are now easy calculations. O

2.1.2. Definition. For N € N we let \ := ( ) € AN=!and

1 1
NN

dy = Z sgn(w)Tanjﬁ) € C,(A™ Z)

(m,m)eAY
For any topological space we define the modified subdivision
sdy 1 Cu(X52) — Cu(X5Z)
on a n-simplex o : A" — X by sdy(0) := 0.(d%) and extend it Z-linear.

2.1.3. Theorem. For any topological space X the modified subdivision sdy : Cy(X;Z) —
C(X;Z) is a chain map natural in X and it is natural chain homotopic to the identity.

Proof. Let f: X — Y be continuous and let ¢ : A™ — X be a simplex. Then we have

(sdy of.)(0) = sdy(f 0 0) = (f 0 0)udk = fuondly = (f. 0 5d)(0)

and so sdy is natural.
The most difficult part is to show that sdy is a chain map. So let ¢ : A™ — X be a
simplex. Then (0 o sdy)(0) = do.dyy = 0.0d}, and

n

(sdw 00)(0) = 3 (~1)sdy(o 0 6;) = a*(Z(—w‘ st@)) - m(Z(—l)i(@)*d’f{l)
=0 1=0 1=0
so it remains to show ddy = S (=1)1(8;).d%* € Cp_1(A™Z). Using lemma 2.1.1 we

i=0
obtain
n

od, = Z(—l)i Z Sgn(ﬂ')T()\er) 00; = Z sgn(a)7; © 0,

i=0 (m,m)eAT, a€BY,
where A = (,..., ) € AN and
S0 )t =)= Y sgu(m)dio g = > sen(a)d, o)
i=0 i=0 (m,m)eAn! acCrL
— Z sgn(b%‘l(a))Tb’\%_l(a) 0 Gyn=1(4)
aeC;\lfl

= Z sgn(a)7 o 0,

aeby ey

For the last equation we used the fact that b% ' is injective. It now remains to show that

Z sgn(a)72 06, =0

a€BR\by (O
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but this follows from the fact that c%; is an involution on the set By \ b *(Cn ') without
fixed points, equation (2.2) and sgn oc}, = — sgn.

The proof that sdy is natural chain homotopic to the identity is standard and uses the
method of acyclic models. Notice first that sdy = id : Co(A%Z) — Co(A%Z). So we
define HY := 0 : C;(X;Z) — Cj31(X;Z) for j < 0. Then H}' is clearly natural and we
have 8[—]]]-\[ + H;_10 = sdy —id for j <0.

As usual we proceed by induction on j. Suppose we already have H ]N : Ci(X:2) —
Cj41(X;Z), natural in X satisfying 8HJN + Hj]\ilﬁ = sdy —id. Using the last equation we
obtain

O(sdy —id — HY0) = dsdy —0 — (sdy —id — H}Y ;0)0 = 0
for sdy is a chain map. Especially for idas+1 € Cjy1(ATHZ) we have d(sdy —id —
H)9)(idaj+1) = 0 and since Hj1 (AT Z) = 0 there exists s, € Cj12(A/T; Z) such that
dsil = (sdy —id — HYO)(idas+1). Notice that we can choose s, such that it consists of
affine simplices. We now define A, : C;11(X;Z) — Cj0(X;Z) by HY (o) = 0.5,
The latter is natural, for given a continuous map f: X — Y we get

( j+1 o fu)(o) = (fOU) Sjy1 = f*U* Si41 = (f*ng]YH)( )-

At last we compute

(0H}, + HY0)(0) = do,sy + H) Do,idpin
= 0. (sdy —id — H}Y0)(idpi1) + 0 H  didpins
= (sdy —id)o,idas+1 = (sdy —id)(0)

Notice that for the last computation it was essential that sdy is a natural chain map. [

2.1.4. Corollary. Let G C Diff°(M) be a subgroup with Lie algebra g, in the sense
that g € C*((1,0),(G,id)) € C*((I,0), (Diff*(M),id)) if and only if 6"g € Q'(I;g) C
QYI;X.(M)) For any set U of sets in M the modified subdivision induces a mapping
sdy : CY(BG;Z) — CY(BG;Z) which is homotopic to the identity. Moreover if a simplex
in S,(BG) is considered as 1-form o € QY(A"; g) then

sdy(o) = Y seu(m)(1h,m) 0

(m,m)eAR,

where A = (%, e %), and if the simplex is considered as foliation F on A™ x M we have

sdy(F) = Z SgH(?T)(T()‘mJ) X idy)*F

(m,m)EAY,

Proof. Since sdy : Ci(G;Z) — C.(G;Z) is natural it is G-equivariant and hence induces
sdy : C.(BG;Z) — C.(BG;Z). Again by the naturality sdy is support shrinking and hence
we obtain sdy : CY(BG;Z) — CY(BG;Z). Similarly the homotopy induces a mapping
HN : CY(BG;Z) — CY. ,(BG; 7).

If 7: A" — A" and g € C®°(A",G) then §"(g.7) = §"(7%g) = 70" g and thus

6 (sdw(9) = & (g-diy) = Y sen(m)d"(gurg Z Sg (1) (T3, (679)

(m,m)EAY, (m,m)eAY,



Lot L ALUVATIVILZIN L AL AINJIN LAUINLDS DL \JIuVIAA L A\JINV L JLIU VIV DU LLALLY \J1IuvJ UL O

which yields the first description. Denote the foliation corresponding to g by F(g). It has
leaves {(,g(t)(x)) : t € A™}. Now the mapping 7 X idj; maps the leaves of F(go7) to the
leaves of F(g) and so (7 x ida)*F(g) = F(g.7). Hence we have

F(sdn(9)) = Flgudiy) = Y sen(m)F(0mium) = > 580(7)(Tnm X idar)*F(g)

(m,m)eAR, (m,m)EAY,
which yields the second description. O

2.1.5. Remark. We could have proven lemma 1.4.11 and proposition 1.4.12 as well by using
sdy for some fixed N > 2 instead of sd. In this case the constants b, used in the proof of

lemma 1.4.11 would be 2 independent of p.

2.2 Fragmentation and Deformation for Modular Groups

2.2.1. Definition. A Lie subalgebra g C X.(M) is called modular if it is a C°-closed
C*(M;R)-submodule of X.(M). A subgroup G C Diff;°(M) is called modular with Lie
algebra g, if g is modular and g is the Lie algebra of G in the following sense:

geC™(I,G) &  &ge(l;g)
for g € C>((1,0), (Diff(M);id)).

Examples for modular Lie algebras are X.(M) and X.(M,F), where F is a foliation
on M (possibly with non-constant rank, see [Ste74] and [Ste80]) and X.(M,F) denotes
the compactly supported vector fields that are tangential to F. Moreover if g is modular
and K C M is a fixed compact set then grx := {X € g : supp(X) C K} is again
modular and so further examples are Xx (M), Xx(M,F). The corresponding modular
groups are Diff2° (M), Diff>° (M, F), where the latter denotes the group of leave preserving
diffeomorphisms.

2.2.2. Lemma. Let V C X.(M) be a C°-closed C*(M;R)-submodule. For x € M we let
E, ={X(): XeV}CT,M. ThenV ={X € X.(M): X(x) € E, Vore& M}

Proof. One inclusion (C) is trivial, we show the other one. So let X € X.(M) such that
X(x) € E, for all x € M and suppose conversely X ¢ V. Since V is C%-closed there exists
e € C®(M;R") with:

YVeXdM): [Y(y) - Xl <ely) VyeM = Y¢gV

For all x € M we choose Y, € V with X(z) = Y,(z) and a neighborhood U, of z such
that ||Yz(y) — X(v)|| < e(y) for all y € U,. Since the support of X is compact we
find z4,...,2, with U,, U---UU,, 2O supp(X). Finally we choose a partition of unity
Aos ALy - - -y Ap subordinated to {M \ supp(X), Us,, ..., U, } (i.e. supp(Ao) € M \ supp(X),
supp(A;) C U,;) and define Y := >""  \;Y,. € V. For all y € M we then obtain

J/
-~

<Ai(y)e(y)

¥ () H=HZA X<y>>HsiAi<y )Yz, () = X(9)] < <)

and therefore Y ¢ V', a contradiction. O
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2.2.3. Lemma. Let 7: AP x M — A? X M be smooth with pry, o = pry, and let G be
modular with Lie algebra g. If o € S,(BG) such that the foliation corresponding to o is
transversal to T(t,-) : M — A% x M for allt € AP then 7*0 € S,(BG). Moreover we have

supp(7*o) C supp(0).

Proof. Obviously 7%¢ is a foliation on A? x M with codim(7*¢) = dim(M) which is
transversal to the horizontal foliation with leaves {(t,z) : # € M} and so we obtain
at least 7*0 € S,(BDiff, (M),). If Y € T,A”, the defining equation for (7*0)(Y) is

0 (Tt) (Pras o7) - (Yo (7°0)(Y) (@) (2) = Tiey (pryy o7) - (Y, (T70) (V) (2)) = (7o) (Y) ()

So we see that (7%0)(Y)(z) € E, == {X(z) : X € g} for all x € M hence by lemma 2.2.2
we obtain (7*0)(Y) € g and thus 7%0 € S,(BG). O

2.2.4. Lemma. Let G be modular with Lie algebra g, 7 : M — A™ be smooth and define
E={Xeg: |- X,]| <1 VYxe M} Cyg.

Then &, is a zero neighborhood in g, and for o € SE7(BG) the foliation on A™ x M
corresponding to o is transversal to (7,idy) : M — A" X M.

Proof. Define p : TM — R{ by p(X,) = |T.7 - X,||. This is a continuous function and
hence U := p~!([0,1)) € TM is an open neighborhood of the image of the zero section
0€g Now X €& iff X € gand Im(X) C U, ie. & consists of vector fields that are
(C%-near zero, and therefore £, is a neighborhood of 0 € g.

Since (7,idys) is immersive and by dimensional reasons we only have to show:

To(r,idy) - oM N {(Y,0(Y)(2)) : Y € Trp)A"} =0
Suppose conversely there exist # € M, 0 # Y € T;,)A" and X € T, M such that
(Tpr- X, X) =T,(r,idy) - X = (Y, 0(Y)(2))
We may of course assume that ||Y|| = 1, but then we obtain
L= Y] =[Tor - X|| = |Tor - o(Y)(z)] <1
since o(Y) € &;. O

2.2.5. Corollary. Let G be modular with Lie algebra g, 7, : M — A" forv =1,...,N
and define £ = ﬂf\il E,.. Then & is a zero neighborhood in g and for o € SE(BG) the

foliation on A™ x M corresponding to o is transversal to (u,idyr), where p = Zf\il ;7 18
any convex combination of the 7;, i.e. 0 <t; <1 and Zf\il t,=1.

Proof. First we show £ C &£,. So given X € £ and « € M we have
HTar:u ) Xx” = ”Tx Zf\il it - Xx” < sz\il tiHTﬂCTi ) XJ:H < Zi\;l ti=1

and hence X € &,. So by lemma 2.2.4 the foliation corresponding to o € S¢(BG) C
S5+ (BG) is transversal to (u,id ). O
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If N €N, A€ C°(M,AN"1) and m € D% we define 7> : M — A" by 72 (z) := 7n")

and we set £ = (,.cpn €1 . An easy calculation shows that 6; o 7, = 73, and so we
N m K2

obtain &) C &} . Indeed for v € M, X € £} and m € D% " we have

”Tzﬂi\@ - Xl = ||TTT),‘L(33)6OT1'T’I¢L - Xl = HTzT&)E)m Xell <1

since dp : A"t — A" is an isometry and dom € D%. So & (BG;Z) is a chain complex. For
(m,m) € A} we can define T()n’ﬂ) t A" x M — A™ x M by T()‘mm) (t,x) = (T/\(x) (t),x). Since

(m,m)
PI'An OT(/\m o (t,-) is a convex combination of T, m' € D% we obtain from corollary 2.2.5

A
T(m,r)

SSQ(BE). If we assume g to be modular lemma 2.2.3 yields (T()n )0 € S,.(BG).

s

(t,-) = (pran OT(Aer) (t,-),idps) is transversal to the foliation corresponding to o €

2.2.6. Definition. Let G be modular with Lie algebra g, U a set of sets in M, N € N
and X\ € C>(M, AN1). Then we define

@ 059’“(36; Z) — CY(BG;Z)
o > Sgn(’/T)(T()‘mm))*O'

(m,m)EAY,

where the simplex o is considered as foliation on A™ x M.

11
2.2.7. Remark. If we choose \(z) = (%, . %) then T(i‘n = T((N """ ¥ idys, £} = g, and

hence by corollary 2.1.4 o* = sdy.

2.2.8. Theorem. Let G be a modular with Lie algebra g, U a set of sets in M, N € N
and A € C*(M,AN=Y). Then

@) : CFY(BG:Z) — CY(BG; 2)
18 a chain map which is homotopic to the inclusion.

Proof. 1t follows immediately from lemma 2.1.1 that we have

(6o X idps) 0 7> = Tlf‘%(a) o (0 () X idy) Va € Oy (2.3)
720 (0 X idyy) = Tc)ilv(a) 0 (ben (o) X idpr) Vo€ B\ by '(Cy) (2.4)

Now the calculation that ¢ is a chain map is very similar to the calculation that sdy is a
chain map. First we have

n

@opn)(o) =) (=1 D sgn(m)( x idn) (1.m) 0

=0 (m,m)eAY,

= 3 sgn(a)(da x iday)* (7))o

aEBY
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and

*

— sgn(b%ﬁl(a))@b?vq(a) X idM)*<Tb)f\;Lv—l(a)> o
= Y sgn(a)(B x iduy) (7))o

So it remains to show that

> sgn(a) (6, X idp ) (7))o = 0

ae BV HORTY

but this follows again from the fact that c%, is an involution on the set By \ b5 ' (Cy )
without fixed points, equation (2.4) and sgn ocy = — sgn.

Next we show that ¢* is homotopic to sdy |C‘€*A’“(BE-Z)' We are then finished since by
theorem 2.1.3 the latter is homotopic to the inclusion. First we subdivide A™ x T into n+ 1

simplices in the following way. For 1 <i <n + 1 we define s7™ : A"*! — A" x [ by

ml(p ) {(%0) 0<j<i

S
L (ej_1,1) i<j<n+1

and extend it affinely (see figure 2.5). An easy calculation shows

Figure 2.5: Subdivision of A™ x [

(6271)
(GOa 1) (617 1) Sg
(6171)
51 51
(e0,0) (e1,0)
(6070) (61,0)
st o 6y = incy
sitl 06,41 = incg
szﬂoék:s;{fﬂo&k 1<k<n
st o 6y, = (6, x id;) o s, 1<k+1<i<n+1

S”+1o5k:((5k_1xid1)osn 1<i<k<n+1

i %
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For (m,m) € AR, we define T()n’ﬂ) A" X [ x M — A™ x M by

Az
T()n o(t,0,2) = T();nﬂr)(t?x) = (T(ng,jr) (), )

(_ 7777 L)
T(mﬂ.)<t, ]_,LU) T(/\T,;W)(t,.r) = (T(ﬂz"\b[,w) N (t)7x)
and extend it affinely, where A, € C>(M, AN1) is constant Ay (z) = (v, ..., v). Next we

define a homotopy H : Cf’?’u(B@; Z) — C%(BG;Z) on an n-simplex o by the following
formula:

n+1
Ho) =3 (-1) 3 sen(m) (st x idy)" (Thn)'o € G, (BG: 2)
i=1 (m,m)EAY,

Notice that supp((s!"! x idy)* (T();nm))*a) C supp(o). We claim that this is the desired
homotopy from ¢* to sdy |Cg¢,u (BG;Z). From the equations (2.3) and (2.4) we obtain

immediately

(5a X ldM) o Ta>\ = Tb/\%(oz) (51)" >< ld[XM) Vo € 017\1[ (25)
T2 0 (8o X idpsar) = T (o) © (Geg (@) X idinr) Vo € B\ by H(CR) (2.6)

1
Moreover we have T();m yo (incy xidyy) = 7'(’\m o = T((m . )% idys and T o (inco xidyr) =
T();mﬂ_) and hence we get
n+1 n+1
(OH)(0) => (=DFY (=1 > sgn(m)((spT 0 6) x idu)*(Thh )"0
k=0 i=1 (mTr)EA
= Y sg(m)(incy xidy) (T, )"0 — > sgu(r)(ine; xidy)*(T), )%0
(m,m)eAR, (m,m)EAR,
> (=D Y (D) sen(m) (G, x idy) o sy) X ida) (T m) 0
1<k+1<i<n+1 (m,m)eAT,
oY (DY (D sen(m (B x idy) o 87) X idag)*(T), )"0
1<i<k<n+1 (m,m)eAT,
. I & . .
= Y sen(m)(un)o— > seu(m)(r Y xida) o
(m,m)eAY, (m,m)EAY,
-y D=0k Y san(m)(s] x idag) (G X idsuar) (T m) 0
k=0 (m,m)EAR,

= pMo) —sdy(o) = > (=1 Y sgn(a)(s} x idu)*(da X idrear)*(T2) "0

=1 aeBY
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where we used the description of sdy of corollary 2.1.4. On the other hand we have

n n

(HO)(0) = S (=1F (=1 S0 sen(m)(s7 x idar)* (T, ) (0 x idas)*o

— i— ~1
k=0 i=1 (m,m)eAY,

= Z(—l)i Z sgn(a)(s? x idy)* (T2)* (64 x idps)*e

aEC;\lfl

= ;(—1)i Z sen(biy () (s? x idM)*((sbRr—l(a) X idIXM)*(Tb’}Vfl(a))*a

aEC;\",_l
=> (=1 > sgn(a)(s) x idy)*(0a X i) (T2) 0
i=1 aebi Oy

So it remains to show

n

0=> (-1) > sgn(a)(s™ X idar ) (6a X idrwnr) (T2)*o

=1 a€BR\byH(CR )
but for 1 < i < n we even have
0= Z sgn(a) (s x ida)* (6a X idpnr) (T2 o

a€BR\bN T (O

since ¢ is an involution without fixed points on BY \ b '(C% 1), we have equation (2.6)
and sgnocy = —sgn. O

2.2.9. Remark. Notice first that for 1 < j < n and (m, ) € A%,
7—()\m,ﬂ) (63;1, l’) = 7—()\mm') (€j7 Q?) Va §é Wrgz(]) = Supp()\m0+"'+m7r(j)—1*1>

So T()‘mm)(-,l‘) is constant for x ¢ ., W and Supp((T()‘myﬂ))*O') C U, wh. If Xis
subordinated to an open cover U, and U™ := {U, U---U U, : U; € U} we obtain

o) : Cgé (BG;Z) — C,Z;’(")(BE; 7)

and therefore the name fragmentation mapping.
Moreover if m; = 0 for some 0 < ¢ < n then W,Jn = Wffl for some 1 < j # k <n and we
even get (T(}nm))*a e SV (BG).

2.2.10. Theorem. Let G be modular with Lie algebra g, U be an open covering of M and
define U™ = {U4U---UU, :U; €U}. Then the inclusion induces isomorphisms

HY"(BG:Z) — Hy(BG;Z)  Vk<n

Proof. 1t suffices to sho_w that for a ﬁ_xed compact set K C M the inclusions induce
isomorphisms H,%’(n)(BGK;Z) = Hy(BGk;Z) for all k < n. For then by lemma 1.4.10 we
obtain

HY"(BG:Z) = lim HY" (BGy; Z) = lim H,(BGx; Z) = H,(BG:Z)

— —
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First we show surjectivity: Let {A1, Ag,...} be a partition of unity subordinated to U,
assume that Zf\:ll Ailk = 1 and let A\g be the sum of the remaining \;. Then \ :=
(Mo, .-+, Anv_1) € C®°(M,AN=Y). Given [0] € H,(BGk;Z). By proposition 1.4.12 we may
assume that o € C,fé(BG_K; Z). By theorem 2.2.8 we get [0] = [p3(0)] € Hy(BGk;Z), but
by remark 2.2.9 p3(0) € C’,ﬁ’(n)(BG—K; Z) and we have proven surjectivity.

Next we prove injectivity: It suffices to show that the inclusion induce injective map-
pings i, : H,fz“’u(m (BGg;Z) — H,fé“(BG—K; Z) for all k < n, since by proposition 1.4.12
we have a commutative square

umn i e —
(BGx:Z) —— H,""(BGx:7Z)

: -

HY" (BGy;Z) —— H.(BGg; Z)

A
Hg'n+1 )
*

Next choose an open covering V with the property
Vi, eV Vinha #0=V UV, CU €U

As above we let {\1, Ag,...} be a partition of unity subordinated to V with -0 ' Ajx = 1
and we let Ay be the sum of the remaining \;. Again we obtain A := (X\g,...,Ay_1) €
C=(M; AN7Y). If m € DY we let WY, := supp(Amgtepm; ,—1) for 1 < j <n+1.

A -
If 0 = i, [o] then there exists p € C:EI(BGK;Z) such that dp = o and so (o) =

agong, but gpﬁﬂp € C’XLTI)(BG—K; Z). 1f we define

R A * A *
K= E SgIl(ﬂ') (T(m,rr)) p+ E Sgn(ﬂ-> (T(m,ﬂ')) P
(m,ﬂ')GAT;{H (m,W)GAT;{'H
m;=0 for some 0<i<n+1 m;>1 for all 0<i<n+1
W3, not pairwise disjoint

then k € C’,ﬁ’ﬁ)(BG—K; Z), because of remark 2.2.9 and the construction of V. We claim
that Ok = d¢p,,p. Then we are done since from theorem 2.2.8 we would obtain [o] =

n _ A (n) -
[po] = 0 € HY"(BGx;Z) and hence o] =0 € H,f"“’u (BGk;Z).
So it remains to show d(¢p, ,p — k) = 0, but

Prarp — K= > sgn(7) (T )P = > Y s8u(m)(Tnm) P

(m,m)eART! meDy! TEGn11
m;>1 for all 0<i<n+1 m;>1 for all 0<i<n+1
W3, pairwise disjoint W3, pairwise disjoint

Let m € D3 with m; > 1 for 0 < i < n+ 1 and W7, pairwise disjoint. If 2 ¢ Wi we
have

A : _ (M)
T(m,x) © (50 X 1dM)(€j7 LE) - (Tm+f7r(1)+"‘+f7r(j+1)’x)

Az .
- (Tm(Jr}w@ﬁ”‘Jrfrr(jH)’x) - T()\mvﬂo(l"'n-i-l)) © (On41 X idar)(ej, 7)
and if z € Wii" (hence = ¢ Wi? for all 1 < j < n + 1) we obtain

Tén’ﬁ) o (6 x idr)(ej, ) = (Tsl(f}ﬂ(l),x) and T(’\Tnmo(l,,_nJrl)) 0 (Opt1 x idpr)(ej, ) = (T, x)
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So we get (T(’}Wr) o (8o xidp))*p = (T(}n’m(l__nﬂ)) o (0p41 X idps))*p. Looking a bit closer to

the mapping cx™' of lemma 2.1.1 we see that

n+1
o Y2 senm (1)) = D=1 N senlm) (1m0 (6 x idur)'p
€Sy 41 =0 TESh+1
= Z sgn(w)(T(Amm) o (0p x idps))*p
7T€6n+1
+ (=D D sen(m) (7m0 (Gug X idar))p
TEGn+1
= Z Sgn(ﬂ->(7-(/>n,7ro(l---n+l)) 0 (1 X idar))"p
7T€6n+1
F ST sgn(m) (i © (ues X i)
7T€6n+1
=0
and therefore d(¢p, 0 — p) = 0. O

We will also make use of the following fragmentation lemma. Its proof is completely
independent of the preceding material in this section.

2.2.11. Lemma. Let G be modular with Lie algebra g and let U be an open covering of
M. Then every g € C‘”((I, 0), (G, id)) has a decomposition g = g1 - - gn, where each g; is
supported in some U; € U and g; € C=((1,0), (Gy,,id)).

Proof. Fix a compact set K C M and recall that we have a continuous mapping
Hg : C>(I,gx) — C*((1,0),(G,id))  a~ Evol(a)

where gr = gN X (M). It follows immediately from the Leibniz rule (1.5) that Hg is a
homomorphism of topological groups if we set:

(aB)(t) = ae + (Hr(a)(t) )" By

It suffices to show that every g € Im(H) has the desired decomposition, for |, Im(Hg) =
C>=((1,0),(G,id)).

Now choose Uy,...,U, € U covering K, open sets V;, W; with W, C V; C V; C
U; such that W; still cover K and a partition of unity {Ao, A1,..., A, } subordinated to
{M\ K,Wy,...,W,}. Consider the open neighborhoods W; of the identity:

W, = {g € C>®((1,0),(G,id)) : (M \V;) CM\W; Vtel}
and define an open neighborhood of 0 € C*°(1, gx)
Wi = {a € C%(I,gx) : Hx(X g o) €W; V1 < i <n}

Since Wy is open it generates C*°(I, gk ) as a group and so Hy (Wi ) generates Im(H).
Consequently it suffices to show that every g € Hx(Wk) has the desired decomposition.
For a € Wi we set fi == Hgx(} ,_gAja), i =0,...,n. Then we have fo = id, f, = Hx ()
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and if we let g; ;== f, -} fi, i = 1,...,n we obtain Hx(a) = g1---g,. It remains to show
that g; is supported in U;, but this follows from
gi =1 ¢:11f i

= Hic(t = —fia(8)" (52 Ajaw) + fira (1) g M)

= HK (t — fl,l(t)*()\lozt))
for we have av € Wk, therefore f;_ 1 = H K( Z;;lo )\ja) € W; and consequently the support
of the mapping t — fi_1(t)*(\jy) is contained in V; C Uj. O

2.2.12. Corollary. Let G be modular with Lie algebra g, let U be an open covering of M
and assume that G is connected by smooth arcs. Then every g € G has a decomposition
g=0q1-Ggn, with g; € Gy, for some U; € U.

Proof. This is an immediate consequence of lemma 2.2.11 and the fact that the projection
evy : COO(([, 0), (G, id)) — (G is onto, in this situation. O

2.3 Local versus Global

2.3.1. Lemma. Let G C Diffo°(M) be a subgroup and let U be an open covering of M.
Then
0 — CY(BG:Z) < @ C.(BGr:Z) < @ C(BGurviZ) — -

veu U<veu
is an exact sequence of chain complexes, the Cech complex with respect to the covering U
of the pre-cosheaf U — C,.(BGy;Z).
Proof. 1t suffices to show this for finite &. For |U| = 1 this is trivial. For [U| = 2 the
sequence looks like:

0 — CIVVN(BG; Z) — C.(BGy; Z) & Cu(BGy; Z) — Cu(BGyny; Z) « 0 (2.7)

which is easily seen to be exact. One proceeds by induction on |U/|, but we only consider
the case [U| = 3; for [U| > 3 the proof is similar. Let & = {U,V,W}. Then we have a

commutative diagram

0 0 0

0C C«(BGunvnw) C«(BGunvnw)

Cu(BGyaw) = C+(BGunv)@C+(BGuaw )®Cx (BGyaw ) — Cu(BGuny )®C«(BGunw)

C.(BGv)®Cx(BGw) > C.(BGy)®C.(BGy ) ®C. (BGw) C.(BGy)

VW (BG) C CY(BG) e (BG) /et BG)
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All rows are exact, hence we consider this diagram as short exact sequence of chain com-
plexes. The first column is exact by the induction hypothesis. Moreover the third column
is exact since it is the composition of the two exact sequences

0 — C*(BGUmew) — C*(BGUmv) ) C*(BGUQI/V) — CEVHU’WHU} (B@) — O
and
0 — cVNUWnUN BG) — C,(BGy) — CY(BG)/CVWHBG) — 0.

The second is obviously exact, and the first sequence is also exact by the induction hy-
pothesis, since [{V NU,W NU}| = 2. Summing up, we have a short exact sequence of
chain complexes and two of them have zero homology. So the third one, that is the middle
column, has zero homology too. O

2.3.2. Corollary. Let G C Diffo°(M) be a subgroup and let U be an open covering of M.
Then there exists a spectral sequence with E'-term

P H(BGy;Z) P HABGurv;Z) . P  HaBGuavew:Z)

Ueu u<veu U<v<Weld

P H(BCrZ) P Hi(BGuwviZ) . P  Hi(BGuavew:Z)
veu U<veu U<v<Weu

Dz D z D z

veu Uu<veld U<v<weld

converging to HY(BG; 7). Moreover the bottom row of the E>-term is: Z 0 0

Proof. Consider the double complex:

P c(BGrz) 0 P Co(BGuviZ) I P Ca(BGuavaw; Z)

veu Uu<veu u<v<weld

lo lo lo
PaBGyz) 0 P CiBGw;Z) b P Ci(BGuvaw:Z)

veu u<veld U<v<Weld

lo lo lo
P co(BGr:Z) 5 P Co(BGuv;Z) 5 P Co(BGuavew;Z)

veld u<veu U<vV<Weu
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By lemma 2.3.1 it computes HY(BG;Z) and the El-term is as claimed, since we have
Ho(BG;Z) = Z for every G, cf. remark 1.4.6. Notice that Ho(BGy;Z) = Z even if U is
not connected, e.g. Hyo(BGy;Z) = 7 too. So the bottom row of the E'-term is acyclic, i.e.
the bottom row of the E%-term is as claimed. O

2.4 Simplicity of Diff°(M),

2.4.1. Definition. An admissible covering of M is an open covering U such that for every
k € Nand Uy,...,U, € U the intersection U; N ---N Uy is a disjoint union of open balls or
empty.

2.4.2. Lemma. Let A bev an Abelian group, X a topological space and U an admissible
covering of X. Then the Cech complez of the pre-cosheaf U — Hy(U; A)

0P HU;A) < P HUNV;A) <& P H(UNVAW;A) —
veud U<vVeu U<vV<Weld

computes H,(X; A).

Proof. Let C.(X;A) denote the singular chains with coefficients in A and let CY(X; A)
denote the chains made up from simplices each of which lies in some set of the cover .
Then

0 CY(X;A) = PCU;A) < P CUNV;A) —

Ueu u<veu

is an exact sequence of chain complexes, see [BT82] for example. Since HY(X;A) =
H,.(X; A) the double complex

Peu:A) 0 P aUunvid) s P CUNVNW;A

veu u<veu U<v<Weld

9 o d
Paw:A) 0 P awnvid) s P GUNVAW;A

veud U<veu U<V<Weld
0 B, B,
Pcu;A) 0 P Gunvid) s P CUNVNIW;A

Ueu u<veu U<v<Weld

computes H,(X;A). But the E'-term of the corresponding spectral sequence degenerate
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to
0 0 0
P Ho(U; A) P H(UnV;A) B HUnVnw;4
veu U<veu U<V<Wel
since we have H;(Uy N ---NU; A) =0 for all i > 0. O

2.4.3. Theorem. Let A} = Hp(Bm:O(R")O;Z) and let M be an n-dimensional ori-
entable manifold. If A} =0 for all 1 <p <k then we have

Hy(BDiff, (M)o; Z) =2 Ho(M; A})
where H,.(M; A}) denotes ordinary singular homology of M with coefficients in A}.

Proof. Suppose U is an open ball in M and choose an orientation preserving diffeomorphism
u: U — R". Then

SIUY(BDIfE,” (M) 2k, g (BDIfE” (R™))
is a simplicial isomorphism and we have an induced isomorphism:
¢, HV}(BDiff, (M).;Z) — H,(BDiff, (R");Z) = Al = H,(U; A?)

We claim that it does not depend on the choice of the chart u. Indeed, suppose v : U — R"
is another chart and ¢ = Y \jg; € C’;U} (BET(M), Z). This is a finite sum and every g;
has compact support, so there exists a closed ball B C U with supp(g;) C B for all i. Since
orientation preserving embeddings of closed balls are diffeotopic (see [Hir76] for example)
we find h € Diff?(R™), with v = howu on B. So (conj,).(c) = (conj,)« o (conj,)«(c) and
since (conj,). = id in homology (see lemma 1.4.8) we have ¢, ([c]) = ¢,([c]). So ¢, does
not depend on u and we will write ¢y in the sequel. If W is a disjoint union of open balls
W = | |U; we have Diff2°(W), = Diff2°(U;)o X - -+, so lemma 1.4.9 yields

™ (Diff*(M); 2) = @ =" (Diff* (M); Z)
and we obtain an isomorphism:
ow =P ev, : H" (DIt (M); Z) — @D Ho(Us; Ap) =2 Ho(W; Ay)

Now choose an open covering U of M such that U* is admissible, cf. theorem 2.2.10.
Because of the isomorphism ¢ and lemma 2.4.2, the E?-term of the spectral sequence in



L L. 4lvid i o1l 1 1 JID J_Jlllc \U/l }o

corollary 2.3.2 with respect to the covering U* looks like:

Hy(M; A}) H,(M; A}) Hy(M; A}) e k-th row
0 0 0
7 0 0

Since the spectral sequence converges to HY" (BW?(M ); Z) we obtain
HY (BDff, (M); Z) = Hy(M; A})
and from theorem 2.2.10 HY* (ijo(M), Z) = H, (ijo(M), Z). O

2.4.4. Remark. It is an immediate consequence of theorem 2.4.3 that for a n-dimensional,
connected and orientable M the following groups are isomorphic

1. H,(BDiff, (R"); Z)
2. H,(BDiff, (M);Z)
where k is the first positive integer such that one of them is non-zero. This is a special

case of a theorem due to W. Thurston [Thu74], which states that both are isomorphic to
a homology group of a certain classifying space, see [Mat79] for proofs.

2.4.5. Corollary. H; (BW:O(M)O;Z) = 0 for every orientable manifold M. Moreover
]i?fzo(]\/[)o and Dift° (M), are perfect.

Proof. Recall from corollary 1.5.6 that we have H; (BWM(T”);Z) = 0. From theo-
rem 2.4.3 we thus get

0= H,(BDiff " (T"); Z) = Ho(T"; A}) = A}
and, using again theorem 2.4.3, we obtain
H, (BDiff, (M)s; Z) = Ho(M; A7) =0
where n = dim(M). The perfectness statement now follows from proposition 1.4.5. O
2.4.6. Corollary. Diff>°(M), is simple for every manifold M.

Proof. We want to apply proposition 1.3.1. Let U be the set of all orientable open subsets
of M, G := Diff (M), and for U € U we set Gy = Diff:>°(U),. Gy is perfect by corol-
lary 2.4.5. GG acts transitively on M since we have proposition 1.2.6, see also remark 1.2.7.
G has the fragmentation property since we have corollary 2.2.12. The third assumption of
proposition 1.3.1 is obviously satisfied, and consequently G is simple. O
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2.5 Perfectness of Diff>° (M, F),

In [Ryb95a] T. Rybicki showed that the component containing the identity of the group of
leave preserving diffeomorphisms is perfect. In this chapter we will give a different proof
of this theorem.

2.5.1. Proposition. H; (Bm”(Rme", F); Z) = 0, where F is the foliation with leaves
{pt} x R".

Proof. Consider the torus T xT™ with the foliation G having {pt} xT™ as leaves and choose
a good covering U of T™ x T™ such that G|y = F for every U € U. From theorem 2.2.10
and corollary 1.6.4 we obtain:

HY(BDiff™ (™ x T",G); Z) = H,(BDiff (T™ x T",G);Z) =0
In view of corollary 2.3.2 this can only be the case if H; (Bmio(U, Glu);Z) = 0 for every
U €U, and since (U,G|y) = (R™ x R™, F) we get H; (ijo(]l%m xR", F);Z) =0. O
2.5.2. Theorem. Let F be a regular foliation of M. Then H, (ijo(M, F); Z) =0.

Proof. Choose an open covering U of M such that (U, F|y) = (R™ x R", G) where G is the
product foliation we considered in proposition 2.5.1. Since H; (Diffzo(U, Flu);Z) = 0 by

proposition 2.5.1 it follows from corollary 2.3.2 that HY (BW?(M, F);Z) =0 and so
H, (BDiff," (M, F); Z) = H{!(BDiff, (M, F);Z) = 0
for we have theorem 2.2.10. O

2.5.3. Corollary. Let F be a reqular foliation of a manifold M. Then lf)\l?fio(M, F)o and
Diff°(M, F), are perfect.

Proof. This is an immediate consequence of theorem 2.5.2 and proposition 1.4.5. 0



3. Locally Conformally Symplectic Manifolds

3.1 d“-Cohomology

Let w be a closed 1-form on a manifold M and define
d? (M) — QM) d“(a) =da+wAha

Obviously we have d“od* = 0 and we may define the d“-cohomology H}. (M) and similarly

ds-cohomology with compact supports Hy, (M). Suppose [w'] = [w] € H'(M) and choose
a € Q(M) with ' = w+ % = w + d(In|a|). Then there are isomorphisms % : Hj, =
H, (M) and I Hy, = H;‘g,(M) given by multiplication with 1. So for an exact w the
d“-cohomology is isomorphic to the ordinary de Rham cohomology.

For closed 1-forms wy,ws an easy calculation shows

A2 (g AT) = d o AT+ (=1)lla A dv2r
and hence the wedge product induces a bilinear mapping
A HYo (M) x Hhop (M) — HAL L (M)

and similar for compact supports.
For a smooth g : M — N we have an induced mapping ¢* : Hj.(N) — H

s (M), If g
is proper then we also have an induced mapping g* : H*g(N) — H;g*w(M).

3.1.1. Lemma. Let w be a closed 1-form on N and let g : M x I — N be a smooth
homotopy. Define a € C°(M x I,R) by a; := exp (f(f inc; iatg*wds) where inc, : M —
M x I, incg(z) := (x,s). Then

@195 = aogi : Ho (N) = H'oe (M)
If g 1s proper the same holds with compact supports.

Proof. Notice that the definition of a is such that gjw = giw + d(In|a;|). One defines a
mapping H : Q*(N) — Q*}(M) by H(o) := fol aginc; ig,g*odt and checks that it is a
chain homotopy, i.e. d%“H (o) + H(d“c) = aigi0 — aggio. Indeed we have
d%“H (o) + H(d“c) = d%* fol a incy ig,g*odt + fol a incy ig,g*d“odt
= fol a;d% ¥ inc; ig, g odt + fol a;inc ig,d9"“ g odt
= fol azinc; d9"%ig, g odt + fol a;inc ig,d9"“ g odt
= fol a; inc; (Latg*a + 19097 W A g*a) dt
1 . "
= fo at%(gta) + (%%)gt odt
1 * * *
= fo %(atgtg)dt = 01910 — Apgo0

. . o . o . k.
where we used d¥ixa + ixd“a = Lxa + ixw A o and 5,0t = g inc; 10,9 w. O

39
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3.1.2. Corollary (Relative Poincaré Lemma). Let i : N — M be a closed submani-
fold and w € QY(M) closed. If a € QF(M) satisfies da = 0, i*a = 0 then there exists an
open neighborhood U of N and ¢ € Q¥=1(U), which vanishes on N, such that d*p = ay.

Proof. By choosing a tubular neighborhood of N in M we may assume that 7 : M — N is
a vector bundle and ¢ : N — M is the zero section. Consider the homotopy g : M x1 — M
defined by g;(z) := (1 — t)z. Since gy = id, g1 =i o7 lemma 3.1.1 yields

d“H(a) + H(d’a) = 177" — «

and since d“a = 0, i*a = 0 we obtain o« = d“(—H(«)). It remains to show that H(«)
vanishes on i(N). For ¢t < 1 we have inc; ig.g* o = g;ig,c0 and ¢,(i(z)) = 0. Therefore

H(@)(i(x)) = Jy ar(inc] ia,g"a)(i(x))dt = [ (aug7ig,00(i(x))dt = 0
and ¢ := —H («) vanishes on (V). O

Suppose M is the union of two open subsets U, V. Then the following is a short exact
sequence of cochain complexes

0— ((M),d*) & ((U) @ (V) dl @ a*IV) L (0 (U N V), dlv) — 0
where a(o) = (o|v,oly) and (o, 7) = o|luny — T|unv. So we obtain
3.1.3. Lemma. Let M be the union of two open subsets U and V. Then there exists a
long exact sequence

c HE(M) XS HE, (U@ HE,, (V) 25 HE, (U0 V) S HS(M) - -

avlu awlv awlunv

and 0([o]) = [dAv A o] = —=[d\y A o], where { Ay, A\v} is a partition of unity subordinated
to {U,V'} and the forms under consideration are assumed to be extended by 0 to the whole
of M.

Similarly there is an exact sequence of cochain complexes
0— (U NV),dvov) () @ V), dl0 @ d=Iv) 2 (M), d*) — 0

where (o) = (0, —0) and (o, 7) = 0 + 7 and everything is assumed to be extended by 0.
So we have

3.1.4. Lemma. If M is the union of two open subsets U and V' then there exists a long
exact sequence

LHE,, UnV) B, (U)e Y, (V) 2 HE (M) — -

w| w| wl
de unv dg U dg 14

e ()

where [o] = [dA\u A o|lunv] = —[dAv A oluav] and {Au, Av} is a partition of unity subor-
dinated to {U,V'}.

A covering U of a manifold M is called good if for all m € N and Uy, ...,U,, € U the
intersection U; N ---N U, is either empty or contractible. Using a Riemannian metric and
geodesically convex open sets one easily sees that every manifold admits a good covering
and these are cofinal in all coverings.

Using the Mayer Vietoris sequence inductively and the fact that for contractible sets the
d“-cohomology is isomorphic to the de Rham cohomology, and hence finite dimensional,
we immediately obtain
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3.1.5. Corollary. Suppose M admits a finite good covering. Then H}.(M) and HC}%(M)
are finite dimensional. Especially this is true for compact manifolds.

For an oriented manifold of dimension n we may define a pairing by
() s Hy-o (M) x Hgo"(M) — HZ (M) =R

Ifw =w+ % =w+d(Inla|) then —w' = —w + d(In|i]) so L : Hi, (M) = H, (M),
a:Hjy ,(M)=H: ,(M)and (alo], ;[7])w = ([0], [7])w. Hence if w is exact this pairing is

non-degenerated by ordinary Poincaré duality.

3.1.6. Proposition. On an oriented manifold of dimension n the mappings defined by
D - Hy-o(M) — Hg,"(M)" Di([o])([7]) := (o], [T])w
are 1somorphisms.

Proof. If M is a disjoint union of open balls then we have

(Hi (UU)" = (@ Hj (V)" =TT Hy (U)"

and via this isomorphism D}, corresponds to HDZ|U_ and is therefore an isomorphism.
Using the explicit description of the connecting homomorphisms ¢ in lemma 3.1.3 and

lemma 3.1.4 one easily checks that the following diagram commutes up to sign:

O ﬁ*
HE (M) =2 HE (U)e HE (V) Y (UNV) 2 HE (M)

k k k k k+1
J/D‘*’ lDwUGBDWV JDWUF\V J/Dw+

() L Uy e B (V) PR S (U V) i ()
So if Poincaré duality holds for U, V and U NV it also holds for U UV by the five lemma.
Finally one chooses a good covering U such that every U € U does only intersect finitely
many other sets of /. Then we can write M = W; U ---UW,, where every W; is a disjoint
union of open balls in ¢/. Since Poincaré duality holds for W;, W; and W; N W; (the latter
is also an disjoint union of open balls) it holds also for W; U W;. Proceeding inductively
finishes the proof. O

3.1.7. Example. Let [f] € HS. (M), ie. f € C®°(M,R) and d*f = 0. Consider the set
Z:={x e M: f(x) =0}. It is of course closed. We show that it is open too. Let x € Z
and choose a contractible neighborhood U of x. Then w|y = d(In|a|) for some nowhere
vanishing function a on U and 2 : H,, (U)= H*(U). So L flu is a constant function on
U and since it vanishes in z it vanishes on U, that is U C Z. For connected M this yields
that Hy., (M) and similarly Hy, (M) is at most 1-dimensional.

Let M be connected and oriented. Then i* : Hy. (M) — HY, (U) is injective and by
Poincaré duality i, : ng\U (U) — H. (M) is onto. So generators of Hj, (M) can be chosen
to have arbitrary small Csupports.

Let M = S and w = \df, where 0 # A € R, be a generator of its first de Rham

cohomology. We claim that HS,(S') = 0. So let f € Q°(S?) be d“-closed. We consider f
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as periodic function on R then w = Adx. The condition d“ f = 0 translates to f'+ \f =0,
but this has no non-trivial periodic solution, hence f = 0. So H3.(S') = 0 for every
non-exact w.

Let M be connected and w a closed 1-form that is not exact. Then there exists a
mapping 7 : S' — M such that i*w is not exact. Now let f € Q°(M). By the previous
paragraph * f = 0 and hence by connectedness f = 0. So we have shown HO, (M) = 0 and
similarly Hg, (M) = 0 for every connected M and any non-exact w. Using Poincaré duality
we also obtain H}, (M) = 0 and H}, (M) = 0 for every oriented, connected, n-dimensional
M and every non-exact w. Using the orientation covering one sees that the assumption
orientable is superfluous. A different proof of H., (M) = 0 can be found in [GL84].

3.1.8. Ezample. Consider M = R?\ {(—1,0),(1,0)} and let w resp. n be a generator of
H'(M) supported in (—o0,0) x {R} resp. U := (0,00) x R. Then obviously d“n = 0 and
1|y cannot be d*lv = d-exact. From the Mayer Vietoris sequence one sees that 1 generates
Hl.(M).

Suppose we have two manifolds M;, M, and two closed 1-forms w; resp. wo on M resp.
M. Let w := priw; + priws € Q' (M) x M;) and define a mapping

U QF(My) x QY (My) — QY (M, x M) (o, B) +— pria A prs 3.

One easily checks d*(¥(a,3)) = ¥(d“'a,3) + (—1)1*¥(a, d*23) and hence we have an
induced mapping
H;wl (Ml) & H;wz (MQ) — H;w(Ml X MQ)

As in ordinary de Rham cohomology one proves that under the assumption that one of
the two manifolds has finite dimensional cohomology, ¥ is an isomorphism. Using this
and example 3.1.8 one obtains manifolds with arbitrarily complicated d“-cohomology and
non-exact w.

3.1.9. Theorem. Let F,,(U) :={f € C*°(U,R) : d“f = 0}. Then F, is a locally constant
sheaf and H*(M;F,) = H}.(M). So the d“-cohomology is a kind of twisted de Rham

cohomology.

Proof. For any « € M we can choose a contractible neighborhood U of x and a function
a € C°(U,R") such that w = dIna. Then multiplication with a defines a isomorphism of
the sheaf F|y and the constant sheaf R on U. So F, is a locally constant sheaf. Moreover
we have a fine resolution of F,

0 F, - 5ot 502,

and hence H*(M;F,) = H;.(M), by the theorem of de Rham which can be found in
[Bre67] for example. O

Let w be a closed 1-form on M, define B, := M x R and let 7 : B, — M denote the
projection. Then tm*w + dt is a nowhere vanishing 1-form on B,, which satisfies d(t7m*w +
dt) = (tm*w + dt) A m*w. Hence it defines a codimension one foliation on B,. We provide
B,, with the topology which has as basis the leaves of #71(U) for U C M open. This is a
(locally trivial) bundle of coefficients on M, see [Ste51] for example. A section is simply a
smooth function f on M such that 0 = fw + df = d“f. So the sheaf corresponding to B,
is simply F, and we have
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3.1.10. Corollary. H;.(M) = H*(M, B,,), where the latter denotes cohomology with val-
ues in the bundle of coefficients B, see [Ste51].

Consider (2;(M) = lim £} (M) with the inductive limit topology, where the limit is
over all compact K and Qg (M) denotes the forms with support contained in K. This is
a strict inductive limit of Fréchet spaces and hence a complete, separated locally convex
vector space. We provide imd¥ C kerd¥ C Q*(M) with the initial topologies and put the
quotient topology on Hj, (M).

3.1.11. Theorem. Let w be a closed 1-form on a manifold M. Then Hy,(M) is a strict
inductive limit of separated, finite dimensional topological vector spaces and hence a com-
plete, separated locally convexr vector space.

Proof. First we assume that M is oriented. d* : Qf(M) — Q:T'(M) is continuous and
hence kerd¥ C Qf(M) is closed. By Poincaré duality o € kerd¥ is contained in imd¥ if
and only if

fMT/\O'ZO VTEker(d*‘”:Q*(M)—>Q*+1(M))

but these are continuous conditions and so imd? C ker d¥ is closed.
Let d5 := d*|q; () : Qe (M) — Q3 (M). It is a general fact that if £ = lim E, is a

strict inductive limit and ' C F'is a (not necessarily closed) subspace then F' = lim(E,NF’)
as strict inductive limit. Applying this twice we obtain

lim g ker df; = kerd? and lim g (Qj (M) Nimdy) = imd.

Since ker d$; is a Fréchet space and im d¥ C Q7(M) is closed, %
claim that it is finite dimensional for nice K.

So assume that K is a compact, dim(M )-dimensional submanifold with boundary. Let
i : OK — K denote the inclusion. We let Q*(K,0K) :={a € Q*(K) : i*a = 0} and denote
by H, (K, 0K) the corresponding cohomology, i.e. the relative cohomology. As usual we
have a long exact sequence

is separated. We

= HYy (K, 0K) — Hy (K) 5 H W (0K) 5 H L (K, 0K) — -

avlx awli @K

and so HY,,, (K, 0K) is finite dimensional by corollary 3.1.5. We have a mapping Q3,(M) —

(K, 0K) and we claim that the induced mapping Hg, (M) — Hj,, (K,0K) is injec-
tive. To see this let a € Qi (M) be d“-closed and such that a|x = d“Ix3 for some
B € Q*(K,0K). Next choose a smooth homotopy ¢ : K x [ — K with gy = idg,
g:(0K) C OK and such that there exists an open neighborhood U of 0K with ¢,(U) C 0K.

From lemma 3.1.1 we get

a5 ([ a,inc; ig,g*adt) = a1g7(alx) — aogi(alx) = d5 (arg7B) — alx

By the choice of g we see that gj3 is zero on U an hence can be extended by 0 to the whole
of M. Moreover one sees that incf ig, ¢* (| ) is flat along OK and so the integral in the
equation above can also be extended to M by 0. But this shows that [o] =0 € H, d. (M).

Since we have an injective mapping from H, *ﬁ (M) into the finite dimensional vector space

H, . (),0K) the space H ;lkf{ (M) has to be finite dimensional and hence 79}(1;\?)%111 = S

kerdic — Hj, (M) too.

Imd%;
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Since the inductive limit can be computed via these nice K we obtain

. lim g ker d¥ . ker d¥
H* (M) = kerd*/imd*¥ = K = lim »——2%%
dg( ) er c/l c lim g (% (M)Nim d¥) h—>K Q% (M)Nim dy
—

ker d;

as strict inductive limit and the steps T NN
K c

are separated, finite dimensional topo-
logical vector spaces.

If M is non-orientable let 7 : M — M denote the orientation covering and let f : M —
M be the unique non-trivial deck transformation. Then

QM) = QO (M) @ QN () = {o: fro =0} @ {o: f'o = —o)

Its easily seen that m* : Q*(M) = Q5*v**(M) and hence Hy, (M) = H:S™ (M) which is a

T*w
a7

closed subspace of H*,.(M). Since the latter is a strict inductive limit of separated finite

*w
dz

dimensional topological vector spaces H ., (M) is so too. O

For every manifold N and every complete locally convex vector space E we define
CX(N, E) = lim xCF (N, E). The following is a slight generalization of an argument due
to A. Banyaga, see [Ban78] and [Ban97].

3.1.12. Corollary. Let N, M be manifolds and w a closed 1-form on M. Then every
f € C®(N,imd¥) can be lifted, i.e. there exists f € CX(N,Q5(M)), with d¥ o f = f.

Proof. Since d¥ : Qf(M) — imd¥ is onto and im d¥ is complete the mapping

d2®ridope(vr) : U (M)B-C2 (N, R) — im d2@.CF(N, R)

is surjective. Since C2°(N,R) is nuclear we obtain
QL (M)®,CZ(N, R) = Q5 (M)®.C°(N,R) = CX(N, (M)
and
imd*®,C>®(N,R) = im d“®.C°(N,R) = C°(N, im d)

Via these isomorphisms d“®, idese (k) corresponds to (dY), and hence the latter is sur-
jective too. See [Jar81] for the functional analysis involved. O

3.2 Locally Conformally Symplectic Manifolds

3.2.1. Definition. A locally conformally symplectic manifold is a triple (M, 2, w) where
M is a 2n-dimensional manifold, w is a closed 1-form and €2 is a non-degenerated 2-form
satisfying 0 = d“() = dQ) + w A Q. Since (2 is non-degenerated we get a canonical vector
bundle isomorphism b : TM = T*M given by X — ix{. By # we denote the inverse of b.

If dim M > 2 then w is uniquely determined by (2. Otherwise there would exist a
not everywhere vanishing «’ with o’ A Q2 = 0. Let © € M with w'(xz) # 0. But then
Q(x) = W'(z) A n for some € \' T*M. Indeed for any finite dimensional vector space V
and 0 # w € V one has an exact sequence

0— R 25V 20 A2y 20 A3y 20, L B0 AdimVy
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But this would yield Q?(x) = 0 a contradiction.

If (M, 2, w) is a locally conformally symplectic manifold and a is a nowhere vanishing
function on M then (M, iQ, w %) is again a locally conformally symplectic manifold. Two
locally conformally symplectic manifolds (M, Q,w) and (M, Y, w’) are called conformally

equivalent iff there exists a nowhere vanishing function a on M with Q' = %Q and W' =
a

w4+ % = w+ d(Inlal). In this case we will write (M,Q,w) ~ (M, Q') or (M,Q,w) ~
(M,Q,w"). So (M,,w) is conformally equivalent to a symplectic manifold iff [w] =0 €
H'(M). Tt is obvious that conformal equivalence is an equivalence relation on the set of
all locally conformally symplectic structures on M.

Suppose dim M = 2n. A submanifold ¢ : L — M is called Lagrangian iff dim L. = n and
i*Q2 = 0. Notice that the Lagrangian submanifolds remain the same if we change (M, Q, w)
conformally.

3.2.2. Remark. There is another way to look at locally conformally symplectic manifolds,
see [Lee43]. Suppose we have an open covering U of a manifold M and for every U € U
a symplectic form Qy € Q*(U) such that Qu|yny = copvQy|uny for some locally constant
functions cyy € C°(U NV,RY) (if dim(M) > 2 then the cyy are automatically locally
constant). We have

Qulvnvaw = covQv|vavew = covevw Qw|vavaw

and thus CUVCVW|UﬂVﬂW = CUW|UﬂVﬁW- We set ayy — In cyy € COO(UH V, R) and obtain
ayw —agw +apy =0 on UNV NW. Next we choose a partition of unity {\y : U € U}
subordinated to U (i.e. supp Ay C U) and set,

Bu = X weu Awauw

where A\ apyw is extended by 0 to U. Then we get

Pu — Bv = Z Awayw — Z Awayw = Z Aw (aUW - aVW) = Z Awayy = auy

wel Wweu Wel Wweu

on UNV. So we have found fy := exp By € C°(U,R") with cyy = }C—Z|Unv- We then have
0 =dlncyy = dln fylyny — dIn fy|yny and we may define a closed 1-form w € Q' (M)
by w|y = dln fy. Moreover since we have Qu|pny = ;—ZQV|UQV we also can define a
non-degenerated 2-form Q € Q?(M) by Q| := f%QU‘ Finally we have

(@Q)ly = A0 (LQy) = LdQy =0

and thus (M,Q,w) is a locally conformally symplectic manifold. This locally confor-
mally symplectic structure depends of course on the choice of fi;, but if we choose f{, €

C>(U;R*") with cyy = %\UQV the corresponding locally conformally symplectic structure
14
(M, €Y, w') is conformally equivalent to (M, 2, w). Indeed we have %|UOV =cyy = ;—,“ilUmv,

SO ;—,Z = }c—z and we obtain a well defined function a € C*(M,R") with a|y = ;—Z More-
over we have w|y = dIn fy = dlnaly +dIn f}, = (dIna + W')|y as well as Q|y = ﬁQU =
%ﬁQU =10y, Le. (M, Qo) ~ (M, Q,w).

Conversely, if (M, Q,w) is a locally conformally symplectic manifold and U is an open
covering such that w|y € QY(U) is exact (if U is a covering of contractible open sets this is



wulliAl 1L 14v 9. Vol UYL JLIulviA Lz O L Avid LA\ L1\ IVIAAINIL \J L1/

always true), then we find fy € C°(U,R") with w|y = dIn fyy and we let Qp := fuQ|y €
O2(U). Qp is closed for we have 0 = (d“Q)|y = d?» /v (fAUQU) = fLUdQU and it is obviously
non-degenerated, i.e. {2y is a symplectic structure on U. Moreover we have

Qulonv = fuury = %va|UOV = }%QHUW =: cuvQvlunv

and dln;—‘[ﬂ[jmv =dln fU’UﬁV —dln fV|UﬂV = w|UnV - w|UnV = 0, ie. ln}c—‘lﬂ(]mv is lOC&Hy

constant, and so is cyy = }0—3|Umv too.

3.2.3. Remark. To construct the fy in remark 3.2.2 we actually used the fact that the
sheaf C*°(-,RT) = C*°(-,R) is a fine sheaf and is thus acyclic. Especially every 1-cocycle
ayw — ayw + ayy = 0 is a boundary, i.e. ayy = Oy — fy. For this argument it is essential
that cyy has values in R rather than in R* := R\ 0. If we only have cyy € C°(UNV,R*)
then the cohomology class [c] € H'(M;C*>(-,R*)) & H'(M;Z,) is the obstruction to find
fU with Cyy = ;—3

For example the M6bius strip does not admit a locally conformally symplectic structure
since it is non-orientable. But one can cover it by three open sets {U, V, W} and easily find
symplectic forms on them with Qy =Qy on UNV, Qp = Qp on VNW and Qp = —Qw
onUNW.

3.2.4. Fxample. Let M be a n-dimensional manifold and let w be a closed 1 form on
M. Let © denote the canonical 1-form on T*M. Recall that for a € Q'(M) considered
as mapping o : M — T*M one has a*© = «a. Define ' := 7w, ' := d“'©. Then
(T*M,Q,w') is a locally conformally symplectic manifold. Indeed let (U, q) be a chart
for M and (U’ := 7~'(U), (¢q,p)) be the induced chart for T*M. Tt is well known that
Oy = >°1, pidg'. Moreover we have 'y = Y77 w;dg’ for some w; € C*(U',R). So
we obtain

/

()"or = (d“'©)"|yr = (dO + w' A O)" |y

= (d@)n|U/ + n(d@)nfl AW A @|U’
S dpi Adg))" (S dp A )" A (0 widg?) A (h_, prdd”)
Sr dpi Adgt)" = ndpy Adg' Adpy Adg? A -

(
(
since every summand in the other term contains n + 1 dg*’s and is hence zero. This shows
that Q' is non-degenerated.

For a € Q'(M) we have o*Q = o*d“'© = d*“'a*0© = d“a. So im(a) is a Lagrangian
submanifold of (7*M,,w’) if and only if d“a = 0. Since n* : H*(M) = H*(T*M)
we have (T*M, Q) ') is conformally equivalent to a symplectic manifold if and only if
W] =0 € HY(M).

3.2.5. Example. On S? there exists a global frame of 1-forms «, 3,7 € Q!(S?) satisfying
dao= [ N7y df =~v N« dy=aAp.

This is because S® is a Lie group with Lie algebra so(3,R) and the latter has a basis
{A, B, C'} satisfying

[A,B|=C [B,C]=A [C,Al=B.
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If {a,b,c} denotes the dual basis to {A, B,C} then «, 3, are the left invariant 1-forms
corresponding to a,b, ¢ respectively. Let w := dt € Q1(S?) and Q := d“a € Q*(S* x S3).
Since

O =(d“a)’ = (da+wAha) = BAy+dtAa)> =2dt AaAB Ay

Q is non-degenerated and (S x S3,Q,w) is a locally conformally symplectic manifold.

However S! x S% does not admit a symplectic structure, for this would be exact since
H?(S' x §3) = 0 and hence would give rise to an exact volume form on S' x S3, a
contradiction since St x 83 is compact.

If ¢ is a diffeomorphism of M then (M, ¢*(2, g*w) is again a locally conformally sym-
plectic manifold. We write Diff>°(M, 2, w) for the group of all compactly supported dif-
feomorphisms that preserve the locally conformally symplectic structure up to conformal
equivalence, i.e.

DI (M, Q,w) = {g € DIEX(M) : (M, g2, g'w) ~ (M, Q,w)}

More explicitly g € Diff3°(M,Q,w) iff there exists a € C*(M, R\ 0) such that ¢*Q = 10
and g*w = w+d(In|al). If dim M > 2 then the first equation implies the second since w is
unique. Moreover we define

XM, Qw):={X € X.(M):3f € C®°(M,R) with LyQ = —fQ, Lyw = df }

Again, if dim M > 2 then the equation Lx2 = —f€) implies the equation Lxw = df.
Indeed dQ2 4+ w AQ =0 and LxQ) = —fQ give
0=dLxQ+ LxwAQ+wA LxQ)= —d(fQ)—i—LXw/\Q—fW/\Q
=—df NQ+ foNQ+ LxwAQ— foNQ=(Lxw—df)NQ

and so Lxw = df.
3.2.6. Lemma. Let g € C*((R,0), (Diff*(M),id)). Then

g € C*(R,Diff*(M,Q,w)) & 0geQ'(R;X(M, Quw)) & ¢ €X(MQuw).
Especially FIX € C* (R, Diff* (M, Q,w)) iff X € X.(M,Q,w).
Proof. Suppose we have g : (R,0) — (DiffSO(M, Qw), id). Then there exists a € C*°(R x
M,R) with gfQ = a%Q and gjw = w + d(In|as|). Differentiating these equations with
respect to ¢ we obtain L;Q = —(gt_l)*(Z—z)Q and Lg,w = d((gt_l)*Z—:), where @, = Za.
Hence ¢ € X.(M,Q,w) with f;, = (gt_l)*Z—j.

Suppose conversely Lg () = —fiQ2 and Lgw = df;. Then we define a; := exp( fot gi fsds).

It satisfies g; f; = ¢t and ap = 1. So we obtain the following differential equation for gy (2

2(grQ) = —Z—I(ng) with initial condition g5 = €.

This equation has a solution namely aitQ and since the solution is unique (evaluate every-
thing at points x € M and obtain differential equations in finite dimensional spaces) we
obtain g;Q) = aitQ Similarly we check gfw = w + d(In|a|). For t = 0 this follows from
ap = 1. Moreover we have

S(giw) = gi Lg,w = gidfy = d(g} f) = d(2) = Z(w + dIn|ay)

and so equality holds for all ¢. O
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3.2.7. Lemma. Let (M,Qg,wp), (M,Qy,w1) be two locally conformally symplectic struc-
tures on M, i : N — M a closed submanifold such that Qo = Q1 on TM |y and i*wy = 1*w;.
Then there exist open neighborhoods U, V' of N and a diffeomorphism f : U — V', which is
the identity on N, and such that (U, f*Qy, f*wy) is conformally equivalent to (U, Qo|v, wolv)-

Proof. Since i*wy = i*w; there exists a neighborhood U of i(N) and a nowhere vanishing
function a on U such that wy = w; + dIna| on U and i*a = 1. So changing (o, wy)
conformally (by a) we may assume wy = w; = w.

Since we have ; = Qy on T'M|y there exists a possibly smaller open neighborhood
U of N such that €; := t(21 — Qo) + Qo is non-degenerated on U for all ¢ € I. So
(U, x|, w|v) is a locally conformally symplectic manifold for all ¢ € I. Moreover we have
i*( — Q) = 0 and hence by corollary 3.1.2 there exists o € Q'(U), which vanishes on
N such that d*a =y — )y = %Qt on a possibly smaller U. We define a time dependent
vector field X; € X(U), by ix, ) := —a and denote the curve of local diffeomorphisms
corresponding to it by f;. Since X; vanishes on i(N), f; is the identity on i(N) and hence
it is possible to shrink U, such that f; is defined on U for all ¢ € I. Next we have

S (7)) = fr (L + 5%) = f7 (dix, Q4 + ix,d + d¥a)
= fi(—da—ix,(wAQ)+d’a) = ff(wAa— (ixw)Q+wAix,Q)
= —(f{ix,w)(f{ ) = —(incy g, f*w) (f7 ) = _Z_:(ft*Qt)

with a; = exp ( fot inc; ip, f*wds). Since the solution of such a differential equation is
unique we obtain f;(), = aith. Moreover by the definition of a; we have ffw = w+dIn |ay|
and hence especially (U, ffQy, fiw) 2 (U, Qolv, w|v). O

3.2.8. Definition. Let M be a manifold. J € T*"M ® T'M is called an almost complex
structure if J? = —id. Let Q € Q*(M) be non-degenerated. Then J is called 2-compatible
if the following two conditions are satisfied:

1. X, JX)>0forall0 £ X € TM
2. QUJX,Y) +Q(X,JY)=0forall XY € T,LM, z € M

3.2.9. Lemma. Let € be a non-degenerated 2-form on M. Then the space of all §2-
compatible almost complex structures is non-empty and contractible.

Proof. Let R(M) denote the space of Riemannian metrics on M and J(M, §2) the space of
all Q2-compatible almost complex structures on M. We have a mapping:

it J(M,Q) — R(M) J—g; where ¢,;(X,Y):=Q(X,JY)
Given a Riemannian metric g we define A € T*M @ TM by Q(X, AY) = g(X,Y). Then

and hence A* = —A. Moreover A is invertible and so using polar decomposition there exist
unique B, J € T"M ® TM such that B* =B, B >0, JJ* =id and A = BJ. From

BI=A=—-A*=—J'B*=—J'B = (J*BJ)(~J")



J.s. UL UUINLD JLIuviAliarn O 1 AvEiLD L\ LAY IVIAUINIL \J LY

and the uniqueness of the polar decomposition we obtain —J* = J and BJ = JB. So
J? = —id. Moreover we have:

Q(BX,JBX)=Q(BX,AX)=g¢(BX,X)>0 VX #0

and
Q(JBX,BY )+ Q(BX,JBY) =Q(AX,BY )+ Q(BX, AY)
= —g(BY, X)+g(BX,Y)
=—g(Y,BX)+¢g(BX,Y)=0
Since B is onto this shows that J, := J is a {)-compatible almost complex structure. So

we have another mapping
r:R(M)— J(M,Q) g Jy

One readily sees that r oi = id and hence J(M, Q) is a retract of R(M). Since the latter
is non-empty and contractible J(M, Q) is so too. O

3.2.10. Lemma. Let (M,Qq,wo) and (M,Q,wy) be two locally conformally symplectic
structures on M, suppose i : L — M s a Lagrangian submanifold for both structures and
[i*wo] = [i*w1] € HY(L). Then there exist open neighborhoods U, V of L and a diffeomor-
phism f : U — V', which is the identity on L, such that (U, f*Qy, f*wy) is conformally
equivalent to (U, Q|v, wolv)-

Proof. Choose ();-compatible almost complex structures .J; on M, ¢ = 0,1. Since L is
a Lagrangian submanifold we obtain J;(T'L) ® TL = TM|,. Moreover €); induces an
isomorphism of vector bundles b; : J;(T'L) = T*L. We define an isomorphism of vector
bundles A : TM|, — TM]|. by

Alpp =id  and Al = b7 o Jo(T'L) — Ji(TL)
One easily checks
O (AX,AY) = Qo(X,Y) VX,YeT,Lx € L.

Denote by A : N(L) — N(L) the isomorphism induced from A, where N(L) denotes the
normal bundle of L in M. Next choose a tubular neighborhood ¢ : N(L) — U of L and
define a diffeomorphism h := go Aog™' : U — U. Then we obtain h|;, = id and h*Q; = Qg
along L. Moreover we have i*(h*w;) = i*w; = i*wp and we may apply lemma 3.2.7 to finish
the proof. O

3.2.11. Corollary. Let (M,Q,w) be a locally conformally symplectic manifold and let
1 L — M be a Lagrangian submanifold. Then there exists an open neighborhood U
of the zero section in T*L, an open neighborhood V of L in M and a diffeomorphism
f:U — V such that (U, f*Q, f*w) is conformally equivalent to (U,d™ " “O|y, m*i*w|y) (cf.
example 3.2.4).

Proof. Choose a compatible almost complex structure J on (M, Q,w). Then J(T'L) is a La-
grangian complement to T'L, i.e. TM|, = TL & J(TL) and hence N(T'L) :=TM|,/TL =
J(TL). Moreover € induces an isomorphism J(T'L) = T*L. Now choose a tubular
neighborhood ¢g : T*L = N(L) — U C M of L. Then the image of the zero section
s: L — T*L is a Lagrangian submanifold for (T*L, ¢g*(Q), g*w) and (T*L,d™ "“O, m*i*w).
Moreover s*g*w = 1*w = s*7*1*w and we can apply lemma 3.2.10. O
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3.2.12. Lemma. Let M be compact and w a closed 1-form on M. Suppose (M,Qq,w)
and (M,Qy,w) are two locally conformally symplectic structures, which are C°-close and
such that [Q] = [Qo] € H3.(M). Then there exists a diffeomorphism f € Diff> (M), such
that (M, f*Qy, f*w) is conformally equivalent to (M, <, w).

Proof. ; := t(Q1 — Qo) + ) is non-degenerated for all ¢ € I, since ; and € are C°-close.
Since [(4] = [Qq] € H3.(M) there exists a € Q'(M) such that d“a = Q; — Qg = 2Q;. Let
X; be the time dependent vector field on M defined by ix,{); = —a and f; the curve of
diffeomorphisms corresponding to it. The same calculation as in the proof of lemma 3.2.7
yields f;€ = aith and ffw = w + dlIn|a, hence f; is the desired diffeomorphism. O

3.3 Jacobi Manifolds

Let X*(M) denote the set of all skew symmetric multi vector fields on M, i.e. the sections
of the vector bundle A¥T'M. Recall that the Scouten bracket

[, ] XP(M) x XU(M) — XPH7 (M)
is the bilinear extension of the Lie derivative which has the following properties
[P, Q] = (-1)"[Q, P]
[PuQ/\R] = [P7Q] AR+ (_1)pq_qQA [P7R]
0= (=1 V[P[Q, R+ (=1)*""V[Q,[R, P] + (=1)"" Y[R, [P, Q]
where p = deg P, ¢ = deg Q and r = deg R. Moreover one has

ipga = (=11 Vipdiga + (—1)Pigdipa — i(P A Q)da (3.1)

for P € XP(M), Q € X1(M) and o € QP71 (M). See [Vai94] for all this.
In the next lemma we collect a few formulas we will need in the sequel.

3.3.1. Lemma. Let A € X*(M) and o € Q' (M). Then we have

A A, 8,9 = > AdA(e, 8),7) (3.2)
eycl(e,3,7)

3N Al(a, B) = A(dA (e, B)) — [Ala), A(B)] (3.3)

[A(0), Al(e, B) = (do)(A(e), A(B)) — 5[A, Al(o, @, B) (3.4)

for closed 1-forms «, 3, .

Proof. The first equation follows immediately from (3.1). For the second use again (3.1)
to compute

Y(AA, Al(e, B)) = iadip(a A B A7)
= A(dA(a, 8),7) + A(dA(B,7), @) + A(dA(7, @), B)
=7 (A(dA(a, ) — La@yia@ + ia@ Law)y
= 7(A(dA(e, B))) = ifa)ac) Y
= 7(A(dA(a, B)) = [Ala), A(B)])
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Remains to prove the third. On the one hand we have
(do)(A(e), A(B)) = Lo (A(B)) — Lago(Ma)) — a([Ala), A(B)])
= in@dA(B, 0) — iz dA (o, 0) — o (A(dA(ev, 5))) + o (5[0, Al(a, 5))
— A, dA(8,0)) — A(B, dA(a, 7)) — A(dA(a, ), @) + 3[A, Al(@, B, 0)
> AdA(a,B),0) + A A)(0, . B)

=

and on the other hand

[A(0), Al(e, B) = (L 0)A>(O‘76) L@y (Ma, 8)) = ALy, ) — Ao, L) f)
in@)dA(a, B) = Aldin@)a, ) — Aa, din)0)
= A(O‘, dA(a, 3)) — A(dA(o, ), B) — Ao, dA (o, 3))

S A(dA(e,8).0)

which proves the third equation. O

3.3.2. Definition. A Jacobi manifold is a manifold together with a Lie bracket {-,-} on
C*(M,R) which is local, i.e. supp({f, g}) C supp(f) Nsupp(g).

One can show (see [GL84] and [DLM91]) that such brackets are in one-to-one corre-
spondence with triples (M, A, E), where A is a skew symmetric bivector field and F is an
ordinary vector field on M which satisfies the following relations

[A,A| =2EAAN and LgA=[E,A]=0 (3.5)
The bracket is then given by:

{f,9} = Aldf,dg) + fdg(E) — gdf (E) (3.6)
We only show the following:

3.3.3. Lemma. Let A be a skew symmetric bivector field on M and E € X(M). Then
(3.6) defines a skew symmetric bilinear bracket on C*°(M,R) which is local. It satisfies the
Jacobi identity if and only if (3.5) are satisfied.

Proof. Since the Lie derivative commutes with contractions we have

(LeM)(a, B) = Le(Ma, §)) = AM(Lea, §) — Ma, Lpf) (3.7)
for 1-forms «, 8. Next we calculate
{{/,9},h} = A(d(A(df,dyg)),dh)

— E(df)A(dg,dh) — E(dg)A(dh,df) + E(dh)A(df, dg)

+ fA(Lgdg, dh) + gA(dh, Lgdf) — hLg(A(df,dg))

+ fdg(E)dh(E) — gdh(E)df(E) + ghLgLgf — hfLpLgg
Taking the sum over all cyclic permutations in (f, g, h) and using (3.2) and (3.7) we obtain

> {f.ghh} = BIA A = EAA)(df,dg,dh) — > f(LpA)(dg, dh)
cycl(f.g,h) cycl(f.g,h)

and hence the Jacobi identity is equivalent to (3.5). O
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Suppose {-, -} is a bracket as above and a is a nowhere vanishing function on M then
one can define a new Jacobi bracket by {f, g}, = i{af, agt. If {f,g} = A(df,dg) +
fdg(E) — gdf (E') then we obtain

Haf, ag} = 1A(fda + adf, gda + adg) + fa(dg)(E) — ga(df)(E)
= (aM)(df,dg) + f(dg)(aE + A(da)) — g(df )(aE + A(da))

and hence the bracket {-, -}, corresponds to (A, E,), where A, = aA, E, = aE + A(da).
A mapping h € Diff(M) is called Poisson diffeomorphism iff {f,g}oh = {foh,goh},
for a nowhere vanishing function a and all f,g € C*°(M,R). Since we have

{f.g} o h = h*(A(df,dg) + fdg(E) — gdf (E))
= (R*A)(dh* f,dh*g) + (R* f)(dh*g)(h*E) — (h*g)(dh™ f)(h"E)
{foh,goh}a=No(dh™f,dh*g) + (h" f)(dh*g)(E,) — (R*g)(dh* f)(Ea)

this is the case if and only if h*A = A, and h*E = E,,.

3.3.4. Definition. If (M, A, F) is a Jacobi manifold and f € C*(M,R) then X; :=
A(df) + fE is called the Hamiltonian vector field to f.

3.3.5. Lemma. We have X{;, = [X;, X,].
Proof. Since we have 3[A, A] = E A A equation (3.3) gives
A(dA(df . dg)) — [A(df), A(dg)] = (Lef)A(dg) — (Lrg)A(df) + A(df, dg)E (3.8)
Moreover LA = 0 yields 0 = (LgA)(df) = Lg(A(df)) — A(Lgdf) and so
[E, A(df)] = A(Lgdf) (3.9)
Using (3.8) and (3.9) we obtain

Ad{f.g}) +{f. g} E

A(dA(df,dg)) + Ad(fLrg)) — Md(gLef)) +{f g} E

A(dA(df,dg)) + fA(Lgdg) + (Leg)A(df) — gA(Ledf) — (Lef)A(dg) +{f, g} E
[A(df), A(dg)] + Aldf,dg) E + fIE, A(dg)] + g[A(df), E] + {f, g} E

X{itgr =

On the other hand we have

(X5, Xo] = [A(df) + fE,A(dg) + gE]
= [A(df), AMdg)] + g[A(df), E] + (Lawn9) E + fE, A(dg)] — (Lagg) f)E
+ f(Leg)E — g(Lef)E
= [A(df), A(dg)] + g[A(df), E] + A(df,dg)E + f[E, A(dg)] — A(dg, df ) E
+ f(Leg)E — g(Lef)E
= [A(df), Aldg)] + g[A(df), E] + f[E,A(dg)] + A(df, dg)E +{f, g} E
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So the Hamiltonian vector fields Xy span a generalized distribution which is involutive.
One can show that it is integrable and on every leave there exists a unique induced Jacobi
structure. So one is led to the study of so called transitive Jacobi manifolds, that is
Jacobi manifolds where this foliation consists only of one leave. A proof of the following
proposition (using local coordinates) can be found in [GL84].

3.3.6. Proposition. There exists a natural one to one correspondence between even di-
mensional, transitive Jacobi manifolds and locally conformally symplectic manifolds. A
diffeomorphism is a Jacobi diffeomorphism iff it preserves the corresponding locally con-
formally symplectic structure up to conformal change. Moreover if (M,Q),w) corresponds
to (M, A, E) and a is a nowhere vanishing function on M then (M,Q,,w,) corresponds to
(M, Ao, E,), where Qq = £Q, wy, = w +dInlal, A, = aA and E, = aE + A(da).

Proof. If (Q,w) is given then 7! =b : X(M) — Q' (M), bX :=ixQ is a C°(M, R)-linear
isomorphism. We define F := fw € X(M) and A € X*(M) by

Aa, B) == Q86, fa) = B(fa) = —a(tf)

Notice that A(a) = fa. Suppose conversely (A, E) is given. Then A(T;M) = T, M, for
A(df) + fE span TM, A(T; M) is even dimensional (A is skew symmetric) and M is even
dimensional. So b~! =1 : QY M) — X(M), fa := Ala) is a C*(M,R)-linear isomorphism.
We define w := b(E) € QY(M) and Q € Q*(M) by Q(X,Y) := ADY,hX) = Y(bX).
Obviously these constructions are inverse to each other.

Next we show that dw = 0, d“Q2 = 0 are equivalent to LgA = 0, [A,A] =2E A A. For
closed 1-forms «, 3,y we obtain form (3.2) and (3.3)

(dS2)(Hev, 85, 87) = LyaS2(E6, 87) — Lys2(fa, §y) + Ly, Q8 £53)
— Q([fo, 18], #7) + Q([Ha, 7], 86) — Q([E6, 171, f)
= > igadA(y, B) + > (o, 15])
= > A, dA(v, ) + X0 A(dA(a, 8),7) = 32 510, Al(a, 8,7)
= [A, Ao, B,7) = 5IA Ale, B,7) = =3[0, Al(ev, 8,7)

where the sums are over all cyclic permutations of «, 3,~. Moreover we have

(WA Q) (o, 86, 1y) = 2w a)QE8, y) = — X2 a(E)A(y, 8) = (EAA)(a, ,7)

and so we obtain

(@) (8o, 48, 87) = (= 5[A Al + EAA) (e, 8,7)
This shows that d“Q = 0 is equivalent to [A, A] = 2E' A A. Finally we have

(A, A](w) = (EAA)(w) = E()A — EAA(w) = QE,E)A — EAE =0

1
2

So (3.4) gives
[E, A](a, B) = (dw)(ta, 1)
and LryA = 0 is equivalent to dw = 0, provided that [A, A] = 2E A A.
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If a is a nowhere vanishing function then b,(X) = ixQ, = iz’XQ = ébX. So b, = ib

and fi, = aff. Therefore we have
fo(we) = af(w + dln|a]) = aE + tda = aFE + A(da) = E,
and
Qa(taB, facr) = ;Q(alB, afar) = aQ(4f, ) = al(e, B) = Aa(ev, B)

Let h € Diff**(M). From

(h*A)(h*w) (Aw)) =h"E

(h*A) (0, B) = " (A(ha, hB)) = b (QA(h.B), A(ha))) = (W) (K A)(B). (h*A) (@)
we see that the locally conformally symplectic structure corresponding to (M, h*A, h*E)
is (M,h*Q, h*w). Now h is a Jacobi diffeomorphism iff (M,h*A,h*E) = (M, A,, E,) for

a nowhere vanishing a and this holds iff (M,h*Q, h*'w) = (M,Q,,w,), i.e. h preserves the
corresponding locally conformally symplectic structure up to conformal change. O

h*
h*

3.3.7. Remark. On a locally conformally symplectic manifold we have

Xy = Adf) + fE = 4(df) + fhw = #(df + fw) = 4(d*f)

for the Hamiltonian vector field Xy, and

{f.9} = Adf.dg) + fdg(E) — gdf (E) = —(Qtdf, tdg) + fw(tdg) — gw(tdf)))
for f,g € C>(M,R).

Recall that a contact manifold is an odd dimensional manifold together with a 1-form 7,
such that 7(dn)™ is a volume form. If a is a nowhere vanishing function then (M, 7, := +n)
is again a contact manifold. h € Diff>*(M) is called contact diffeomorphism iff h*n = n,
for some a. A proof of the following proposition using local coordinates can be found in
[GL84)].

3.3.8. Proposition. There exists a natural one to one correspondence between odd dimen-
sional, transitive Jacobi manifolds and contact manifolds. A diffeomorphism is a Jacobi
diffeomorphism iff it is a contact diffeomorphism for the corresponding contact manifold.
Moreover if (M, A, E) corresponds to (M,n) and a is a nowhere vanishing function then
(M, A, E,) corresponds to (M,n,), where A, = al, E, = aE + A(da) and n, = %77.

Proof. Given a contact manifold (M,n) we consider the C'*°(M,R)-linear mapping b :
X(M) — QYM), bX := ixdn + (ixn)n. It is injective since bX = 0 yields 0 = ixbX =
(ixn)?, so ixn = 0, hence ixdn = 0 thus ix(n(dn)™) = 0 and finally X = 0 since n(dn)" is a
volume form. Consequently 7! =b: X(M) — Q'(M) is an C*°(M, R)-linear isomorphism
and we set F := fin € X(M). If one contracts E’s defining equation igdn+ (ign)n = n with
E one obtains (ign)* = ign. So either ign = 1 or ign = 0, but the latter is impossible
for then igdn = n, hence ig(n(dn)™) = 0 and E = 0, a contradiction. So FE is the unique
vector field satisfying ign = 1, igdn = 0 and it is called the Reeb vector field. Moreover
we define A € X?(M) by

Aa, B) := (dn)(fer, 88) = —iga (B — (igam)n) = n(88)n(He) — B(He) = B(a(E)E — ta)
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where we used iga = ig(igadn + (i3am)n) = i3on for the last equation. So we have fa =
—A(a) + a(E)E. From Lgn = dign + igdn = 0 we obtain

Lga = Lg(igadn + (igan)n)
= Lpisadn + (Lgizan)n + (izan)Len
= i[pga)dn + izaLpdn + (ipgan)n + (i Len)n
= i 41N + (i[E4a)0)N

and so [F,fa] = fLga. From this we get

0 = (ddn)(E, $o, §5)
= Lp(dn(fa,18)) — Lo (dn(E, 46)) + Lys(dn(E, fa))
—dn([E, ta], §8) + dn([E, 48], fa) — dn([te, 85], E)
= Lp(dn(fa, 40)) — dn({Lpa, 18) + dn(8Le3, fa)
= Lp(A(e, B)) — AM(Lpa, B) — A, LgB) = (LeA)(a, B)

and so LgA = 0. In a similar way one shows [A,A] = 2E A A.
Suppose conversely (M, A, E) is given. Since it is transitive we have a C°(M,R)-
linear isomorphism b~! = ¢ : QY(M) — X(M), ta := —A(a) + a(E)E. Moreover we set
=bE € QY (M). Contracting n’s defining equation E = —A(n) + n(E)E with 7 yields
n(E) = n(E)? and hence n(E) = 1, for n(E) = 0 would contradict the transversality. So
we also get A(n) =0 and

—(LeN)(n) — AM(Lgn) + (Len)(E)E = §Lgn = fipdn

and therefore ipdn = 0. Together with (3.4) we obtain

(dn)(fe, 48) = dn( — A(e) + a(E)E,—A(3) + B(E)E)
= dn(A(a), A(B)) = [A(n), A (e, B) + 3[A, Al(n, @, B)
= (EAA)(n,a,8) = AMa, B)

and using n(fa) = n(—A(«a) + a(E)E) = a(E) we get:
iz (igadn + (izan)n) = Ma, B) + a(E)B(E) = iz + ismpa = ipa

So i3adn + (i3am)n = o and the constructions are inverse to each other. For a nowhere
vanishing function a, we have

1a(na) = —aA(zn) + ;n(aE + A(da)) E, = B,

hence n, = b E, and (M, A,, E,) corresponds to (M,n,). To show the last assertion let
h € Diff(M). From

—(W*A)('n) + (W) (W E)WE = h* (= A(n) + n(E)E) = h'E

one sees that the corresponding contact manifold to (M,h*A,h*E) is (M,h*n). Now h
is a Jacobi diffeomorphism iff (M,h*A,h*E) = (M, A,, E,) for some a, and this holds iff
(M, h*n) = (M,n,), i.e. h is a contact diffeomorphism. O
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3.4 Infinitesimal Invariants

Parts of the following lemma can be found in [GL84].

3.4.1. Lemma. Let X be a compactly supported vector field on M. Then X € X.(M,Q,w)
if and only if there exists a locally constant function cx € C°(M,R) with d*(bX) = cx{.
In this case cx is unique and we have cx = ixw — fx where fx is the function satisfying
LxQ = —fxQ and Lxw = dfx. Moreover X.(M,Q,w) is a Lie algebra and the mapping

@ : X(M,Q,w) — HY(M) X  [cx]

is a Lie algebra homomorphism, where HY(M) is considered as abelian Lie algebra. If M
18 compact it is surjective iff Q is d¥-ezxact.

If (M,Q,w) ~ (M,Q,u") then X.(M,Qw) = X(M,Q ") and ¢ = ¢'. Let g €
Diff**(M) and (M,Q", ") := (M, g*Q, g*w). Then g* : X.(M,Q,w) = X.(M,Q",w") and
plogr=gop.

Proof. For any vector field we have d*(bX) = d¥ixQ = LxQ + ixw A Q — ixd“Q =
LxQ 4 1xw A€ which yields immediately the first statement. One easily shows

X, V] = d*(ixiyQ) — cxdY +eyhX VX,V € Xo(M,Q,w) (3.10)

hence d“(b[X,Y]) = —cxeyQ + cyex = 0 and so ¢xy] = 0. To show equation (3.10) we
calculate as follows:

ixy1Q = LxiyQ — iy LxQ = dixiyQ — ixdiyQ — iydixQ — iyixdQ
= dixiyQ) —ixdY —iydh X +iyix(w A Q)
= dixiyQ +ixdY —iyd X +ixw ANiyQ —iyw AN ixQ +w Aiyix$
=dixiyQ+ix(wWADY +dY) —iy(dbX +w ADX) +w Aixiy(
= dixiyQ + ixdDY —iydHhX = d¥ixiyQ + cyb X — cxhY

If Q=100 =w+ 4% then b’ = 1h and &' o2 = L o d”. So the equation d*(bX) = cx(
is equivalent to d*'(v’X) = cx. Let g € Diff*°*(M). Then g* o b = b” o g* and hence
the equation d“(hbX) = cx§ is equivalent to d*" (v"(¢g* X)) = (g cx)Q”. But this gives
g X (M, Qw) = X(M,Q",w") and ¢" 0 g* = g* o . O

3.4.2. Remark. Notice that the homomorphism ¢ vanishes if (M, w) is conformally
equivalent to a symplectic structure, since H’(M) # 0 only if M has a compact com-
ponent, but in this case {2 is not d“-exact since an exact symplectic structure can only
exist on non-compact manifolds. This is because €2 exact implies that the volume form
Q" is exact too, but this contradicts the fact that H?"(M) = R for connected, compact,
orientable, 2n-dimensional M.

But ¢ does not vanish in general. For example let 7% = S! x S* x S! x S* be the 4-
dimensional torus and let dx, dy, dx’, dy’ denote the generators of H(T*). We take w := dx,
a = sin(y)dz'+cos(y)dy’ and Q := d“a. An easy calculation shows Q% = 2dxAdyAdx’ Ady',
so (T*, Q,w) is a compact, d“-exact locally conformally symplectic manifold, and ¢ is non-
trivial by lemma 3.4.1. Another example of a locally conformally symplectic manifold with
non-vanishing ¢ is the one in example 3.2.5.
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3.4.3. Lemma. We have a surjective Lie algebra homomorphism
¢ ker o — Hy. (M) X — pX]

where Hy, (M) is considered as abelian Lie algebra. If (M, Q,w) (M, Y, w') then ker p =
ker¢' and £ o =4/, Let g € Diff*(M) and (M,Q",w") := (M, g*Q, g*w). Then g*
ker p = ker ¢ and ¢" o g* = g* o 1.

Proof. 1 is a Lie algebra homomorphism by formula (3.10). If [o] € H, é%u(M ) then fo €
ker ¢ and ¢ (40) = [0], so ¢ is onto. If (M,Q,w) ~ (M,Q,w’) then ¢ = ¢’ and b =D’
Hence ker ¢ = ker ¢’ and é@b = '. Let g € Diff**(M). From lemma 3.4.1 we get ¢g*

ker ¢ = ker ¢ and since we have b” o g* = g* o b we also obtain 1" o g* = g* 0 1. O

3.4.4. Lemma. Let (M,Q,w) be a 2n-dimensional locally conformally symplectic mani-
fold. Then we have another surjective Lie algebra homomorphism

pi=kert — Hu (M) (HL(M)AQ7]) X [hQ"

where the right hand side is considered as abelian Lie algebra, and h is a compactly sup-
ported function on M such that bX = d“h.

If (M, Q,w) ~ (M, Q') then ker = kerv) and a”% op=yp. Let g € Diff**(M) and
(M, Q" ") = (M, g*Q, g*w). Then g* : kery = kerv” and p” o g* = g* o p.

Proof. If h,h' are two functions satisfying d“h = bX = d“h’ then d“(h — h’) = 0 and
[(h—Rh)Q"] € Hgg,(M)(M) A [Q™], so

Q"] = Q"] + [(h — )] = [W'Q"] € H 0. (M) Hay (M) A Q).

This shows that p is well defined. Let bX = d“h and bY = d“k. From formula (3.10) we
get b[X, Y] = d¥(ixiy) and since

(ixiyQ)Q" = niy QA ixQA Q" = ndk A d*h A Q"1 = nd D (kd*h A Q")

we see that p vanishes on brackets. Given any [o] € H2(n+1)w (M) we may write o = hQ"™ for

some h € C°(M,R), since 2 is non-degenerated. But then 8(d“h) € ker and p(4(d“h)) =
[0]. So p is onto.

If (M,Q,w) ~ (M, w ) then lemma 3.4.3 yields ker ) = ker;b Moreover (n+ 1)’
(n+ Dw + d(ln [a™™]) so —ts HQ{;H)W(M) H2 (M) and =t ng(M) A [27]

e
ng,(]\/[) [Q"]. It bX = d“h then b’ X HX = Llldwh d“’/(ah) and s0 p/(X) = [2hQ™]
[an1+1 hQ"| = #P()Q

Let g € Diff2°(M). From lemma 3.4.3 we get ¢g* : ker¢) = kery”. If bX = d“h then
/(" X) = 0" (g*h) and hence o/ (g"X) = ["h™] = [g" ()] = g*0(X). .

i1l

3.4.5. Remark. Notice that X € kerp if and only if there exist h € Q%(M) and o €
Q?n=1(M) such that bX = d“h and hQ" = d"*+V=q.
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3.4.6. Remark. Suppose M is connected. If w is not exact then H§§L+1>W(M) = 0 by

example 3.1.7. Moreover, if M is compact then H*"(M)/(R A [Q"]) = 0. For connected
M we thus have

if M is non-compact and conformally equivalent

1

H2 () (HE () A 27

p to a symplectic manifold

0 otherwise

So for connected M, p # 0 if and only if (M, w) is conformally equivalent to a non-
compact, symplectic manifold.

The short exact sequence of Lie algebras
0 — kerp — X.(M,Q,w) 5 Im(p) — 0 (3.11)
admits a splitting and we obtain a semi direct sum
X (M, Q,w) = ker ¢ @, Im(p)

where the action « : Im(p) — Der(ker ) is given by a(c)(X) = ¢[Xo, X], where X, €
X.(M,Q,w) is such that p(Xo) = 1, i.e. d*b Xy =, on the compact components of M on
which 2 is d¥-exact.

On a locally conformally symplectic manifold (M, €2, w) one has the so called symplectic
pairing

{- ) Hyp(M) x Hy (M) — ngfﬂrl)w(M) {a, B} = a ABAQ.

It is non-zero only if M has components which are conformally equivalent to symplectic
manifolds (cf. example 3.1.7). If M is a connected symplectic manifold this is the usual
symplectic pairing up to Poincaré duality. For X,Y € ker ¢ we have [X,Y] € kert and
b[X, Y] = dwixin by equation (310) So p([X, Y]) = [(leyQ)Qn] = n[wQ Aixﬂ VAN Qn_l]

and
p([X,Y]) = —n{y(X),v(Y)} VX,Y € kerp (3.12)

In the symplectic case this is the infinitesimal version of a formula due to G. Rousseau,
see [Rou78| and proposition 3.7.20 below. It shows that, in the case where the symplectic
pairing {-,-} : Hé?(M) X Hég(M) — ng}wrl)w(M)/(Hgg(M) A [Q"]) is not identically zero,
the short exact sequence ’

0 — kerty — ker iHcl(M) —0

does not split, for a section should satisfy [s(«),s(5)] = s([a,5]) = s(0) = 0 and so

0 = p([s(2), s(8)]) = —n{a, 5} by equation (3.12).
The short exact sequence

0 — ker p — ker) LHjﬁ}M)w(M) /(Hgo (M) A[Q"]) — 0 (3.13)
splits and we obtain a semidirect sum

ker ) = ker p @, H5§L+1)W(M)/(H3:, (M) A7)

where the action « : HE?H)W(M)/(H%(M) A [Q"]) — Der(ker p) is given by a(t)(X) =
t[Xo, X], for a suitable X, € ker 1.
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3.4.7. Lemma. kert is an ideal in X.(M,Q,w) and we have a semi direct sum
(M, 9, 0), ker b = HL (M) @, T(g)
where the action o : Tm(p) — Der(Hy, (M)) is given by a(t)(8) = —t A B.
Proof. From (3.10) we obtain immediately
Y(IX,Y]) = —p(X)AY(Y) VX € X.(M,Quw),Y €kery (3.14)
Especially ker v is an ideal in X.(M, €2, w) and we have commutative diagram

ker ) —————=ker¢p ——» ()

| ) |

ker p ————— Xo(M, Q,w) ——» Im(p)
b \
Hjo (M) & X.(M, Q,w)/ ker ) — " Im(¢p)

with exact rows and columns (for the third row use the nine lemma). It follows from (3.14)
that the action is as stated. O

3.4.8. Lemma. kerp is an ideal in ker ¢ and we have a central extension

ker o/ ker p 2 H 0, (M) / (Hge (M) A Q")) @ Hy (M)

where the cocycle ¢ : N> H{(M) — Hj{ﬁlﬂ)w(M)/(ng,(M) A [Q7]) is given by c(a, ) =
—n{[al, [A]}

Proof. Equation (3.12) shows [ker ¢, ker ¢)] C ker p. Especially we see that ker p is an ideal
in ker ¢ and we have a commutative diagram

ker p kerp——» 0
ker 1) € kergo—w»ng )

(M
/ | |
H o (M) (Hi (M) A 107) s eer o er p— His (M)

where all rows and columns are exact (for the third row use the nine lemma). Since we
have [ker p, ker 1)] C ker p the last row is a central extension. The 2-cocycle ¢ corresponding
to this extension is ¢(a, 8) = p([ta, 5] — 0) = —n{a, B} by equation (3.12). O

3.5 Derived Series of X.(M, ), w)

If (M, Q,w) is a locally conformally symplectic manifold and U C M is an open subset then
(U, Q)u,w|v) is a locally conformally symplectic manifold too. In this case we write ¢y,
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Yy, pu for the invariants of (U, Q|y,w|y). Moreover we identify X.(U) with {X € X.(M) :
supp(X) C U}, via restriction resp. extension by 0. So ¢y (X), ¥y (X), pr(X) do make
sense for X € X.(M) with support in U. Finally let U C V' C M be two open subsets of
M, and let i : U — V denote the inclusion. Then we have commutative diagrams

%C(Ua Q‘anlU) i>‘T—IS([]) ker oy ﬂ} H;Z‘U<U)
T e N
XV, Qlv,wlv) =—— H(V) ker gy~ Hly, (V)

and ker oy C ker ¢y, ker vy C ker i)y, as well as a commutative diagram

ker ¢y _ru, H§§L+1)wIU (U)/(dem (U) A [Qn|UD

Ker 2 By, (V) (O, (V) A 9710])

and ker py C ker py,. But one should not expect something like ker 1)y, N Xy (M) = ker ¢y .
The following crucial lemma is due to E. Calabi.

3.5.1. Lemma. Let U, U, be open sets in R*" such that U C Uy and let Q = dx' Adz?+- - -
be the standard symplectic form. Then for all X € ker py there exist Y;, Z; € ker py, such
that X = 32" [Y;, Zi]. Especially ker py C [ker pp,, ker pp, ].

Proof. We follow the proof in [ALDM74]. Since X € kerpy we have ixQ = dh and
hQY" = da with supph C U and suppa C U (cf. remark 3.4.5). Let A be the vector field
defined by i,Q" = «, write A = 21221 At a?;i and define Z; := #dA’. Obviously we have
Z- € ker¢y. Next we have

MY =da = LaQ" =" Ly o Q=32 AL 5 Q"+ dA Ni o QO
ox? ozt B

= > S Pdat Ai e = 3 Bt N s O = (2, )
oz

e i=1 fz? i=1 9z*

m Al .
and hence h = 3_;"" 24 So we obtain

. 2n . .
inan 2z = 2in Lo iz =iz Lo
=3 Lo dAT =dY " Lo AT =dh=ixQ
oz B

and hence X = Z?jl[%, Z,] Now choose an open set U% such that U C U% C U% cU,
and functions y* supported on U 1 with Jor, v'¥" = 0 and tdy'|y = 2:|v. ThenY; := tdy' €
ker py, and X = 32" [Y;, Zy], since supp(Z;) C U. Similarly since Z; € ker Yu C ker ¢y,
we find functions z* supported on Uy with [, 2'Q" = 0 and fd2’|y, = Zi|y,. Then

1
2

1
2

Z; = td2' € ker py, and X = 32" [V;, Zi], since supp(Y;) C Us. O

3.5.2. Lemma. Let (M,Q,w) be a locally conformally symplectic manifold and let U be
an open covering of M. Then for every X € ker p there exist N € N, Uy,..., Uy € U and
X; € ker py, such that X = Zf\il X;.
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Proof. Since X € ker p there exist h € Q2(M) and o € Q2"~1(M) such that bX = d“h and
d" e = hQ™, see remark 3.4.5.

Choose N € N and Uy,...,Uy € U which cover suppa and choose a partition of
unity {Ao, ..., Ay} subordinated to {M \ supp e, Uy,...,Uy}. Define h; € C°(M,R) by
hi Q" := d" V¥ (\;a) and set X; := #d*“h;. Since we have

Zij\;O h, Q" = d(n+1)w(zif\;0 /\Za> — e, — KO

we get Zz']io h; = h and so Zfio X; = fd¥ Zfio h; = #d“h = X. Moreover X, = 0 and
X; € kerpy,, for 1 <7 < N. O

3.5.3. Corollary. Let (M,Q,w) be a locally conformally symplectic manifold. Then ker p
is perfect, i.e. ker p = [ker p, ker p].

Proof. We show ker p C [ker p, ker p], the other inclusion is trivial. Since we have the
fragmentation lemma 3.5.2 it suffices to prove this locally, but the local statement follows
from lemma 3.5.1. O

The derived series of a Lie algebra g is defined inductively by D% := g, D'g := [g, g] and
D* := [D*~1g, D*~1g], where [g, g] denotes the Lie algebra generated by all commutators.

3.5.4. Corollary. Let (M,Q,w) be a connected locally conformally symplectic manifold
and let g := X.(M,Q,w) for the moment. Then we have:

| Pg=¢ | D'a | D |D
M compact, )
Q] = 0 € HZ (M) g ker ¢ kert) =kerp | Dg
M compact, ) L
Q) £0 € H (M) g=kerp | ker¢y = kerp D'g D'g
M not compact, L L
W] £ 0 H'(M) g =kery | kery = kerp D'g D'g
M not compact, ) 1
W= 0,{.} =0 g=kerop ker p D'g D'g
M not compact, )
W =04} £0 g =kergp ker 1) ker p D-g

Proof. Since ker p is perfect (see corollary 3.5.3) we obtain
lker &, ker )] € ker p = [ker p, ker p] € [ker ¢, ker ¢
and so we always have
[ker 1, ker ¥] = ker p. (3.15)
Moreover if p = 0 then ker ¢ = ker p is perfect and we get
[ker g, ker ] € ker ¢ = [ker ¢, ker¢)] C [ker ¢, ker o]
and we obtain

[ker ¢, ker @] = ker ¢ = ker p if p=0. (3.16)
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Now consider the first case, i.e. ¢ # 0. Remark 3.4.6 gives p = 0 and so it remains to show
lg,9] D kerp. To see this choose Xy € g, such that ¢(Xy) = 1. For X € ker ¢ we obtain
from (3.14) ¥([Xo, X]) = —p(Xo) A Y(X) = —¢»(X), hence

[Xo, X]| + X € keryp = [ker ¢, ker ¢] C [g, g

and thus X € [g,g]. In the second and third case we have ¢ = 0 and p = 0 and hence
everything follows from equation (3.16). In the forth and fifth case we also have ¢ = 0 and

ker p = [ker v, ker ¢] C [ker ¢, ker ] C ker 1.

Since ker p has codimension 1 in ker 1) we either have [ker ¢, ker | = ker ¢ or [ker ¢, ker ¢| =
ker p. Now use equation (3.12). O

3.5.5. Remark. In the forth case of corollary 3.5.4 we also have [ker ), ker )] = ker p, but
ker 1) # ker p since p # 0 and ker ) # ker ¢ in general. So this is the only case where not
all kernels of our invariants do appear in the derived series.

3.6 Pursell-Shanks-Omori like Theorem

A well known theorem of L. E. Pursell and M. E. Shanks see [PS54] states, roughly speak-
ing, that a smooth manifold is completely determined by its Lie algebra of vector fields.
More precisely, if there exists an isomorphism of the Lie algebras of vector fields then
there exists a unique diffeomorphism between the manifolds, inducing the given Lie alge-
bra isomorphism. Omori proved several generalizations, namely the Lie algebra of vector
fields preserving a symplectic form resp. a volume form uniquely determines the manifold
together with the symplectic resp. volume structure up to multiplication with a constant,
see [Omo74]. We will show an analogous statement for locally conformally symplectic
structures, i.e. any of the Lie algebras X.(M, ), w), ker ¢, ker ¢, ker p uniquely determines
the locally conformally symplectic manifold (M,Q,w) up to conformal equivalence, see
Theorem 3.6.8.

3.6.1. Lemma. Let (M,Q,w) be a locally conformally symplectic manifold, x € M and
X € kery with X(x) # 0. Then there ezists a chart (U,u) centered at x such that
Xy =355 and (U,Q|u,wly) ~ (U, du Adu? + -+ - + du® =1 A du®,0).

Proof. Choose a chart (V) v) centered at x such that v(V) is a ball with center 0 and X |, =
22+, Since w|y is exact we may assume that (V, Q|y,w|y) is symplectic, that is w|y = 0 and
dQ|y = 0. Since we have X € ker ¢ we obtain LxQ|y = dixQ|y = d“bX|y = 0. Choose
fij € C2(V,R) with Q|y = 37, fi;dv" A dv’ and set

2n
o1 = Zfljdvj e QY(V) o9 1= Z fudv' A dv? € Q*(V)
=2 2<i<j<2n
We immediately obtain

Qly =dv' Aoy + 0y, dv' ANdoy =doy, and oy ' #0on V.
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The last statement follows from 0 # Q"|y = (dv! A oy + 02)" = ndv' Aoy Aoy~ Next we
have

0= Llev = Lai Ez‘<j fijdvi Advl = Zi<j(LLfij)dUi A dv?
vl vl

and thus L o f;; = 0. So
ovl

2n 2n
doy=Y" 3 Watrpaina =Y N Yuak advi pdv?

k=1 2<i<j<2n k=2 2<i<j<2n
and
2n  2n 2n  2n
0f1; ; OF1 . .
dvt Adoy = E g %dvl A dvF A dvl = g g %dvl A dvF A dv?
k=1 j=2 k=2 j=2

and since doy = dv' A doy, both terms have to vanish. That is, doy = 0 and do; =
i%(dvl Adoy) = 0.

Let m: R — R* ! (vl 0*") = (v%,...,v?") and choose f € Q%(w(v(V))) with
(rov)*df = o1 and 0 € QY (w(v(V))) with (7 o v)*df = o5 and such that 6 A d0"! # 0
locally around 0 € R?"~!. This is possible since we have doy ' # 0, Z{j{ =0 and 7(v(V))
is a ball, hence contractible.

So 0 is a contact form locally around 0 and by Darboux’s theorem (see [ABK*92] for
example) we find a chart (W, w) centered at 0 € R*~! such that 0|y = dw' + wdw? +
<+ w?2dw?™ . We are now able to define the desired chart (U, u) by:

Tov) ' (W) =:U — R*™" w:= (v, forov,w?omouw,...,w" torouw
(o)™ ( 7 7 s
First of all we have X| = 2| = 52r. Moreover

Q|U = (dUl Noq+ O'2)|U = (dUl N (7'(' e} U)*df + (71' e} U)*d9)|U

=dv Nd(fomov)|y+ (mov)* (dw? Adw® + - - + dw* 2 A dw®™ )|y

=du' Adu®+ -+ du* A du®”
But this also shows that Q" |y = %dul/\- --Adu®*" and hence u is a local diffeomorphism. [
3.6.2. Lemma. Let (M,Q,w) be a locally conformally symplectic manifold, let U C M
be a small open ball in M and let V' be an open subset with V- C V C U. Then for every
X € ker g there exists Y € ker py C ker p such that X|y = Y|y. Moreover if X € X(U)
with d*'vbX = 0 then there exists Y € ker py C ker p such that Y|y = X|y.

Proof. Since U is contractible we find in both cases h € Q°(U) with d*h =bX|y. Let A be a
bump function with supp A C U and Al = 1. Then Ah € Q%(M), Y := bd“(A\h) € ker vy
and Y|y = X|y. Adding a function with support contained in U \ V we may assume
[RQ"] =0 € Yoy (U),ie. Y € kerpy. O

3.6.3. Lemma. Let (M,Q,w) be a locally conformally symplectic manifold, x € M and
let Z € ker p with Z(x) # 0. Then there exists a neighborhood V' of x such that for every
X € kerp there exists Y € ker p with [Z,Y ]|y = X|v.
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Proof. By lemma 3.6.1 we find a chart (U, u) centered at z such that Z|y = 32 and such
that Q|y = du' Adu® + -+ + du® =1 A du®". For r > 0 we let C, := {u € R*" : |u'| < r}.

Next we may assume that u(U) = Cy. for some € > 0, set V := C. and assume that
supp(X) C U (cf. lemma 3.6.2). We define Y € X(U) by

u1

Y(ul,...,uzn) = X(t,'LLQ,...,UQn)dt
—2e
Then we have
digQ(u) = d [*_ ixQt, ug, ..., ugy,)dt
= du! /\zXQ u) + ful E1<@du A a?m (ZXQ)(t Ug, . .., Uy )dl

U —i—ful (deQ du' N 3ot (zXQ))(t,ug,...,uQH)dt
= du NixQ(u) —dut A [T a 2 ZxQ)(t,Ug,...,UQn)dtZO

So we find Y € ker p with Y|y, = Y|y and hence we have

2] = [ V] = [, T2, Vi) = T2, 2 2 = 020 Xl = X

ou’ i=1 dul Oul ou’
on V. ]

3.6.4. Corollary. Let (M,Q,w) be a locally conformally symplectic manifold and let I C
ker p be an ideal such that for every x € M there exists Z € I with Z(x) # 0. Then
I = kerp.

Proof. Let v € M, Z € I with Z(x) # 0 and let V be the neighborhood of = from
lemma 3.6.3. By the fragmentation lemma 3.5.2 it suffices to show ker pyy C I and since
we have [ker py, ker py| = ker py by corollary 3.5.3 it suffices to show [ker py, ker py/] C I.
So let X, Y € ker py. By lemma 3.6.3 there exists A € ker p with [Z, A]|y = Y|y and

(X, Y] =[X,[Z, A el
since supp X C V. O

3.6.5. Proposition. Let (M, w) be a locally conformally symplectic manifold. For ev-
eryx € M
I, :={X € kerp: X is flat at x}

1s a maximal ideal in ker p, and x — I, is a bijection between points of M and mazximal
ideals of ker p. Moreover for X € ker p we have

X(z)#0 <  [X,kerp|+ I, =kerp

Proof. Of course I, are ideals. If I, C I C kerp is an ideal such that there exists X € [
with X not flat at , then there also exists Y € I with Y (x) # 0 and corollary 3.6.4 yields
I = kerp. So I, are maximal. Certainly I, = I, implies x = y and it remains to check
surjectivity. Let I be a maximal ideal in ker p. By corollary 3.6.4 there exists a point
x € M such that X(z) = 0 for all X € I. Since [ is an ideal we also obtain that X is
flat at =z, that is I C I,. Since both ideals are maximal we have equality. This shows that
x — I, is a bijection of M and the maximal ideals in ker p.
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Suppose X (x) # 0. We have to show kerp C [X,kerp] + I,. So let Y € kerp. By
lemma 3.6.3 there exists Z € ker p such that [ X, Z] = Y locally around z,so Y — X, Z] € I,
and hence Y = [X, Z] + (Y — [X, Z]) € [ X, ker p] + .

For the other implication suppose conversely X (z) = 0. Choose a chart (U, u) centered
at x and define a linear mapping

j i ker p — R?" @ gl(2n) Y = ZQn Ylauz ((Yl(x))u (gﬁf (x))zy)

Since X (z) = 0 we have a commutative diagram

ker p—2 5 R>" @ gl(2n)

SN

ker p —2— R2" @ gl(2n)

where a(b, A) = ((— %X; (x))4;b, [A, (8855; (2))i] — 323, 82?8(;( )b¥). From the commuta-

tivity we get a : Im(j) — Im(j), and the assumption [X, ker p| + I, = ker p shows that
this mapping is surjective. So it is an isomorphism, for a is linear. Especially the matrix

(%ﬁ)ij # 0 and consequently j(X) # 0. But this yields a contradiction since j(X) is in
the kernel of a, for a(j(X)) = j(adx (X)) = 0. O

3.6.6. Theorem. Let (M;, €, w;), i = 1,2 be two locally conformally symplectic manifolds
and let k : kerp; — kerpy be a Lie algebra isomorphism. Then there exists a unique
diffeomorphism f : My — My such that k = f.. Moreover (My, Qq,w1) ~ (M, f*Qa, f*ws).

Proof. By proposition 3.6.5 we may define a bijection f : My — M, by I, = k([,). For
any A C M; we have
A={zeM;: (), CL}
yeA
and hence for A C M,

FA) ={f(x): (I, € L} ={f(x): () &(I,) Cx(L)}

yeA yeA
)i () Ly S s} ={pe Mz [ I, C L} = f(A)
yeA q€f(A)

So f (and similarly f~') maps closed sets to closed sets. This shows that f is a homeo-
morphism.
For X € ker p; we obtain from the second part of proposition 3.6.5

X(z) #0 < [X,ker p1] + I, = ker py
& [K(X), ker po] + L5y = K([X, ker p1] + 1) = r(ker p;) = ker ps
& K(X)(f(z)) #0

From this we immediately obtain

{X;} linearly independent at x < {k(X;)} linearly independent at f(x)
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for X; € ker p;. Moreover if X,Y; € ker p; and h; are functions on some subset A C M,
then

Xla= T hYila) = &(X)|a = (Xi(hio Y] pa))- (3.17)

This can be seen as follows. Let z € A. Then X — > h;(x)Y; € ker p; vanishes at z. So
K(X =32, hi()Y;) vanishes at f(x), that is £(X)(f(z)) =2 (hio f71)(f (2))s(Yi) (f(2)) = 0.
Let x € M;. Choose a chart (U,u) centered at  and a; € C*(M;,R) such that
@1 :=w; +dlIn|a;| = 0 locally around z and Q= a_llQl = du' Ndu® + -+ du A du
locally around x. Choose X; € ker p; with X; = % locally around z, cf. lemma 3.6.2.
Since X; is a local frame near x of commuting vector fields, £(X;) is also a local frame near
f(z) of commuting vector fields. So it is possible to choose a chart (V,v) on M5 centered at
f(z) such that (X;) = ;% locally around f(z). Next choose Y; € ker p; with ¥; = u®) 2
locally around z, where

o:{1,....2n} — {1,...,2n} o(2)=2i—1, o(2i—1)=2i.

From equation (3.17) we obtain x(Y;) = (u”® o f~1)k(X;) locally around f(z) and hence
f~1is smooth near f(z), since k(Y;), k(X;) are smooth and x(X;) # 0 locally around f(x).
This shows that f is a diffeomorphism

Moreover we have [X;,Y;] =4

i, Y i0(j) Bog locally around x and so
e wWof—1
Siot oy = #([X0, Vi) = [R(X0), (V)] = [, (w70 o f1) 5] = Hmel 0
locally around fla). So 2wel”D — 5 which yields w/ o f~' = v/ locally around f().
Especially f.-2- 57 = % on some neighborhood W of f(x). If X € ker p; with supp(X) C

f~YW). Then we have X = Z?Zl N X; with supp A\; € f~1(W) and thus

FoX) = L0 N X0) = 20 (No [ f.(X0)
=2 (Ao fTYR(XG) = (T X)) = R(X)
Since we have the fragmentation property this shows f, = . Uniqueness of f, is obvious.
Choose ay € C*°(Ms,R) such that &y = wy + dIn|az| = 0 near f(x) and Qs = éQg is
closed near f(x). Near f(z) we have Qy = 37, Ajjdv' Adv. Since we have x(X;), (Y;) €
ker py and k(Y;) = v7@ 2 locally around f(z) we obtain
0= dl,@(y)QQ = d( Z 9 Qg)

811]
= dv"D Nio Qy + 17D di o Qy = dv"D A (X, Ajudv — 32, Aygdv?)

v vl

thus \;; = 0 except i = o(j) or j = o(i). So we get

Oy = Mdv' Adv® + -+ - + N\ do™ ™ A do™

near f(x). Since k(X;) € ker py and k(X;) = a(zi near f(z) we get

0 = di-2 Qs = —d(Ndv? 1) = —d\; A dv??

022



J.U. 1 Ulwiy/= L1 0NINIO=ULVEIUVLIWL iy L 111\ J1IUVL/IVL

and similarly 0 = d\; A dv*. These both equations imply that \; is constant near f(x).

Finally choose Z;; € ker p; such that Z;; = u®* aufj,l —u% W%,l near . Then r(Z;;) € ker py
and k(Z;;) = v* 52— — v¥ 52— near f(z). This gives

0 = din(z,;) = d(v¥XNdv¥ + v \dv?) = (A; — X)) do? A do¥

and so A := A\ = --- = \, locally around f(z). So there exists a locally around z defined

function a = ali L with
agof

[ = f*(ax(l) = (az 0 f) "0y = (ag o /YA = (az 0 )AL = (a1} )=t

agof

and
[fwy = f*(=dInlas|) = =dInlas o f| =wy + dIn|ay| — dInlag o f| = wy + dIn|a]

locally around z. Since the function a is unique it is globally defined and it is smooth, for
the defining equation f*Q2y = in is smooth and f*(2y # 0 and €2y # 0. O

3.6.7. Lemma. Let g be a Lie algebra such that ad : g — gl([g,8]) is injective and let
A:g— g be a Lie algebra homomorphism such that A|igg = id. Then A = id.

Proof. For X € g we have
(X, Y] = AMIX,Y]) = AX),AMY)] = MX), Y] VY € g g]
hence ad(X — A(X)) =0 € gl([g, g]) and hence A\(X) = X. O

3.6.8. Corollary. Let (M;,$;,w;), i = 1,2 be two locally conformally symplectic manifolds
and assume that k is a Lie algebra isomorphism from one of the Lie algebras X .(My, 1, wq),
ker 1, keriy, kerp; onto one of the Lie algebras X.(Mz,Qa,ws), ker o, kerihy, ker po.
Then there exists a unique diffeomorphism f : My — My such that kK = f,. Moreover we
have (Ml, Ql, wl) ~ (Ml, f*QQ, f*u)g).

Proof. We have a Lie algebra isomorphism x : g; — go. Hence the restriction of s is
an isomorphism k|pz, : D?*g1 — D?ge. But in any case D?g; = kerp; for i = 1,2
by corollary 3.5.4. So we can apply theorem 3.6.6 and obtain a unique diffeomorphism
[+ My — M, such that k|pz2g, = fi|p2g,- Moreover (My,Qy,wi) ~ (My, f*Qq, f*ws). So
f*g2 is one of the Lie algebras X.(M,Q;,wq), kergy, kerey, kerp; and we either have
f*g2 C g1 or f*gs D gi. Assume we are in the first case (for the second consider f=1).
Then A\ := f ok = f*ok: gy — g is a Lie algebra homomorphism and we know that
Alp2g, = id. Moreover we obviously have for every vector field Z € X(M;) the following
property:
[Z,X]=0 VX e€kerpy = Z=0

Using ker p; € D"'g; we obtain ad : D'g; — gl([D'gy, D'gy1]) = gl(D™g;) is injective
for all i. So we can apply lemma 3.6.7 inductively and obtain successively A|pz4, = id,
Alprg, = id and finally A = A|pog, = id, that is f, = k. O
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3.7 Integrating the Invariants

The aim of this section is to integrate the infinitesimal invariants from section 3.4. For a
brief summary see section 3.8 below.

3.7.1. Lemma. ¢ is Ad(Diff>°(M,Q,w),) invariant, i.e. for all X € X.(M,Q,w) and
g € DIff (M, Q,w)o we have p(Ad(g) - X) = o((g7")"X) = o(X).

Proof. From lemma 3.4.1 we obtain a commutative diagram:

(M, Qw) L X, (M, Q,w) = Xo(M, g*Q, g*w)

s{ ®
*

Hy(M) : Hy (M)

Since ¢ is isotopic to id we have id = g* : HY(M) — H?(M). O
3.7.2. Proposition. The Lie algebra homomorphism ¢ integrates to a group homomor-

phism ® : [/)IFEZO(M,Q,LU)O — HO(M), i.e.

exp—FlJ lexp—id
Diff. (M, Q,w), —— HO(M)
commutes. We have the following formulas:

B(g) = [;0:(679) = [y wlg)dt = [ fy equdt] = [ [ gicgdt]
If (M,Q,w) ~ (M,Y,w") then ]/D\i?fzo(M,Q,w)o = ]/)\Efzo(]m QW) and d = P’

Proof. Notice that o, (6"g) € Q' (I; HY(M)) where H?(M) is a separated, complete locally
convex vector space (cf. theorem 3.1.11) and hence integration is well defined. Obviously
the various formulas for ® are equal. We have to check that they do only depend on the
homotopy type relative endpoints of g. So let G : D?* — Diff>°(M,Q,w) and denote by
i : St < D? the inclusion of the unit circle into the unit disk. Using Stokes and the Maurer
Cartan equation (1.2) for "G we obtain

Jor0:(07(*G)) = [ i*0(0"G) = [12 dpu(07G) = [12 0 (5[07G, 0" G])

but the right hand side is zero since ¢ vanishes on brackets.
Let f,g : (1,0) — (Diff°(M,Q,w),id). Using the Leibniz rule (1.5), the fact that
f(t) € Diff° (M, Q,w), for every t € I and lemma 3.7.1 we obtain

(8" (f9) (1) = (fo) +e((f() 7)) = @(fe) +(3e) = (@(6"f) + (8" 9))(2)

So ¢, (6"(f9)) = ¢, (0" f) + ¢+ (6"g) and hence ®(fg) = (f) + P(g). The rest follows from
6" (F1¥) = Xdt. O

The homomorphism ® has the following geometrical interpretation:
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3.7.3. Proposition. Let g : (1,0) — (Diff*(M,Q,w),id) and denote by a, the functions
satisfying g; <) = aitQ, giw =w+d(Inl|a¢|). Then for x € M we have

= [1(¢*)'w —Infa; (z)|
where g° : I — M is the path t — g(x).

Proof. Differentiating the equation g; Q = 1 2§ with respect to ¢ we get 3 (ln lat|) = g fs,
where fg, are the functions satisfying L, —f3:Q and Lg,w = df,, and therefore

In|a;| = In|a;| — In|ae| = fo 2 (In |ay|)d fo g5 [ dt

Next we have

1, 4.
f fw = fO tgs fO gt gt t = fo (gt thw)dt<£li')
Putting these two equations together we obtain
1 ... 1, =
Ji(g®)'w —Infas(z)| = [ g (ig,w — fo,)dt(x) = [ gicsdt(z) = D(g)(x)
and we are done. O

We define A := &)(71'1<Diffgo(]\/[, Q,w),)). Then ® descends to a homomorphism ®

DIt (M, ©, w), —— HO(M)
Diff>* (M, Q, w)o —2— HO(M)/A

If M is compact then ® is surjective iff Q is d“-exact. If (M,Q,w) ~ (M,Q,w') then
Diff* (M, Q,w), = Diff>* (M, Q' w')o, A = A" and ¢ = 9.

3.7.4. Corollary. If M is connected and compact then H)(M) = R and
A C Per(w) := {{w,¢) : c € Hi(M;Z)} CR.
Especially A C HY(M) is always countable.

3.7.5. Example. Recall the locally conformally symplectic manifold (S’ x 83, Q,w) from
example 3.2.5. In this example one has fa = 0; and g € Wl(DiffSo(M,Q,w)), where

gr := FI*. Moreover ®(g) = () = 1, hence Z C A. Since Per(w) = Z, corollary 3.7.4
yields A =Z C R.

3.7.6. Example. Recall the example (S* x S' x S! x §',Q,w) in remark 3.4.2. We have
v = 9, and g € my( Diff* (M, Q,w)), where g; := FI*. Moreover ®(g) = ¢(fa) = 1 and
hence Z C A. Since Per(w) = Z, corollary 3.7.4 yields A =Z C R.

3.7.7. Corollary. Let g € C*=((R,0), (Diff2°(M,Q,w),id)). Then
geEC®Rker®) <« gV Rikerp) <& g Ekeryp

Especially FI* € C®(R, ker ®) iff X € ker .
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Proof. By lemma 3.2.6 we may assume that ¢ has values in Diff>°(M, 2, w) and "¢ €
QN (R; X.(M,Q,w)). For s € Rlet py : I — R, py(t) :=ts. We then have

®(g,) = m(®(u39)) = 7 [ 130:(8"9)) = 7 ([, 1y 0:(679)) = 7 f3 @(ge)dt)

So the implication < follows immediately. So let us assume that g has values in ker ®.
Then fo ©(g)dt € A for all s € I. Since this depends continuously on s and has values
in a countable subset of a separated topological vector space it has to be constant, i.e.
fos ©(gr)dt = 0 for all s € I. Differentiating with respect to s we obtain g, € ker ¢ for all
s € R. O

3.7.8. Lemma. ker ® is connected by smooth arcs, and the natural inclusion induces an
isomorphism of groups 1 : ker & = ker @, such that evy oi = ev.

Proof. Consider i : ker ® — ker &, i(g) = g. Notice that i(g) € ker ®, since ¢, € ker by
lemma 3.7.7, and ¢ is well defined, for two curves which are homotopic relative endpoints
in ker @ are obviously homotopic relative endpoints in Diff>° (M, 2, w). Next we show that
i is onto. Let g € ker ®. For any s € I we define h, € C"’O((I,O), (Diff>° (M, Q,w),id)) by
d"(hs) = s6"¢g (cf. lemma 3.2.6). Then ho(t) = id and h4(t) = g(t). Moreover

(hs) = [, 0:(6"(hs)) = s [, 0:(67g) = sD(g) = 0,

so ®(hs(1)) =0 for all s € I, and g is homotopic relative endpoints to s — hg(1), which is
a curve in ker ® (cf. figure 3.1). In order two show injectivity of i let g € ker, i.e. there

g9(t)
id| his,t) |h(1) Lt
id

Figure 3.1: A homotopy relative endpoints from t — ¢(t) to t — h(1)

exists G € C(I x I,Diff°*(M,Q,w),) with G(0,t) = id, G(1,t) = g(t) and G(s,0) =
G(s,1) =id. For (s,u) € I x I we define H(s,-,u) € C>((I,0), (Diff;*(M,Q,w),,id)) by
6"H(s,-,u) = ud"G(s,-). We have G(1,t) = g(t) € ker @, so 6"G(1,-) € Q'(I; ker ¢), hence
6"H(1,-,u) € Q' (I;ker¢) and thus H(1,t,u) € ker ® for all t,u € I. So g is homotopic
relative endpoints in ker ® to u +— H(1,1,u), for we have H(s,t,0) = id, H(s,0,u) = id and
H(s,t,1) = G(s,t). Moreover (s,u) — H(s,1,u) is a smooth homotopy relative endpoints
from id to H(1,1,-). We claim that it has values in ker ®. Indeed, since &)(G(S, ) =0 we
have

and hence
one-to-one. -

If f € ker ® then there exists g € Diffoo(M Q,w), with 7(g) = g(1) = f and cI>(g) € A.
By multiplying ¢ with something in ﬂl(lefoo(M Q,w),) we may assume that ®(g) = 0.

D(H(s,u)) = [, 00" H(s,-u) =u [, 0.6"G(s,) = ud(G(s,-)) =0
O(H(s,1,u)) =0. So g is homotopic relative endpoints in ker ® to id, i.e. ¢ is

So evy : ker & — ker @ is onto, and since ker ® = ker ® we get evy : ker & — ker ® is onto,
too. So ker ® is connected by smooth arcs. O
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From lemma 3.7.8 we obtain a commutative diagram
7 (ker ®) 7y (Diff, (M,Q,w),) ————» A
ker ® = ker & —>]5\1?fzo(M, Q,w)o — 2 Im(p) = Im(P)

mT=€ev] lﬂ'zevl s

ker @ —— Diff* (M, Q, w), ——— Im(p) /A

where all rows and columns are exact. Moreover the middle row splits and we have a semi
direct product

[/)IFEZO(M, Q,w)o = ker & x,, Im(yp)
cf. the extension (3.11) on page 58.

3.7.9. Lemma. 1 is Ad(ker ®) invariant, i.e. for all X € kery and g € ker ® we have
U(Ad(g) - X) = ¥((g7)"X) = ¥(X).

Proof. From lemma 3.4.3 we obtain a commutative diagram:

ker 7 ker p = ker ¢/

/| N

where @ is such that (M, Q,w) ~ (M, g*Q, g*w) and ¢’, ¢’ correspond to (M, g*Q, g*w). So
it remains to show that ag* : Hy, (M) — Hj, (M) is the identity. Since ker ® is connected
by smooth arcs (lemma 3.7.8) there exists a curve g; € ker & with gy = id and g; = g¢.
We define a; by (M,Q,w) ~ (M, g;Q,giw), so ap = 1 and a; = a. Since g; € ker ® we
have g, € ker ¢ by corollary 3.7.7 and hence f;, = 75w by lemma 3.4.1. Differentiating
g;) = aitQ with respect to ¢ and using L;,§) = — f;, Q) we obtain
L = gt fo = gfigw = Inc] ip,g*w

and so a; satisfies the same differential equation as a; in lemma 3.1.1 and are thus equal.
But then lemma 3.1.1 yields ag* = a197 = apg; = id. O

3.7.10. Proposition. The Lie algebra homomorphism 1 integrates to a surjective group
homomorphism WV : ker ® — Hy, (M), i.e.

ker p —2— H (M)
exp=FI Jexp:id
ker & — H3 (M)
commutes. We have the following formulas:
U(g) = [;u(079) = Jy w(G0dt = [ g i) = [ fy augiig Q]
where gfQ = aitQ If (M, Q,w) ~ (M,Q,w') then ker & = ker ® and 1o U =,
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Proof. The proof is exactly the same as the proof of proposition 3.7.2. Integration is
well defined since 6"g € Q'(I;ker ¢) by corollary 3.7.7 and since H ég, (M) is a separated,
complete locally convex vector space by theorem 3.1.11. To see that the formulas do only
depend on the homotopy type relative endpoints in ker ® of the curve g one does the same
argument, but now one has to use that 1 vanishes on brackets, cf. lemma 3.4.3. Also the
proof that U is a homomorphism is similar, but one has to use that 1 is Ad(ker ®)-invariant,
cf. lemma 3.7.9. 0

We let T' := W(mry (ker ®)). Then ¥ factors to a surjective homomorphism W

ker ? >H1§(M)

lﬂ

ker & —— H,(M)/T

If (M, Q,w) ~ (M,Q,w') then ker ® =ker®, 1I' =I" and L o W' = .

Let Hioc fin-( 0, Bw) denote the homology based on locally finite chains with values in
the bundle of coefficients B, cf. the discussion above corollary 3.1.10. The k-chains of
this homology theory are formal infinite linear combinations >, Ai(o;, fi), where A; € R,
o; » A — M, f; © A¥ — R satisfying fiojw + df; = 0 and {o;} is locally finite. Using
proposition 3.1.6, theorem 3.1.9 and Poincaré duality for sheaf (co)homology (see [Bre67])
we obtain

(Hjo (M))* = HyZF(M) = H* "(M; F_,) = Hy(M, F_,) = H ™ (M, B_,)

d—u.)

and the isomorphism P, : H\° (M, B_,) — (H%(M))* comes from the pairing (-, )., :
Cllcoc. ﬁn(M’ B_,) x Q’S(M) — R given by the formula:

<Z7, )‘i(giv fi)va>w = Zz /\z fAk in',Zka

Notice that only finitely many summands are non-zero since {o;} is locally finite and «
has compact support. We have: (dc, o), = (¢, d*a),. Indeed it suffices to check this for a
k-simplex ¢ = (o, f). Using Stokes and —fo*w + df = 0 we get

(0(0, f), <Zzo aodl,foé a>

_Zzo fAkl i)(000;)

_Zz 0 fAk 1 fO' Oé
_fAk (fora) = fAkdf/\O' a+ forda
= [\ for(w A a+da) = (0, f), d“a),

Moreover if g : M7 — M, is proper and satisfies g*wy = w; for closed 1-forms w; then

gx © Cioc. ﬁn'(M, Bwl) - Cioc. ﬁn.(M’ ng) g*(Zz )\i(o-h fz)) = ZZ )\Z(g © 0y, fl)

is well defined. Indeed, the image is locally finite since g is proper, and f(g o 0)*wy =
fo*g*ws = fo*wy, = df. Moreover g, is a chain map and we have an induced mapping in
homology:

Gy Hioc, ﬁn.(MI’ Bwl) N Hioc. ﬁn.(M27 sz)
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The pairing is natural, i.e. we have:

<g*<0- f fAk g © O‘)*a = fAk fa*g*oz = <(Ja f)ag*a>w1
Moreover it behaves very nice under conformal change. Recall that if w’ = w+dIn|a| then

1. H be(M) — H3 (M) is an isomorphism. Moreover

B,:By=MxR—MxR=B, (x,t) — (z,at)
is an isomorphism of bundles of coefficients, for we have:
Bi(tw + dt) = atw + d(at) = a(tw + dt + Ltda) = a(tw’ + dt)
We have an induced mapping
(Bo). : HO* B(M, Br) — Ho (M, B,) (0, f) > (0, (0°a)f)
Since —w' = —w + dIn || we get (B%)*  Hloe (VB ) — H° (M B_) and
(Bu)ue, @) = e, Laus
as one easily sees from a short calculation.

We have the following geometric interpretation of W:

3.7.11. Lemma. Let g : (I,0) — (ker ®,id) and ¢g;Q = aitQ For ¢ =Y . N(oi, fi) €
o (M, B_,,) we have )

(e, ¥(9))w = (g% ¢, D
where gxc =3, \i(g* i, g% f;) € O (M, B_,) and gxo; : I x I — M, (gx0;)(s,t) =
ge(0i(s)), g* fi : I x I =R, (g fi)(s,t) = fi(s)ar(oi(s)).

Proof. Tt suffices to check everything for a simplex ¢ = (o, f) € Clo“ (M, B_,), that
is —fo*w +df = 0. Now (g * f,g * o) defines a 2-chain in C°“ (M, B_,) iff 3 =
—(g* f)(g*xo)'w+d(g=* f) =0. Since g; € ker  we have a,g;i4w = a; and therefore
(i0,0)(s,t) = = f(s)a(o(s))w (59:(0(5))) + 5 (f(s)ar(o(s)))
= —f(s)a(o(s))(i5,w) (9 (0 (s))) + f(s)a(o(s))
= —f(s)(agiigw)(o(s)) + f(s)a(o(s)) = 0
Using gjw = w + dIn|a¢| and —fo*w + df = 0 we obtain
inc; = —f(c*ay)o*giw + d(fo*a,)
= —f(oc*ay)o*w — f(o*ay)o*dIn |ay| + fo*da; + (df )o*ay
= —f(a*at) o'*lato-*dat + fO'*dCLt =0
So 3 =0, i.e. g *c defines a 2-chain in C* (M, B_,). Next we have

[; for¥(g fo (fol atgfithdt)(ga(s))ds
=Jo b f (S)at(a( ))2(9:(9:(0(5))), Tge - 5z0(s))dsdt
—ﬁﬁhw Q%MW@»%%@@D@ﬁ
= fo fo gxf t)((g * 0)*Q) (04, Os)dsdt = f]X[(g x f)(g*0)*Q

but this is (o, f), ¥(g))e = (g * 0,9 * f), Q)0 O
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3.7.12. Corollary. Fvery continuous curve in I is constant.

Proof. Let ¢ = >, Ni(0y, f;) € C1°% ™ (M, B_,) and let S C B_,, be the smallest subbundle
of coefficients such that (o;, f;) € C1°= (M, S). The fibers of S are countable and hence
Hy(M, S) is countable. This can be shown using a countable good covering of M, Mayer
Vietoris sequence and the fact that H.(U, S|y) is countable for a contractible U C M.
Suppose g € mi(ker®) and dc = 0. Then g x ¢ € Cl* (M, S) and d(g * ¢) = 0.
Moreover g % ¢ — id*c is a finite chain and thus [g * ¢] € [idxc] + j(H2(M, S)), where
j o Hy(M,S) — H}° (M S) is the map induced from the inclusion of finite chains into
locally finite chains. From lemma 3.7.11 we obtain

(. U(9))w = (g * ¢, Vo = Po(lg* () € Po(lidxe] +j(Ha(M, 5)))([Q]) SR

Since the latter is countable we see that P,([¢])(I') € R is countable for every [c]. So,
if h is a continuous curve in I'; then P,([c]) o h is constant for every [c]. But {P,([c]) :
[c] € Hi*e (M, B_,)} is point separating since P, is onto (HL (M))*, thus h has to be
constant. ’ U

3.7.13. Lemma. Let g € C*((R,0), (Diff*(M,Q,w),id)). Then
gEC®R ker¥V) < §geQ(Rikery)) <= ¢ €kery
Especially FI* € C®(R, ker ¥) iff X € ker .

Proof. By corollary 3.7.7 we may assume g € C*(R, ker ®) and §" € Q' (R, ker ¢). Asin the
proof of 3.7.7 one shows ¥(g,) = m( [ 1(g)dt). Again the implication < is now obvious.
Moreover if g has values in ker ¥ this equation shows [ 1(g,)dt € I'. By corollary 3.7.12 it
has to be constant = 0. Differentiating with respect to s yields ¢, € ker® for all s € R. [

3.7.14. Lemma. ker WV is connected by smooth arcs, and the natural inclusion induces an
isomorphism of groups i : ker U = ker W, such that evy oi = evy.

Proof. The proof is similar to the proof of lemma 3.7.8. O

So we have again a commutative diagram

7y (ker U) ——— 7 (ker ®) LA

[ [ |

ker U = kerﬁlC—W;evr@—q]»chg(M)
lw:evl lw:ovl lw

kerql%kerq)—w»ng(M)/r

with exact rows and columns. The middle row does not split in general, cf. (3.12) on page
58 and remark 3.7.21.

3.7.15. Proposition. Suppose (M, w) is an exact locally conformally symplectic man-
ifold, i.e. Q = d“a. Then for g € ker & we have

U(g) = [argior — a] € Hjo (M)

where gfQ = aitQ and giw = w + d(In|a;|). Especially I' = 0 in this situation.
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Proof. First of all we have
ith = ’igtdwOé = LgtOé + igtu) Na— dw(’igt()é)

Since g; € ker ® the a, are the same as the a; of lemma 3.1.1 (cf. proof of lemma 3.7.9).
So we get

lacg;is, QY = [agf (Lg,o +igw A o+ d*(ig,a))] = [arg; (Lg,a + ig,w A )]

Since g; € ker ¢ we have %@t = g} fg, = g/ igw and hence

arg; (Lg, + igw A o) = argy (g7a) + (Fran)gia = F(agia)

Putting all together we obtain

(g fo arg;ig, QUdt = [fo Sagia)dt] = [argio — aogga] = [arg* e — o]
0

3.7.16. Lemma. p is Ad(ker V) invariant, i.e. for all X € kert and g € ker ¥ we have
p(Ad(g) - X) = p((g7")"X) = p(X).

Proof. From lemma 3.4.4 we obtain a commutative diagram:

ket —— 2 HZ (M) (HS (M) A [2])

¢ 5

ket = ker o)~ H2f,e0 (M) (HSy (M) A [g27)

\\\&\\; [

H 1. (M) (i (M) A [27])

where a is such that (M, Q,w) ~ (M, g*Q, g*w) and ¢, p' correspond to (M, g*Q, g*w). So
it remains to show that a’“rl * Hj{;ﬂ)w(M) — HE(ZH)M(M) is the identity. Since ker ¥ is
connected by smooth arcs (lemma 3 7.14) there exists a curve g: € ker U with gy = id and
g1 = g. We define a; by (M, Q,w) ~ (M, g€, giw). As in the proof of lemma 3.7.9 one sees

that a; is a; from lemma 3.1.1 and hence at+ is a; from lemma 3.1.1 with (n + 1)w. But
then lemma 3.1.1 yields a"*'g* = aJ*' gt = al ™ g5 = id : nglm(M) — ngle)W(M). O

3.7.17. Proposition. Let (M,Q,w) be a 2n-dimensional locally conformally symplectic

manifold. Then the Lie algebra homomorphism p integrates to a surjective group homo-

morphism R : ker U — Hzmﬂ)w(M)/(Hgg(M) [Q"]), i.e

ker@/) —> H (n+1)w (M>/(H35<M) A [Qn])

exp:FlJ{ lexp:id

o &~ B2 (M) (HY (M) A [07))
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commutes. We have the following formulas:

R(g) = [, p.(879) = [) p(go)dt = [ [, e dt] = [ [} ar(grhe) Q2 dt]
where gfQ) = 1Q and d“hy = bg,. If (M,Q,w) ~ (M,Y,u') then ker U = ker U and
L oR=FR.
Proof. The proof is exactly the same as the proof of proposition 3.7.2. O
We let A := R(m(ker ¥)). Then R descends to a surjective homomorphism R

ker U —>H dn e (M)/(Hgg(M) A [Qn])

l

ker & —— (H(j?l-&-l)w(M)/(Hc(l)g(M) N [Qn]))/A

If (M,Qw) ~ (M, o) then ker ¥ = ker ¥, 1A = A’ and —x o R = R'. The
homomorphisms R and R are due to G. Rousseau, see [Rou78|, where it is also shown that
A is countable, especially every continuous curve in A is constant.

3.7.18. Lemma. Let (M,Q,w) be a 2n-dimensional locally conformally symplectic man-
ifold. Then for every g € C*((R,0), (Diff°(M, Q,w),id)) we have

geC¥RkerR) & 0ge Q' (Rikerp) < g €kerp

Especially F1* € C®(R, ker R) iff X € ker p. For the implication < the assumption on A
18 superfluous.

Proof. The proof is similar to the proof of corollary 3.7.7. O

3.7.19. Lemma. ker R is connected by smooth arcs, and the natural inclusion induces an
isomorphism of groups 1 : ker R = ker R, such that evy oi = evy.

Proof. The proof is similar to the proof of lemma 3.7.8. O

In the situation of lemma 3.7.19 we have a commutative diagram

71 (ker R) ——— 7 (ker ¥) i A
b~ L B C —~ Ry H? o (M) (HO (M) A Q)
ker R = ker R ker & gt dv
T=ev] T=ev1 T
ker R € ker O —= (Hj§+1)w(M )/ (H% (M) A Q7)) /A

with exact rows and columns. The middle row splits and gives rise to a semi direct product
ker W 2 ker R xo H o (M)/ (Hg, (M) A 02"

cf. the extension (3.13) on page 58.
The following formula is due to Rousseau, see [Rou78|.
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3.7.20. Proposition. For g, h € ker & we have lg,h] € ker U and

R(lg, h) = n{¥(g), ¥ (h)}

where {-, -} is the symplectic pairing, cf. formula (3.12) on page 58. Moreover the symplectic
pairing descends to

{4+ (Hag (M)/T) x (Hio(M)/T) = (Ho (M)/ (Hao (M) A [Q7])) /A (3.18)
and for g, h € ker ® we have R([g,h]) = n{¥(g),¥(h)}.

Proof. Notice first that (s,t) — [gs+(1—s), ] is a homotopy relative endpoints in ker ¥

from [g¢, he] to [g1, he], so R([g,h]) = R([g1,h]). Since both sides of the equation in ques-
tion transform in the same way under conformal change, and since both sides vanish if
(M, ,w) is not conformally equivalent to a symplectic manifold, we may assume that M

is symplectic. Using 07 (gh)(0:)(t) = g+ + (97 )*he and 6" (g7 1) (0,)(t) = —(g¢)*g: (which is

an immediate consequence of the first equation) one obtains

" ([g1, A0 () = (g7)* (e — (hegnhy ") h)
and from lemma 3.1.1 for w =0
isr(grmy@00 2 = — (g1 ") ((hegihy )45, 2 — 4, 9)
_ _(gfl)*d(fol(htgshgl)*z'(ht_l)*gsz‘htst)
Using (ixiyQ)Q" = —nixQ AiyQ A Q"1 we get
p(6"(lg1, h))(3)(8)) = — Jiy [(gr")" (hegshi )" (in 14,75, D" ds
=n [ [ig.Q A [ij, Q) A [ Yds = nT(g) Ap(he) A Q]

So
R([g,h]) = R([g1, h]) = nW(g) A U(R) A Q"] = n{U(g), ¥(h)}

Remains to check (3.18). We will show a little more, namely the symplectic pairing induces
a mapping;:

{7} (Hge (M)/T) x (Hge (M)/T) — H i, (M) (Hay (M) A Q")

Indeed, if « € T and 3 € Hj, (M) there exist g € m;(ker ®) and h € ker ® with U(g) =a
and ¥(h) = (. Hence

{o. 8} = {¥(9), (M)} = L R(lg,h]) = ;R(id) = 0
since [g, h] is homotopic relative endpoints in ker ¥ to [gq, h] = [id, h] = id. O
3.7.21. Remark. Proposition 3.7.20 shows that the short exact sequence
0= ker¥ — kerd % Hé%,(M) —0

does not split in general, since a section s should satisfy [s(«), s(8)] = id and hence

0 = R([s(a), s(8)]) = n{a, 5.
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3.7.22. Corollary. Let (M,Q,w) be a 2n-dimensional locally conformally symplectic man-
ifold. Then ker R is an ideal in ker ® and ker ®/ker R is a central extension of H}(M)/T

by (e (M) (Ha (M) A [])) /A

Proof. From proposition 3.7.20 we get [ker ®, ker W] C ker R. Especially ker R is an ideal
in ker . We have the following commutative diagram

ker R kerR—»T
ker ¥ © ker & —— Hég(M)/F

I | |

(H 2 (M) (HR (M) A [2])) /A< ker @/ ker R H},(M)/T

with exact rows and columns. Since [ker ®, ker U] C ker R the last row is a central exten-
sion. O

3.7.23. Proposition. Let (M, w) be an exact, 2n-dimensional locally conformally sym-
plectic manifold, 2 = d“a. For g € ker ¥ we have

R(g) = 75k = l(agia) Aan Q'] € H o (M)

where k € CX(M,R) is the unique function satisfying d“k = aigia — v (c¢f. proposi-
tion 3.7.15). Especially we have A =0 in this situation.

Proof. If w is not exact then by example 1.6 HY, (M) = 0, and if w is exact then (M, Q, w)
is conformally equivalent to a symplectic structure and it is well known that this can only
happen if M is not compact, i.e. 0 = H)(M) = Hg.(M). So we always have Hy, (M) =0
and so k is unique.

Let h; be the functions satisfying bg; = d“h; and recall the homotopy operator from
lemma 3.1.1. Then we have

argjo —a = H(d“a) + d*H(a) = H(Q) + d“H(«)
and
1 * - w w
H(Q) = [, ag;i5,Qdt = fo ayg; (d“hy)dt = fo d“(a.g/h
Together this yields
aGgio—a = d“’( fol atgz‘htdt) + d“’( fol atgz‘igtozdt)
and so
k= fol ag; hedt + fol argig odt =: ki + ko
Next we have
(argiig,a) A Q" = ai gy (i, A Q") = nai gl (o Aig QA Q")
=na g (a Ad hy ANQTT)
_ na?—f—l *(thn) a?-&-lgt d(n+1)w(ah Qn—l)
= na;g; (h2") — d"TV2 (nap gy (ah Q")
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and therefore [k,Q"] = n[k, Q"] € H5§L+1)w(M). So

an fO n+1 * thn dt = fO thn dt = fO gt dt R(g)
The second expression follows now easily:

K] = [kd“a A QY] = [dOD9(k A a A Q1Y) — (dk) Aa A QY]
= [(a1gfa—a) Aa AQ" ] = [(ar1gfa) Aa A"

3.7.24. Lemma. For g € [f)i\f/fjo(M,Q,w)o and X € ker ¢ we have gi X € ker ¢ and

D(giX) = e 2Dy(X),

Proof. Recall a; = exp (f(f inc? ig,g*wds) = exp (f(f gsigswds) from lemma 3.1.1. Moreover
let b; denote the functlons satisfying g; €2 = —Q and g;w = w + dInb,. Differentiating the

first we obtain g; fg, = 3, 9 1nb,, where fo. 18 the function satisfying L, = —f;, Q. From
lemma 3.4.1 we obtain

a; = exp (fg g:z’gswds) = exp (fot gt fa.ds + f(f g:cgsds)
= exp (fo I 1np ds) exp (fo ©(gs ds) = b; exp (fo ©(gs ds)

and hence a; = ble‘f(g). So we get

B(giX) = bigiv(X) = ame " gi(X) = e "D aggi(X) = e M y(X)
where we used lemma 3.4.3 for the first equality and lemma 3.1.1 for the third one. O

3.7.25. Corollary. If (M,Q,w) is a connected locally conformally symplectic manifold
and Hy, (M) # 0, then A = 0.

Proof. Suppose conversely A # 0 and choose g € ﬂl(Diffgo(M, Q, w)o) with ®(g) # 0 and
X € ker p with ¢(X) # 0. Then lemma 3.7.24 yields

D(X) = Y(id* X) = ¥(gi X) = e *D(X)

a contradiction since ¥(X) # 0 and e~®) #£ 1. O

3.7.26. Corollary. ker ¥ is an ideal in Diff>°(M, Q,w), and we have a semi direct product
Diff " (M, Q,w)o/ ker W = (Hgo (M) /T) X (Im()/A)
where the action o : Tm(p)/A — Aut (H;g(M)/F) is given by a(c)(B) = e°S.

Proof. We first show:

U(ghg™") = e*@U(h) Vg€ Diff, (M,Q,w)o,h € ker (3.19)
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Notice that (s,t) — gs+(1,s)thtg‘:+1(1fs)t is a homotopy relative endpoints in ker & from

t — giheg; * to t — grhygyt and so we obtain from lemma 3.7.24

U(ghg™") = U(gihgr") = f, &(5" (g1hgr)(D)(2))dt
= [T (g7 ht)dt [ e® @D (hy)dt = e®DW(h)
which is precisely (3.19). From (3.19) we immediately obtain:
U(ghg™) = e®9W(R) Vg € Diff>*(M,Q,w)., h € ker ® (3.20)

The latter equation makes sense, because on the components of M on which Im(p) # 0
and Hég (M) # 0 we have I' = 0 by proposition 3.7.15 and A = 0 by corollary 3.7.25.
Especially ker ¥ is an ideal in Diff>°(M, Q, w), and we have a commutative diagram

ker U ker U 0

| | |

ker ® & Diff°(M, Q, w), % Im(yp

I | \

Hj, (M) /T & Diff>* (M, Q, w)o/ ker & —» Im(p

with exact rows and columns. If H), (M) = 0 we are done. So assume H_, (M) # 0. Then
A = 0 by corollary 3.7.25 and the middle row splits since the middle row (and thus the
bottom row) of the big diagram on page 71 splits. So the bottom row of the diagram above
splits too, and Diff;* (M, Q, w)/ ker ¥ is a semi direct product of H, (M)/T and Im(p)/A.
The corresponding action is as stated, for we have (3.20). O]

3.8 Summary of the Various Invariants

In this section we give a brief summary of the invariants we have considered up to now.
We have seen that a vector field X € X.(M) is an infinitesimal automorphism of the
locally conformally symplectic manifold (M, Q,w) iff there exists a locally constant function
cx € CX(M,R) such that d“(bX) = cx§. If cx = 0 then bX defines a cohomology class
in H é‘e’ (M), and if in addition this cohomology class vanishes, then there exists a function
hx € C*®(M,R) with bX = d“hx. We have shown in section 3.4 that the following are
well defined homomorphisms of Lie algebras:

@1 X(M,Q,w) — H)(M) p(X) = [cx]
Y i kerp — Hi (M) V(X) = pX]
prkertp — HG ., (M)/(Hg, (M) A [Q1]) p(X) = [hxQ"]

If g : I — Diff*(M,Q,w) is a smooth curve then §"g € Q'(I;X.(M,Q,w)) and the
following are well defined homomorphisms of groups, integrating ¢:

DIt (M, Q, w), —— HO(M)
(g) = [, (079
ff l’r A @(wl(lef (M,Q,w).))
Diff>* (M, Q, w)o —— HO(M)/A
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If g has values in ker ® then 6"g € Q'(I;ker ) and the following are well defined homo-
morphisms of groups, integrating :

1;6\)/1” o L} Hc%cg (M)
) | Wg) = fug)
' = U(m(ker D))
ker & ——— Hj, (M)/T

If g has values in ker U then 6"g € Q'([;ker ) and the following are well defined homo-
morphisms of groups, integrating p:
ker U — 1% A (M>/(H35(M) A [Qn])

. JW R(g) = [;p(07g)
A = R(m(ker V))
et & (E280. (M) (H. (M) A [97])) /A

All this can be found in section 3.7.

3.9 A Chart for Diff*(M, Q, w)

3.9.1. Theorem. Let (M,Q,w) be a connected locally conformally symplectic manifold
and assume that ) is not d¥-exact. Then Diff>°(M,Q,w) = ker ® is a Lie group in the
sense of [KM97] modeled on the convenient vector space X.(M,Q,w) = ker ¢.

Proof. Notice first that the assumption “Q is not d¥-exact” is satisfied iff ¢ = 0 (see
lemma 3.4.1). We consider the locally conformally symplectic manifold (7*M, €, '),
where W' = 7*w, = d¥'© and 7 : T*M — M is the projection (see example 3.2.4).
For a € QL(M) we have a*Q' = d”« and hence

V=0 & d’a=0. (3.21)

Let p1,ps : M x M — M denote the projections on the first and second factor, and let
A C M x M be the diagonal. Since pjw — pjw is closed and vanishes when pulled back to
A, there exists a function A, defined locally around A, such that

pow —pjw=dln\ and A =1

On a neighborhood of A we consider the locally conformally symplectic structure (Q,(I)),
where & := piw and Q := piQ — Ap5Q. Indeed we have

d°Q = d'1 (piQ — ApsQ) = 0 — dPi“(ApsQ) = —Ad>“psQ = 0

and Q is of course non-degenerated. We claim that for g € Diff>(M) near the identity we
have

g € DIf*(M,Q,w) < (id,g)* Q=0 (3.22)
where (id, g) : M — M x M. Indeed from (id, g)*Q = 0 we get
0= (id, 9)*Q = (id, 9)* (12 — Ap3Q) = Q — ((id, g)*N)g" Q2
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ie. ¢g*Q) = (1dg e $2. Moreover

g'w = (id, g)"pow = (id, 9)*(pjw + dIn \) = w 4 dIn((id, g)*\)

and hence g € Diff°(M,Q,w). Suppose conversely g € Diff°(M, Q,w) with ¢*Q = 10
and ¢*w = w + dIlna. From the last equation and ¢g*w = w + dIn((id, g)*\) we obtain
W = ¢, where c¢ is a constant. It remains to show ¢ = 1, for then

(id, 9)*Q = Q — ((id, 9)*N)g*Q = Q — ag*Q = 0.

Notice that outside a compact set ¢ = 1 and therefore we are done if M is non-compact.
So assume M compact and ¢ # 1. Since Q is d®-closed and vanishes when pulled back to
A we obtain from corollary 3.1.2 a 1-form (3, locally defined around A, such that %3 = Q.
Then we have

Q= ag*Q = c((id, g)*N)g*Q = —c(id, g)*Q +

and hence

Q= -5(id, 9)"Q = -5 (id, 9)*d*B = -5d*((id, 9)*B) = d*(:5(id, 9)*B)

a contradiction to the assumption that €2 is not d¥-exact.
If exp: TM — M x M denotes the exponential mapping of a Riemannian metric on
M we obtain a diffeomorphism

expofl : T"M DV - W CMxM

where V' is an open neighborhood of the zero-section and W is an open neighborhood of
A which maps the zero-section identically (in the natural way) onto A. Now (V')
and (V, (exp oﬁ)*fl, (exp ojj)*d)) are two locally conformally symplectic structures, the zero-
section is a common Lagrangian submanifold, and the 1-forms w’, (exp of)*® equal when
pulled back to the zero-section. So we may apply lemma 3.2.10 to obtain a diffeomorphism,
mapping the first structure to the second up to conformal change. Summing up we obtain
possibly smaller neighborhoods V', W of the zero-section resp. A and a diffeomorphism

N T*M DV - WCMxM

which maps the zero section identically onto A, and such that (V, ’y*@,fy*@) is confor-
mally equivalent to (V,Q,w’). It is well known (see [KM97]) that there exists an open
neighborhood U of the id € Diff°(M) such that

wi DIFEF(M) D U — u(U) COLM)  ulg) =0 (id,g)o (roy o (id,g) "
is a chart for Diff>°(M), centered at id. Its inverse is:

"1 QYM) D u(U) — U CDiff*(M)  uw'(a)=pyoyoao(poyoa)”
For g € U we obtain from the equations (3.21) and (3.22)

g € Diff*(M,Q,w) & (id, ¢)* Q=0 < (v L o (id, 9))* Y =
< (u(9))" Q' =0« d*(u(g)) = 0.
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Therefore
u(UNDIEF (M, Q,w)) = u(U) N {a € QM) : d*a = 0}

and so u is a submanifold chart for Diff>° (M, 2, w) C Diff2°(M). Especially Diff>° (M, Q, w)
is a Lie group modeled on the convenient vector space of d“-closed 1-forms, but via f this
is isomorphic to ker ¢ = X.(M,Q,w). O

3.9.2. Remark. Notice that the assumption in theorem 3.9.1 is satisfied if and only if ¢ = 0.
So, if (M, 2, w) is conformally equivalent to a symplectic manifold the assumption is always
satisfied, see remark 3.4.2. In this case the chart constructed in the proof of theorem 3.9.1
is precisely the Weinstein chart, see [Wei71], [Wei77] or [KM97]. Moreover if M is not
compact then the assumption of theorem 3.9.1 is always satisfied too.

3.9.3. Theorem. Let (M,Q,w) be a connected, locally conformally symplectic manifold
such that Q is d?-exact. Then M is compact and Dift>™(M,Q,w) is a Lie group in the
sense of [KM97] modeled on the convenient vector space X(M,Q,w).

Proof. By assumption there exists 3 € QL(M) with d“3 = , especially M is compact.
Recall from the proof of theorem 3.9.1 that there exist open neighborhoods V', W of the
zero-section resp. the diagonal A and a diffeomorphism

VT*MDOV WCMxM

such that v*(piQ — Ap5Q) equals d™“© up to multiplication with a nowhere vanishing
function. Let Qy := d™“0 € Q*(V x R) and ky := dt € Q(V x R). Here, and from now
on, m denotes the projection T*M x R — M and O is the pull back of the canonical 1-form
on T*M to T* M xR. Next we define Q3 := piQ—Ap5Q € Q*(W xR), k3 := dt € Q' (W xR),
where p1,ps : M x M x R — M denote the two projections onto M. The diffeomorphism

pri=yxXidg: Vo=V XR—-WXxR=1j

has the property that pjrs = ko and p3€23 equals €2 up to multiplication with a nowhere
vanishing function. Moreover for a € Q'(M) consider the diffeomorphism 7, : T*M —
T*M, 1o(e) = e+ a(m(e)), let

p1:=(T_ep,t) :T"M xR —T"M xR

and set Vi = p;' (Vo). We have piQy = Q; = d"“0O — tr*Q € Q*(V}) and piky =
Ky = dt € Q'(V1). Indeed piQy = (T_45,t)*d™ “O = d™ ¥ (77,40) = d™ ¥ (O + 7*(—1))
d™“0 — tr*d“3 = €, cf. lemma 4.3.2. Next we consider the diffeomorphism

ps: M X MxR—MxMxR  py(z,y,t) = (z,FI(y),1)

and set Vj := p3*(V3). We have piQs = Q4 1= piQ — e Ap3Q € Q3(V,) and piks = Ky =
dt € QY(V;). Indeed piQs = pi(piQ — Ap3Q) = piQ — (pEN)ps(FEP)*Q and thus it suffices
to show e’ Ap3Q) = (pg)\)pg(Flgg )*Q2. For t = 0 this is obviously true and one easily shows
that both sides satisfy the same differential equation with respect to t. Finally let

pr: M x MxR— MxMx(0,00) pa(z,y,t) = (z,y,e'\(z,y))

and Vs := py(Vy). A simple calculation shows pjQs5 = Q4 and piks = k4, where Q5 :=
piQ—tp3Q € Q*(M x M x (0,00)) and k5 := pjw — pjw + dInt € Q' (M x M x (0,00)).
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Summing up we have open neighborhoods V;, Vi of the zero-section in T*M x R resp.
A x {1} and a diffeomorphism

p::p4opglopgop1:T*M><]RQV1—>V5§M><M><(0,00)

which maps the zero section identically onto the diagonal, i.e. p(0,,0) = (x, z, 1). Moreover
P rs = k1 and p*Q5 equals 21 up to multiplication with a nowhere vanishing function. Now
consider the semi direct product

Diff**(M) x C*(M,R*)  (g,a) - (h,b) := (g o h,(h*a)b)
where R* := R\ {0}. With the help of p we obtain a chart for this group
w: DIff* (M) x C*(M,R*) DU - u(U) CT(T*M xR — M)
u(g,a) = p~' o (id,g,a) o (r0p~' o (id,g,a))
where U is an open, sufficiently small neighborhood of (id, 1). Its inverse is:
u™l(s) = (poposo(piopos) ,psoposo(popos) )
We have a homomorphism of groups
i Diff>* (M, Q,w) — Diff**(M) x C*°(M,R") i(g9) == (g,a)
where ¢*() = %Q, which is a homeomorphism onto its image. Moreover
J:X(M,Qw) - T(T"M xR — M) J(X) = (X, c)

where the constant ¢ is defined by d*(b.X) = ¢Q (cf. lemma 3.4.1), is a linear homeomor-
phism onto its image. For (g,a) € U we have
(9,0) € Im(i) & ¢* Q= 1Q and g*w =w + dIna
< (id, g,a)*Q5 = 0 and (id, g,a)*ks = 0

& (pto(id,g,a))* Q% =0and (p ' o (id,g,a)) sk =0

< (u(g,a))* 2 =0 and (u(g,a))*k1 =0

& d” (U’l(g? )) = Ug(g, )Q and d(U’Q(gu )) =0

& ulg,a) € Im(j)
where uy(g,a) € QY (M), uy(g,a) € C*(M,R) denote the two components of u(g,a) €
D(T*M xR) 2 QY (M) x C*(M,R). Souw(UNIm(i)) = u(U)NIm(j) and u is a submanifold
chart for Diff**(M, Q,w) C Diff**(M) x C*°(M,R*). Especially Diff**(M,Q,w) is a Lie
group modeled on the convenient vector space Im(j) = X(M, Q,w). O

3.10 Fragmentation Lemmas

Let i : U — V denote the inclusion of two open subsets in M. Similar to the discussion at
the beginning of section 3.5 we have commutative diagrams

DI (U, Qg wlr)o — HO(U) DIff* (U, Qfv, wlr)o —2s HO(U) /Ay

. O

— . oo )
DIff>" (V, Q, w)y —2— HO(V) Diff* (V, Q, w)o —Y— HO(V) /Ay
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and hence ker &y C ker ®y,. Moreover we have commutative diagrams

kor &y —2 H (U) ker &y — HJ. (U) /Ty
ker &y — H (V) ker &y — 3. (V)/Ty

and hence ker Uy C ker Uy,. Finally the diagrams

or Wy s H (U) (HE(U) A 1927]0])

|, |

l::gr Wy, —> H2<n+1>w (V)/(Hc(l]g (V) A [inv])

and
ker Uy fw, (HE?LHM(U)/(HS;U(U) [€2"[u] ))/AU

ker Wy, fv, (ngz—o—l)w (V>/(Hgg<v) ["|v] ))/AV
commute and so ker Ry C ker Ry .

3.10.1. Lemma. Let (M,Q,w) be a locally conformally symplectic manifold and let U
be an open covering of M. Then any g € COO((I, 0), (ker \I/,id)) has a decomposition
g = g1 gn, where each g; is supported in some U; € U and g; € C’oo((f, 0), (ker \I/Ui,id))

Proof. Fix a compact set K C M and define
Hy : C®(1, Q% (M)) — C*((1,0), (ker ¥,id))  a— Evol ((§od*).a)

that is the defining equation for g = Hg () is bgy = d“cy with initial condition go = id, cf.
lemma 3.7.13. We define the structure of a topological group on the left hand side space
such that Hx becomes a continuous homomorphism. Namely we set

(@f)(t) = alt) + (Hx(a)(t)"1)*(5;8(1) (3.23)
where Hg(a)(t)*Q2 = aitQ If a,8 € C®(1,Q%(M)) and g = Hg(), h = Hy(B) we have

@ (n + (97 (200) = o + () (B = bge + (g7) (2ohe)
b +b((g7) he) = 5(87 (gh) (D)D)

so Hk is a homomorphism, provided (3.23) defines a group structure on C'* (I Q0 (M ))
To see this notice first that 0 € C*°(1,Q%(M)) is the neutral element and (a™*)(t) :=
—a;(Hg (a)(t))*(a(t)) is the inverse of a. So the only non-trivial thing to check is asso-
ciativity. So let a, 3,7 € C*(I,Q%(M)), g = Hx(a), h = Hk(3), k = Hg(y) and let
g;Qd = a%Q, hiQ) = b—th Since we already know that Hg(af)(t) = g:h: we get

((aB)Y)(t) = o + (gt_l)*<a%ﬁt) + ((gehe) ™) ((h*at) V)
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which is equal to:
(a(BN)E) =+ (g7)" (5 (Be + (b )" (%))

From lemma 3.7.13 and corollary 3.1.12 we get | J,- Im Hx = C>((I,0), (ker ¥,id)) and so
we only have to show that every g € Im(H) has the desired decomposition.

Now choose Uy, ...,U, € U covering K, open sets V;, W; with W; C V; C V; C U,
such that W; still cover K and a partition of unity {A,...,\,} subordinated to {M \
K, Wy,...,W,}. Consider the open neighborhoods W; of the identity

W = {g € C=((1,0), (Diff* (M, Qw),id)) : (M \V;) C M\ W; Vtel}
and define an open neighborhood of 0 € C* (I, Q% (M)) by
Wi = {a € C®(I1,Q%(M)) : Hx(X7_y M) €W, V1 <i<n}

Since W is open it generates C* (1, Q% (M)) as group and so Hy (Wk ) generates Im(H).
Consequently it suffices to show that every g € Hx(Wy) has the desired decomposition.

For a € Wy we set f; = HK(Z;‘:O Aja), i = 0,...,n. Then we have f, = id,
fn = Hg(a), and if we let g; := f -} f;, i = 1,...,n, we obtain Hg(a) = g1---gn. It
remains to show that g; € C*((1,0), (ker Uy,,id)), but this follows from

gi = fl_,llfz
= Hy(t — —ai1(t) fier (8) (g Ajew) + fima () (F2h () (a1 (£)) X5y Ajowr))
= HK (t [d ai_1<t)fi_1(t)*<>\i04t))
where, ffQ = aiiQ, for we have supp (t — ai_l(t)fi_l(t)*()\iozt)) CV,CU,. O

3.10.2. Corollary. Let (M,Q,w) be a locally conformally symplectic manifold and let U
be an open covering of M. Then every g € ker W has a decomposition g = g1 - - - gn, where
every g; s supported in some U; € U and g; € ker Uy, .

Proof. This is an immediate consequence of lemma 3.10.1 and the fact that ker ¥ is con-
nected by smooth arcs, see lemma 3.7.14. O

3.10.3. Lemma. Let (M,Q,w) be a locally conformally symplectic manifold and let U
be an open covering of M. Then every g € C‘X’((I,O), (ker R, id)) has a decomposition
9= g1+ gn, where every g; is supported in some U; € U and g; € C*°((1,0), (ker Ry,,id)).

Proof. Fix a compact set K C M and define
Hy : C™ (1,977 (M)) — C=((1,0), (ker R,id)) o — Evol ((f 0 d¥),u)

where u € C'° ([ L0 (M )) is the unique function satisfying d*Ya, = u,©2". So the defin-
ing equation for ¢ = Hg(«) is bg; = d“u, with initial condition gg = id, cf. lemma 3.7.18
and remark 3.4.5. We define the structure of a topological group on the left hand side
space such that Hx becomes a continuous homomorphism. Namely we set

(@B) (1) = au + (Hx(0)(t) )" (375:) (3.24)



J. L 1. Lridy O L ividl o Lilv 1L UJIvUY

where Hg (a)(t)*Q = aitQ Let o, 3 € C>(1, Q%1 (M)), u,v € C(I,Q%(M)) such that
dm Ve q, = 4, Q0 d"HY B, = 0, 0" and g == Hg(a), h := Hg(3). Then we have

d(n+1)w ((Oéﬁ) (t)) _ thn + (gt_l)* (an1+1 d(n+1)wﬁt)
= u; Q" + (gt_l)*(a—ltvtg:Q”)
= (+ (g7 (A 0) 2"

and since we have b(6"(gh)(8;)(t)) = d* (u; + (gt_l)*(aitvt)) from the proof of lemma 3.10.1
we see that Hg is a homomorphism, provided (3.24) defines a group structure, but this
follows as in the proof of lemma 3.10.1.

From lemma 3.7.18, remark 3.4.5 and corollary 3.1.12 we immediately get |J, Im Hx =
C>((1,0), (ker R,id)) and so we only have to show that every g € Im(H) has the desired
decomposition. From now on the proof is similar to the proof of lemma 3.10.1. O

3.10.4. Corollary. Let (M,Q,w) be a locally conformally symplectic manifold and let U
be an open covering of M. Then every g € ker R has a decomposition g = g1 - - - gn, where
every g; s supported in some U; € U and g; € ker Ry, .

Proof. This is an immediate consequence of lemma 3.10.3 and the fact that ker R is con-
nected by smooth arcs, see lemma 3.7.19. U

3.10.5. Remark. There is no fragmentation lemma for ker ®. Indeed let g € ker ® \ ker U.
If there would be a fragmentation lemma we would find contractible U; and g¢; € ker &y,
with ¢ = g1+ gn. Since U; is contractible we have HL (U;) = 0 and thus ¥y, (g;) = 0.
So g; € ker Wy, C ker ¥ and thus g € ker ¥, a contradiction. So W(g) is the obstruction
to fragmentation in ker ®. A similar argument shows that g € Diff>°(M, 2, w), can be
fragmented, with respect to arbitrary (contractible) coverings, iff ®(g) = 0 and ¥(g) = 0.

3.10.6. Lemma. Let (M,Q,w) be a locally conformally symplectic manifold and U C 'V
open subsets such that V' is contractible. If g € C'OO((I, 0), (ker ®, id)) with \J,c; :(U) CV
then there exists h € C>((I,0), (ker Ry,id)) satisfying g:|v = he|v for all t € I.

Proof. Since g is a curve in ker ® we get d“bg; = 0. Since V is contractible we find u; €
C>*(V,R) with bg;|y = d“u;. Now choose a bump function A with suppA C V, A =1 on
U,er 9:(U) and define h such that hy = d* (M) € kerepy. Then h € C>((1,0), (ker Uy, id))
and g, = hy on U. To see that h can be chosen to have values in ker Ry one simply multiplies
h with a curve f supported in V' \ |J,c; :(U) which satisfies Ry (h;) = —Ry(f;). O

3.11 The Symplectic Torus
Consider the torus 7" with the symplectic structure:

Q=dz* Ndz? + -+ dz®™ P A da®

We have 0; := 2

L e X(T*,Q) and ¥(9;) = [(—1)"'dz"¥] € H'(T™) = R*", where

K3

o:{l,....2n} = {1,....2n}  o(20)=2i—1, o(2i—1)=2i
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Since FI% = id we have F1% ¢ 1 ( Diff*(7T?",Q),) and so
(—1)1d270] = (0;) = B(FI) € T € HY(T™),

ie.Z* CT C HY(T?) = R*. On the other hand for g € 71 ( Diff (7%, (2),) lemma 3.7.11
yields (¢, U(g)) = (g % ¢,Q) € Per(Q) = Z, for all ¢ € Hy(T?";Z), where Per(Q) denotes
the periods of 2. Consequently ' C Z*" = HY(T?";Z) C H'(T*"). So we have shown:

Z2n =T g Hl(T2n) oY R2n

If we consider T?" as subgroup of Diff*(T%" Q), via a — R,, where R, denotes rotation
by «, the preceding also shows that W|pen : T?" — H(T?")/T = R?*"/Z?" = T?" is given
by:

Ulpen (1, ..., x,) = (To, —X1, ..., Top, Ton_1)
Notice that ® = 0 since (72",) is a symplectic manifold and R = 0 since (T?",Q) is
compact, cf. remark 3.4.6.

3.11.1. Theorem. Consider the symplectic torus (T*",§)). Then ker ¥ = ker R is perfect.

Proof. We have to show ker U C [lge/r v, 1?e}\11] Choose v € T?" satisfying a diophantic
equation. If ¢ € C’OO(([ ,0), (ker \Il,id)) is sufficiently close to id theorem 1.5.3 yields
A€ C>((1,0),(T?,0)) and f € C=(({,0), (Diff*(T?"),,id)) with

Ryg=R\fT'R,f ie g=Ri\R;" ]
From g; € ker U we obtain
Q=gQ= ft*R:(ftil>*(R’;1)*(R)\t)*9 = ft*Rfy(ftil)*Q

and so (f; 1)*Q is R, -invariant. If (f;1)*Q = > icj @ijda’ Adx? we thus obtain a;jo Ry = aj
and since R, generates a dense subgroup of 72" the a;; are constant. Moreover since it
is homotopic to id we must have [(f,1)*Q] = [Q] € H*(T?") and so (f;1)*Q = Q. Hence
f e C>=((1,0), (Diff*(T?",Q),,id)) and we get:

0=W(g) = V(Rr) = V(R,) = U(f) + U(R,y) + ¥(fs) = U(Ry,)
Since Ul|p2n : T?" — HY(T?")/T is one-to-one this yields Ay = 0 € T?" and we have

g =[R;, f~']. Now choose a path a in 7" from 0 to 7. Then (s,t) — [R;(15+(175)t)’ j
is a homotopy relative endpoints in ker ¥ from ¢ — [R;tl, ft_l] to g and so:

g=[R;\ =R f €ker ¥

Up to now we have shown: ker U C [Diff (72", Q),, Diff  (T2",Q).]. Now choose a path
B e C™((1,0),(T%,0)) with W(Rg,) = ¥(f;). Then h:= f~'Rg € C>((I,0), (ker ¥,id))
and

g=[R" [T = [Ro', [ Re] = [R, h] € ker W

since rotations commute. Next choose open balls U;, V; C T?" such that | J,.; 3 (U;) C Vi
and such that U; cover T?". This is possible since o can be chosen close to the con-
stant path 0 if v was close to 0 € T?". From the cut-off lemma 3.10.6 we obtain
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ki € C*((1,0), (ker ¥,id)) with k;(¢)|y, = Ry'|ly, for all ¢ € I. Moreover the frag-
mentation lemma 3.10.1 yields h; € C*((I,0), (ker ¥,id)) with supph; C Uy; and
h = hy---h. From ki(t)ly, = Ry, we obtain k;'(f) = Ra, on R;!(U;) and therefore
R;tlhj(t)Rat = ]{ZZ(J)(t)hJ(t)k‘;(l)(t) on T2n' So

J

9= I[R.' W = (R;'Ra) - (R R ) - bt
= (ki(1)h1k[(11)) o (ki(l)hzk[(ll))hl—l .. hl—l
=0 € ker U /[ker U, ker U]

since every factor is in ker ¥ and up to the ordering the product is the identity. So we have
shown g € [ker ¥, ker V. O

3.11.2. Corollary. For the symplectic torus (T*", ) we have
H\(Bker W;Z) = H,(Bker R;Z) =0
and ker W = ker R 1is perfect too.

Proof. This is an immediate consequence of theorem 3.11.1 and proposition 1.4.5. O

3.12 Derived Series of Diff>°(M, 2, w),

A well known theorem of W. P. Thurston states that Diff>°(M), is a simple group, cf.
[Thu74]. His proof used a theorem of Epstein (see theorem 1.3.2 or [Eps70]) and a theorem
due to Herman (see corollary 1.5.5 or [Her73]). Mather proved that Diff] (M), is simple
for co > r # dim(M) + 1, see [Mat74] and [Mat75]. As far as I know it is still unsolved if
this holds for r = dim(M) 4 1 too. Mather’s proof is ‘elementary’ but very tricky. Epstein
managed to generalize Mather’s construction and reproved the simplicity of Diff>°(M),,
see [Eps84]. The group of volume preserving diffeomorphisms is not simple in general, but
there exists a homomorphism and its kernel is simple. This was shown by Thurston, see
[Ban97] for a proof. Banyaga showed an analogous statement in the symplectic case.

The difficult part of such theorems is the perfectness, simplicity then follows either from
Epstein’s theorem or proposition 1.3.1, roughly speaking. There doesn’t seem to exist a
way to obtain perfectness of the group from perfectness of the corresponding Lie algebra,
which is much more easier to show.

In the sequel we will show a simplicity theorem for locally conformally symplectic
manifolds, see theorem 3.12.3, and compute the derived series of Diff>’(M,Q,w),, see
corollary 3.12.4.

3.12.1. Lemma. Let (M,Q,w) be a connected locally conformally symplectic manifold.
Then ker R acts k-transitive for all k € N.

Proof. From lemma 3.6.2 we obtain immediately that ker p acts infinitesimal k-transitive
for all £ € N, cf. definition 1.2.5. Since we have lemma 3.7.18 the statement follows from
proposition 1.2.6. ]

Using a Weinstein chart one can identify simplices of S,(Bker R) with 1-forms on AP x
M. To these one can apply the fragmentation mapping from section 2.2, and so the next
proposition follows from corollary 3.11.2, see [Ban97].
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3.12.2. Proposition. Consider the symplectic manifold (U,,0), where U C R?" is an
open ball equipped with the standard symplectic form Q = dx' A da? + - - - + dz® =1 A dz®™.
Then ker R is perfect, i.e. ker R = [ker R, ker R].

The following theorem is due to A. Banyaga in the symplectic case, see [BanT78] or
[Ban97].

3.12.3. Theorem. Let (M, w) be a connected locally conformally symplectic manifold.
Then ker R is simple, i.e. ker R has no non-trivial normal subgroups. FEspecially there do
not exist non-trivial homomorphisms defined on ker R.

Proof. We want to apply proposition 1.3.1 for G = ker R. Let U be the set of all symplectic
balls in M, i.e. open sets U in M such that there exists a diffeomorphism onto an open
ball in R*" mapping the locally conformally symplectic structure of M to the standard
symplectic structure on R?*, up to conformal change. A locally conformally symplectic
structure is locally conformally equivalent to a symplectic structure. So U is a basis of
the topology, for we have Darboux’s theorem for symplectic manifolds. For U € U we let
Gy := ker Ry C ker R. Then Gy is perfect by proposition 3.12.2. Remains to check the
three assumptions in proposition 1.3.1. The first is a special case of lemma 3.12.1. The
second is precisely corollary 3.10.4. The third assumption is obvious, but see the discussion
at the beginning of section 3.10 and recall that ker R remains the same if one changes the
locally conformally symplectic structure conformally. O

The derived series D'G of a group G is defined inductively, D°G := G, D'G =[G, G,
D'G := [D'7'G, D'1G], where [G, G] denotes the subgroup generated by all commutators
of G.

3.12.4. Corollary. Let (M,Q,w) be a connected locally conformally symplectic manifold
and let G = Diff>° (M, Q, w), for the moment. Then we have:

|pc=c¢| Dpc | DG |DG
M compact, )
9 G ker ¢ kerW =ker R | D°G
[ =0 € Hy (M)
M compact, . )
9 G =ker® | ker¥ =ker R D G D G
[ #0 € Hy (M)
M not compact, L )
1 G =ker® | ker¥ = ker R D G D G
W] # 0 € H'(M)
M not compact,
G =ker @ ker R DG D'G
[w] - 07 {'7 } =0
M not compact,
G = ker @ ker & ker R D@
[w] =0, {'7 } # 0

Proof. Since ker R is simple (theorem 3.12.3) it is perfect too and we get:
[ker U, ker U] C ker R = [ker R, ker R] C [ker ¥, ker V]
So we always have:

[ker ¥, ker U] = ker R (3.25)
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Moreover, if p = 0 then R = 0, hence ker ¥ = ker R is perfect and we get
[ker @, ker @] C ker U = [ker ¥, ker U] C [ker &, ker @]
and hence
[ker @, ker ®] = ker ¥ = ker R if p=0. (3.26)

In the first case we have ¢ # 0 and p = 0 by remark 3.4.6. So in this case it remains to show
|G, G] 2 ker ®. To see this choose g € G, such that ®(g) = In2. From (3.20) on page 80 we
obtain W(ghg™!) = 2¥(h) for all h € ker ®, and hence ¥([g, h]h™') = U(ghg™') — 2V (h) =
0. Using (3.26) this gives

[, h]h ! €ker U = [ker &, ker @] C [G,G]  Vh € ker®

and thus h € [G,G]. In the second and the third case we have p = 0, ¢ = 0, thus R = 0,
¢ = 0 and everything follows from (3.26). In the forth and fifth case we also have & = 0
and

ker R = [ker U, ker U] C [ker ®, ker @] C ker V. (3.27)

The fourth case now follows immediately from proposition 3.7.20. In the fifth case it
remains to check [ker @, ker @] O ker W. So see this let g € ker U. Since the symplectic
pairing is non-zero it is surjective and so there exist h, k € ker ® with R([h, k]) = R(g), by
proposition 3.7.20 and the fact that ¥ is onto. Using (3.27) we obtain [h, k]g~* € ker R C
[ker @, ker @] and thus g € [ker @, ker D]. O

3.12.5. Remark. Notice that corollary 3.12.4 is precisely the integral counterpart of corol-
lary 3.5.4

3.12.6. Remark. In the fourth case of corollary 3.12.4 we also have [ker ¥, ker W] = ker R,
but ker W # ker R since R # 0 and in general ker U # ker ®. So this is the only case where
not all kernels of the various invariants do appear in the derived series.

3.13 Filipkiewicz type Theorem

Filipkiewicz showed that a smooth manifold is uniquely determined by its group of diffeo-
morphisms. That is, if two manifold have isomorphic diffeomorphism groups then the un-
derlying manifolds are diffeomorphic, see [Fil82]. He used techniques developed in [Whi63]
and [Tak79] who proved an analogous statement in the topological setting. There were
many generalizations to other geometric structures, see [Ban86], [Ban88], [BM95] and
[Ryb95b] for some non-transitive geometric structures. In the sequel we will show the
analogous statement for locally conformally symplectic manifolds, see theorem 3.13.1 and
corollary 3.13.3.

3.13.1. Theorem. Let (M;,Q;,w;), i = 1,2 be two locally conformally symplectic mani-
folds and suppose k : ker Ry — Kker Ry is an isomorphism of groups. Then there exists a
unique homeomorphism f : My — Moy such that k(g) = fogo f=' for all g € ker R;.
Moreover f is a diffeomorphism and (My,Qy,w1) ~ (My, f*Qa, f*ws).
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Proof. This is an application of a theorem due to T. Rybicki, see [Ryb95b]. We have
to verify that ker R satisfies the four axioms of [Ryb95b]. The first is a fragmentation
property, see corollary 3.10.4. The second axiom states that for every sufficiently small
open ball U in M and = € U there exists g € ker R such that Fix(g) = (M \ U) U {z}.
Such a g is easily constructed using a Darboux chart. The third axiom states that ker R
acts 3-transitive on M, we have shown this in lemma 3.12.1. The fourth axiom requires
the existence of a Pursell-Shanks-Omori like theorem, see theorem 3.6.6. O

3.13.2. Lemma. Let G be a group such that conj : G — Aut([G, G]) is injective and let
A G — G be a homomorphism of groups, such that Ngeq = id. Then A = id. (cf.
lemma 3.6.7).

Proof. For g € G we have
9, h] = Alg, hl) = [M(g), A(M)] = [A(g), Bl Vh € [G,C]
hence conjy -1y, = id € Aut([G, G]), and by injectivity A(g) = g. O

3.13.3. Corollary. Consider two locally conformally symplectic manifolds (M;, S, w;).
Let Gy be one of the groups Diff2" (M, Qq,w1)., ker @1, ker ¥y, ker Ry and Gy be one of
the groups Diff2°(Ms, Qa,ws)o, ker @o, ker Wo, ker Ry, and assume that k : Gy — Ga is an
isomorphism of groups. Then there exists a unique homeomorphism f : My, — My such
that k(g) = fogo f~! for all g € Gy. Moreover f is a diffeomorphism and (M, Qy,w;) ~
(Ml, [ s, f*W2)~

Proof. The restriction of x is an isomorphism «|p2q, : D*G; — D?*Gs. In any case D*G; =
ker R; for i = 1,2, by corollary 3.12.4. So we may apply theorem 3.13.1 and obtain a
unique homeomorphism f : M; — M, such that x(g) = fgf~! for all g € ker R, = D?G,.
Moreover f is a diffeomorphism and (M, Qy,ws) ~ (M, f*Qq, f*ws). So it remains to
show that r(g) = conj;(g) :== fgf~" for all g € Gy. From (M, 1, ws) ~ (My, f*Qa, f*w,)
we see that conj,-1(G2) € Gy or conj,-1(Ga) 2 Gy Assume we are in the first case (for
the second consider f~!). Then A\ := conj s-106 : Gy — Gy is a homomorphism and
Alp2g, = id. Moreover, for g € Diff>(M;) we have:

lg,h] =id VhekerRy, = g¢g=id

since ker R, acts 2-transitive on M;. Using ker R, C D**'G; we obtain conj : D'G; —
Aut([D'Gy, D'G1]) = Aut(D™1G,) is injective for all i. So we may apply lemma 3.13.2
inductively and obtain successively A|p2g, = id, A|pig, = id and finally A = Apog, = id,
i.e. K = (conjy)|gl. O

3.13.4. Remark. Since ker ¥ also satisfies all four axioms in [Ryb95b], we could derive
corollary 3.13.3 for ker U from Rybickis theorem, too. But ker & and Diff>°(M, 2, w), do
not have the fragmentation property (see remark 3.10.5) and are therefore not covered by
[Ryb95b].



4. Extension and Transgression of the Flux

4.1 Cohomology of Groups

Let G be a group and let M be a G-module. We recall briefly the definition of cohomology
groups H*(G; M). Choose a projective resolution

= By - Fy — Fy— Z
of the trivial G-module Z, consider the induced cochain complex
0 — Homg(Fy, M) — Homg(Fi, M) — Homg(Fo, M) — - -+

and define the cohomology groups H*(M; G) to be the cohomology groups of the complex
above. It is well known that this does not depend on the choice of the resolution. Since
the Homg functor is left-exact we immediately obtain H(G; M) = Homg(Z, M) = M¢ =
{meM:gm=m VgeG}.

Let C,(G) denote the free G-module with generators [g1] - - - |g,] and define a G-module
homomorphism 0 : C,(G) — C,_1(G) by:

(g1l 1gp)) = gulgal -+ |gp) = S0 Mgl -+ 1gigisal -+ - |gp] + (= 1)P[g] - - - |gpi]

Moreover let € : Cy(G) — Z be the G-module homomorphism, defined by ¢([]) := 1, the
usual augmentation mapping. For this notice that Cy(G) is generated by [|. It is well
known that

is a free (hence projective) resolution of Z. It is called the bar resolution. Consequently, if
we set CP(G; M) := Map(GP, M) = Homg(C,(G), M), then the complex
0 — C%(G; M) =C'(G; M) 5 C*(G; M) -
computes the cohomology groups H*(G; M). Here 6 : CP~1(G; M) — CP(G; M) is induced
from 0, i.e.
() (grs -+ 9p) = 91e(g2, - Gp) + 00y g1y -2 Gilists -5 Gp) + (=1)Pe(gr, - - Gp1)

for c € CP1(G; M).

4.1.1. Example. Let ¢ € CY(G; M). Then we have (6¢)(g1,92) = g1c(g2) — c(g192) + ¢(g1)
and so dc = 0 iff ¢ € Der(G, M) := {d € Map(G, M) : d(gh) = gd(h) +d(g) Vg,h € G}.
Moreover ¢ = du if and only if ¢(g9) = gu — u for some v € M. These ¢ are called inner
derivations (Inn(G, M)). Summing up we have seen H'(G; M) = Der(G, M)/ Inn(G, M).

93
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4.1.2. Ezample. Let 0 — A - G & H — 0 be an extension of H by A and assume
that A is abelian. Since i(A) = kerp is a normal subgroup, G acts by conjugation on A.
Moreover since A is abelian this action descends to an H-action on A. We call two such
extensions 0 = A —- G; - H - 0and 0 — A — G5 — H — 0 equivalent if there exists a
homomorphism ¢ : G; — G5 such that the diagram

0 A G H 0

T

0 A Go H 0

commutes. Then ¢ turns out to be an isomorphism by the five-lemma. We want to describe
the set of equivalence classes of extensions of H by A which give rise to this H-action on
A. Choose a set theoretic section of p, such that s(e) = e and define ¢ € C?(H; A) by
s(h)s(k) = i(c(h, k))s(hk). Moreover define ¢ : A x H — G, (a,h) :=i(a)s(h). Then ¢
is bijective and the group multiplication of G on A x H is the following

(a,h)(b, k) = (a+ hb+ c(h, k), hik) (4.1)

for we have i(a)s(h)i(b)s(k) = i(a)i(hb)s(h)s(k) = i(a + hb + c(h,k))s(hk). An easy
calculation shows that (4.1) defines a group multiplication on A x H iff ¢ = 0 and ¢(e, e) =
0. So, for every such ¢ we have an extension we denote by Ax.H. Moreover the cohomology
class [c] € H*(H; M) does not depend on the choice of s, for if s, so are two sections there

exists u € Map(H, A) with so(h) = i(u(h))s;(h), therefore
i(ca(h, k) — c1(h, k) = sa(h)sa(k)sa(hk) " s1(hk)si (k) si(h) ™!
= i(u(h))s1(h)i(u(k))s1 (k) (i u(hk))sl(hk:))7131(hk’)31(k)_131(h)_l
(u(h) + h(u(k) — k(hk) ™ u(hk)))
(u(h) + hu(k) — u(hk)) = i((6u)(h, k))
and so ¢o = ¢; + du. Next one shows that equivalent extensions give rise to the same

cohomology class. Indeed let ¢ : G; — (G5 be an isomorphism of extensions. If s; is a
section of p; then sy := ¢ 0 51 is a section of py. Since ¢ is the identity on A we obtain

i(CQ(h, k’)) = SQ(h)SQ(k’)SQ(hk’)_l
= p(s1(h)s1(k)s1(hk) ") = p(i(cr(h, k) = i(ca(h, k)
and thus [c;] = [ez] € H*(H; A). So we can associate a cohomology class [c] € H?(M; A)
to every equivalence class of extensions, and this mapping is onto since every class in
H?(M:; A) has a representative satisfying c(e,e) = 0. Finally we show that this mapping
is one-to-one. So suppose G; and Gs are two extensions which give rise to the same

cohomology class, i.e. there exists u € C'(H; A) such that ¢; — ¢ = du. It suffices to show
that the extensions A x., H and A x., H are equivalent. An equivalence is given by:

0:Axey H— Ax, H o((a,h)) = (a+u(h),h)

1(u
=1(u

Notice that u(e) = 0 since ¢;(e, e) = 0 and we have ¢; — ¢y = du.

Summing up we have a natural one-to-one correspondence of H2(H; A) and the set of
equivalence classes of extensions of H by A which give rise to the fixed H-action on A.
Obviously the semi direct product of H and A defined by this action of H on A corresponds
to 0 € H?(G; A), since it possesses a section, which is a homomorphism.
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We will make use of the following so called five-term exact sequence, due to Hochschild
and Serre.

4.1.3. Theorem. Let 0 — H -G & Q — 0 be an arbitrary extension and let M be a
Q-module. Then the followz'ng sequence s exact and natural:
0— HY(Q; M) X Hl(G M)—>HomQ(Hab,M)—>H2(Q M) L HQ(G M)

Here M is considered as G-module via p and as trivial H-module. Moreover Hg,, =
H/[H, H] denotes the abelianization of H, considered as Q-module via the conjugate action.
Finally the mapping t is given by t(o) = @.([c]), where [c] € H*(Q; Hy,) is the cohomology
class corresponding to the extension 0 — Hy, — G/i([H, H]) — Q — 0, cf. example 4.1.2.

A proof can be found for example in [Bro82]. In fact one shows that there exists a
spectral sequence converging to H*(G; M) with E*term EY? = HP(Q; HY(H; M)). The
five-term exact sequence is an immediate consequence of this and the fact that H*(H; M) =
Hom(H gy, M).

4.2 The Flux on Loops

The following is well known and can be found in [Ban97] for example.

4.2.1. Proposition. Let 0 € QP(M) be closed. Then Sy(g) := 01 g715,0dt defines a ho-
momorphism
Sp : w1 ( Dif*(M),) — HPH(M).

Moreover Sy only depends on the cohomology class [0] € HP(M), in particular Sp = 0 if 0
18 ezact.

Proof. First of all the formula defines a cohomology class since we have:
d( [} grig0dt) = [ gidig0dt = [} gfLg,0dt = [} 2 gr0dt = g0 — g30 = 0

Next we have to show that Sy(g) does only depend on the homotopy type relative endpoints
of g. Solet G : 1 x I — Diff3°(M), be such a homotopy, i.e. G(s,0) = G(s,1) = id. We
have to show:

Iy Gisisraionfdt = [y G israiaddt
Using equation 1.4 and lemma 1.2.3 we get
G isaont = GiyLsco.yisraend + Gy (israon?)
= Gl ira@,)sra@nld + Glisraon Lsrawnd + GLut 2 560,
=G tz 2 5rG(d 00+ G tsraondisrao,)0
= Gs,ta(lércv'(as 0) + G Lorcayisrao,)d — G dis conyisao,)f
= 5 (G yisrco.)0) — d(Gs,ﬂér(;(at)larc(aﬁ)
and so
I3 Gy israqonfdt — [ G israonfdt = [ [ 2G ig oo, fdtds
= fo fo 5 Gs tisrao.)0dtds — (fo fo <1167 G(01) 157G (05 )stdt)
= fo G 1israo,)0ds — fo Gt oisraonfds —d(---) = —d(---)
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since the endpoints are fixed and thus 6"G(0s)(s,t) = 0 for t = 0 and t = 1. Recall that
the product of g, h € Wl(Diffgo(M)o) is represented by the loop

~ ) g(2t) 0
k(t)_{h(%—l) L

since this is homotopic relative endpoints to t — ¢;h;. To avoid smoothness difficulties at

t= % one can reparametrize g, h such that g, = h; = id for t < % and ¢t > % Then we have

and thus
1 i .
So(gh) = So(k) = |7 g5yizg, 0dt + f; h3e_1taj,,, ,0dt
= [ grig,0dt + [ hih0dt = Sy(g) + Se(h)

So Sy is a homomorphism. Finally notice that Sy depends linearly on 6, and for § = da
we have

Se(g) = 01 971y, dadt = fol g; Lg,adt — fol gidig,oudt
= 01 %gz‘adt — d( fol gt*igtadt) =gia —gia=0¢€ H (M)
and so Sy only depends on the cohomology class of 6. O
4.2.2. Proposition. Let (M,Q,w) be a locally conformally symplectic manifold and let
i: Diff>*(M,Q,w), — Diff>°(M), denote the inclusion. Then the diagram

1 (DI (M, Q, w),) —2 HO(M)
1 ( Diffg° (M),
commutes.

Proof. Let g be a closed loop in DiffS°(M, ), w), starting at id. Let a; be the functions
satisfying g; {1 = aitQ and f; the functions satisfying Ly, = —f;,§2. Recall that we have
% In|a;| = gf f;, and therefore
&)(g) = fol gf%dt = fol g:(ié)tw - f!)t)dt = fol gﬁ!}t‘”dt - fol gt*fgtdt
= Sulis(9) = Jy 5 mladldt = Su(iz(9)) = In far| + I fao| = S, (ix(9))
O

4.2.3. Proposition. Letw be a closed 1-form and 6 € QP (M) be d”-closed. Then Sy(g) :=
fol arg;ig,0dt defines a homomorphism

Sp : w1 ( DIff*(M),) 2 ker S, — HAS' (M)

where a; = exp (fot inc; iasg*wds) = exp (fot g:igswds). Moreover Sy only depends on the
d¥-cohomology class [0] € HY., (M), especially Sp = 0 if 0 is d“-ezact.
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Proof. Again we first check that the formula defines a d“-cohomology class. Using d*ixa+
ixd“a=Lxa+ixw A o and Qa = a;g;is,w wWe obtain:

dw( fol atgt*igt@dt) f aig; d“ig, 0dt = fo arg; Ly, 0dt + fo arg; (igw A 0)dt

= fO ata 9 dt+f0 aat /\g:edt
01 gt(atgﬂ)dt a1970 — apgyt = (eSw(g) — 1)9 =0

Let G : I x I — Diff*(M), be a homotopy relative endpoints, such that g; := G(s,-) €
ker S,,. In fact it suffices that gy € ker S, for then g5 € ker S,, by proposition 4.2.1. Set
a(s,t) := exp (fot G} israonwdu). A calculation very similar to the corresponding one in
the proof of proposition 4.2.1 yields:

aas (asth tzérG(at)Q) = %(a&tG;’ti&G(as)e) —d¥(--)
Consequently
fol a14GY yisr oy Ot — fol ao, G lor o, Bdl = fo 0 85 a5+ G sisraa,)0dids
11 . .
= fo fo %as,th,tlarG(as)Hdtds —d“(--+)
— f()l as,1G:71i57-G(as)9ds — fol aS,OG;,O%”"G(aS)edS _ dw( . ) — dw( . )

and so Sp(g) does only depend on the homotopy type relative endpoints of g. Next we
show that Sy is a homomorphism. Let g, h be closed curves and k their product, as in the
proof of proposition 4.2.1. Moreover let a;, b;, ¢; correspond to g, h, k respectively. Then

one easily shows
- 0
5 @by, 1 = by % <
and we obtain:

So(gh) = So(k) = fi? .32, 0ds + f bas—1h3e yiaj,,, ,0ds = Sp(g) + Sp(h)
Finally for # = d“«a we have
So(9) = [y argiigd adt = [\ a;g7 (Lg,a +igw Ao — d¥ig,a)dt
= [ (w2gia + agfigw A gia)dt —d(-- )
— fol 9 (agya)dt = argia — aggho =0 € chw_l(M)
and so Sy only depends on the d“-cohomology class of 6. O

4.2.4. Proposition. Let (M,Q,w) be a locally conformally symplectic manifold. Then
the diagram

71 (ker ) v, Hj. (M)
ker S,
commutes, where i : ker & — Diff>° (M), denotes the inclusion.

Proof. The inclusion 7 induces a mapping iy : 7 (ker ) — ker S, C Wl(Diffoo<M )o), for
we have pr0p081t10n 4.2.2 and since a closed curve with values in ker @ is contained in
ker ®. We have ¥(g fo arg;i4,€2dt, where g/ Q) = 1 -€2, but since g; € ker ® we also have

a; = exp ( fo 9g; zgswds), as mentioned several times. O
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4.3 Extensions of Diffeomorphism Groups

Recall that there exists a canonical p-form ©, € (?” ( N T*M ), generalizing the canonical
1-form on T*M. It is given by

O,(e)(X1,....X,) =e(Ter- Xy,...,Tom - X,)

where 7 : A" T*M — M denotes the projection. Let Aff.(A”T*M) denote the fiber wise
affine diffeomorphisms g of 7 : A’ T*M — M such that 7(supp(g)) is compact.

4.3.1. Lemma. For a € QP(M), considered as mapping o : M — APT*M, one has
a*©, = a. Moreover for f € DiffZ"(M) we have f := A\P(Tf~)* € Af. (A" T*M) and

[*©, =0©,. Finally for « € QP(M) and f € Diff*(M) we have f*a = f*oao f.
Proof. To show the first assertion we calculate as follows:

(a0,)(2)(X1, ..., X,) = Op(afx)) (Ther - X, ..., T - X,,)
= o) (T Toe - X1, ..., To@wnla - Xp) = a(z) (X, ..., X,)

In order to see the second assertion we have

(f*@p>(e)<Xla s Xp) = @p<f(e))(Tef' X1, . 7T6JE' Xp)

= [(&)(TjoynTef - X0, .. ThonTef - X,)

= (AT ) () (Tae) fTem - Xu, -+, Tae) [T - X))

= e(Tiin(en " Ta) fTem - X, Tia(en [~ Tne) fTem - Xp)
e(Tor- Xa,..., Tor - X,,) = O,(e) (X1, ..., Xp)

where we used 7 o f = f om. The third assertion now follows easily:

f_loaof:(f_loaof)*@p:f*a*(f_l)*@p:f*a*@p:f*a

U
4.3.2. Lemma. Consider the mapping 7 : Q2(M) — AH.(N' T*M) given by 1,(e) =
T(a)(e) = e+ a(m(e)). Then one has 7.0, = O, + m*a for all « € QP(M).
Proof. Indeed we have
(720,)(e) (X1, ..., X,) = Op(1a(€)) (Te7a - X1, .., TeTa - X,,)

= (7)) (Tra(e)mTeTa - X1, ..., Troey7TeTa - X,)

= (e+a(x(e)) (Ter - Xy,..., To7 - X))

= (Op +7a)(Xy, ..., Xp)
since m o 7, = T. ]

Since every element of Aff.(A” T*M) preserves the fibers we obtain a homomorphism

q: Aff (A" T*M) — Diff>*(M).
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4.3.3. Proposition. Let 9 € QP(M) be a closed form. Then the sequence
0— Z0-Y (M) S Aff. (N7 T*M,dO,_, + 7*9) L Diff* (M, [0]) — 0

is exact, where Aﬂ?c(/\p*1 T*M,dO©,_1 + 7*0) consists of those g € Aﬂ?c(/\p*1 T*M) which
in addition preserve the closed p-form dO,_, + 79 and Diff>° (M, [J]) denotes the group of
all g € DIff°(M) such that g*9 — 9 = da for some a € QE~Y(M). Moreover the action of
g € DiIff>°(M, [9]) on ZP~Y(M) defined by this extension is simply pullback by g~

Proof. For a € QP~'(M) we obtain from lemma 4.3.2

T2 (dOp—1 + 70) =d7}0, 1 + (T o 7,)" 0 =d(Op_1 + 7" t) + 7V

*

and so 7, preserves dO,_; + 7 if and only if @ € ZP~1(M), for 7* is injective. Moreover
T is obviously one-to-one. Let g € Aff, (/\p_1 T"M,dO,_1 + 7r*19). We have to show that
q(g) preserves the cohomology class [J] € HP(M). We have ¢*(d©,_1+ 7)) = dO,_1 + 70
and therefore

T (q(g)*f} - 19) =g -7 = d@pfl - g*d@p,1 = d(@pfl - g*@p,l)-

So 7 (q(g)*9 — ) is exact and since 7 : H*(M) — H*(A\""'T*M) is an isomorphism
q(g)*¥ — ¥ is exact too. Moreover it is clear that ¢ o 7 = id. Next we check kerq C
Im7. Let g € kerq and let X be a vertical vector field on A" “'T*M. Then we have
ix(g"Op_1 —O,_1) =0, for g. X is vertical as well. Moreover we have

d(g"0p_1 —0p1) =9"dO,_ 1 —dO, 1 =70 —g*'TY =71 — 7" =0

and thus Lx(g*©,-1 — ©,_1) = 0. Hence there exists a € Q2~'(M) such that ¢*©,_; —
0,1 = 7. If s denotes any section of A\’ T*M, i.e. s € Q~1(M) we get

gos—s=(go0s)O,1 —s0, 1 =sTa=«

and consequently g = 7, € Im7. Next we will show that ¢ is onto. Let f € Diff>° (M, [¢])
and choose a € QP71 (M) such that f*9 — 9 = da. From lemma 4.3.1 and lemma 4.3.2 we
obtain
(foT o) (dO, 1+ 7*9) = dr*  f*Op 1 + 75 7" 9 = dr* 0, 1 + 70
=d(O,1 —71"a) + (¥ + da) = dO,_1 + TV
s0 for_o € Aff, (/\p*1 T"M,dO, 1 + 7r*19) and obviously q(fo T o) = f. At last we want

to show that the action of Diff°(M, [J]) on ZP~!(M) induced from this extension is simply
g- B = (g7)*3. For this we have to show

fOT,a °Tg OT:é offl = fom o fﬁl = T(f-1)*8

for all 3 € ZP~1(M), where « is as above. Indeed we have

(forsof)(e)= f(f*i(e) +B(n(f7He))) =e+ (foBomo fh)(e)
=e+ (fopfof lom(e)=e+((f1)B)(m(e)) = 7(s-1)5(e)

where we used again lemma 4.3.1. O
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4.4 Transgression of the Flux

The following theorem can be found in [Ban97].
4.4.1. Theorem. Let 9 be a closed p-form. Then we have
—t(Sy) = p.j e € H* (DI (M)o; HP ' (M)
where
¢ : Hom (7ry ( Diff2°(M),); H? ™' (M)) — H?(Diff*(M)o; HY (M)
15 the transgression homomorphism associated to the central extension
0 — 7y ( Diff*(M),) — Diff, (M), 5 Diff* (M), — 0 (4.2)

and the trivial Diff2°(M),-module HP=(M), defined in theorem 4.1.3, c is the cohomology
class corresponding to the extension constructed in proposition 4.5.8, j : Diff>°(M), —
Diff* (M, [9]) denotes the inclusion and p : ZP~Y(M) — HP~Y(M) the usual projection.

Proof. Choose a set theoretic section s of (4.2) such that s(id) = id. By theorem 4.1.3
t(Sy) is represented by the 2-cocycle:

t(S9)(g,h) = So(s(g)s(h)s(gh)™")

Since ¢ — (s(g)s(h)s(gh)™")(t) is homotopic relative endpoints to

s(h)(3t) 0<t<g
t= qs(g)Bt=1h 3 <t<3
s(gh)3=3t) §<t<1

we obtain
t(S9)(g, h) = Sy(s(g)s(h)s(gh)™?)
= | Jo’ s(h)isdasrsmy@nnVdt + [ 5 s (g)5 18367 (s(9)) () (3t—1) Ul

[

+f (Gh)5_s4—367(s(gh))(0,)(3—3t ﬁdt]
= [ stisrsamaddt + 1 () s(o)iisesanaddt) = [ (gh)is samya vt
= [a(h) + h*a(g) — algh)]

with a(g) := fol 5(9)fism(s(g))0,0dt. An easy calculation shows d(a(g)) = g*0 — ¥ and so

o : Diff>* (M), — Aff. (A" T*M,dO,_; + 7))
0(9) = g O T_a(g)

is a set theoretic section of the extension from proposition 4.3.3 restricted to Diffo°(M)..
Moreover we have

- ~ -1 > s
Toalg)T—am) (9PT-a(gn) = GT—a(g) MTa(gh)—amyh ™"

—_

T(h=1)* (a(gh)—a(h)~a(9) 9

(((gh)=")"(a(gh) — a(h) — h*a(g)))

N @ &
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and so p,j*c is represented by

(9,h) =p(77 (o (g)a(R)a(gh)™))
[((gh)~ 1) ( (gh)—a(h)—h*a(g))]
[a(gh) — a(h) — h*a(g)] = —t(Sy)(g, h)
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