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Abstract. Half Lie groups exist only in infinite dimensions: They are smooth mani-
folds and topological groups such that right translations are smooth, but left transla-
tions are merely required to be continuous. The main examples are groups of Hs or
Ck diffeomorphisms and semidirect products of a Lie group with kernel an infinite di-
mensional representation space. Here, we investigate mainly Banach half-Lie groups,
the groups of their Ck-elements, extensions, and right invariant strong Riemannian
metrics on them: surprisingly the full Hopf–Rinow theorem holds, which is wrong in
general even for Hilbert manifolds.
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1. Introduction

Infinite-dimensional Riemannian geometry can be traced back all the way to the birth-
place of Riemannian geometry, Riemann’s Habilitationsschrift [61], in which he already
mentioned the potential need of considering infinite-dimensional manifolds. Later on,
these proved to be central in several fields, including mathematical hydrodynamics in
Arnold’s geometric picture [3, 20] and functional data and shape analysis [67, 65, 12].
Motivated by these applications, a significant amount of work has been dedicated to
studying theoretical properties of infinite-dimensional geometric spaces. This revealed
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several astonishing phenomena, where well-known results of finite-dimensional Riemann-
ian geometry cease to hold in infinite dimensions. Some notable examples are the non-
existence of Christoffel symbols [11], vanishing geodesic distance [24, 53, 39, 15], and the
failure of the theorem of Hopf–Rinow [5, 23, 6].

We consider a special class of infinite-dimensional manifolds, namely, half-Lie groups.
These are topological groups and smooth manifolds such that all right translations are
smooth. Alternatively, by considering the group of inverses, one may require all left
translations to be smooth. (Throughout this article, smooth means C∞.) Banach half-
Lie groups are special cases of one-sided differentiable groups, which have been studied
in the context of Hilbert’s 5th problem by Birkhoff [17] and Enflo [26]; see also [16]. The
most important examples of half-Lie groups, also in the context of the above-mentioned
applications in fluid dynamics and functional data or shape analysis, are groups of Ck

or Hs diffeomorphisms, as first studied by Eells, Eliasson and Palais [21, 25, 60]. More
exotic diffeomorphism groups were studied in [43], where also the name half-Lie group
was coined. Another vast class of examples of half-Lie groups are semidirect products
of Lie groups with representation spaces. Recently, Marquis and Neeb [46] studied
Lie-theoretic properties of such semidirect products, namely, regularity properties and
subspaces of differentiable vectors. We continue their investigations by studying general
half-Lie groups, which are not necessarily semidirect products, from both Lie-theoretic
and Riemannian perspectives.

The group structure and differentiable structure of a half-Lie group are by definition
only partially compatible. On the positive side, the partial compatibility explains why
half-Lie groups enjoy better regularity and completeness properties than general infinite-
dimensional manifolds, and we show several results in this direction. On the negative
side, the partial incompatibility explains some of the problems in infinite-dimensional
group and representation theory. For example, the canonical trivialization of the tangent
bundle of a half-Lie group may be non-smooth and even discontinuous. Consequently,
the Eulerian and Lagrangian coordinates are incompatible, and the Lie bracket is only
partially defined. Somewhat surprisingly, many half-Lie groups carry an additional geo-
metric structure, which is compatible with both the group and differentiable structure,
examples being right-invariant smooth connections and right-invariant smooth Riemann-
ian metrics. This has far-reaching implications, which we exploit in our study of half-Lie
groups. Our main contributions are as follows:

• Differentiable elements in half-Lie groups: In Section 3, we study the subgroup
Gk of all Ck elements in G, i.e., those elements in G such that left translation is Ck.
We then show for any k ∈ N that the set Gk is a regular half-Lie group and that
the inverse limit k → ∞ is a regular Fréchet Lie group. This generalizes previous
results of Marquis and Neeb [46], who studied related questions for the case that G is
a semidirect product. In Section 5.6 we discuss how our result strengthens theirs even
in this special case.

• Regularity of half-Lie groups: Next, in Section 4, we discuss smooth regularity
of half-Lie groups, i.e., the question if one can integrate smooth curves in the tangent
space at the identity to smooth curves in the group by inverting the right logarithmic
derivative. We are unable to show that each Banach half-Lie group G itself is regular,
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although all known examples are regular. We can, however, show that any group Gk

for k ≥ 1 is regular.
• Extension theory for half-Lie groups: In Section 5, we show that the extension
theory of Lie groups largely carries over to half-Lie groups. We can describe all exten-
sions satisfying some conditions by extension data; see Section 5.10. We describe split
extensions (semidirect products; see Section 5.5) and central extensions (Section 5.13),
and we are able to describe the subgroups of Ck-elements in an extension as another
extension; see Section 5.11. As an application of the developed theory we present in
Section 6 two examples of extensions in the context of diffeomorphism groups of fiber
bundles.

• Completeness on half-Lie groups: In Section 7, we study Riemannian metrics
on half-Lie groups. The main result of this part shows under an additional technical
property that strong right-invariant Riemannian metrics on half-Lie groups satisfy all
completeness statements of the theorem of Hopf-Rinow, i.e., they are geodesically and
metrically complete, and there exists a minimizing geodesic between any two points.
Previously, only the geodesic completeness was known [29].

Notations and conventions. For a group G, we denote multiplication by µ : G×G→
G with µ(x, y) = x.y = µx(y) = µy(x) indicating left and right translations. The results
of this paper are valid for the following two choices of categories: (1) Lie groups are group
objects in the category of convenient smooth manifolds [42] and topological groups are
with respect to the corresponding convenient topologies, or (2) Topological groups are
group objects in the category of Hausdorff topological spaces, and Lie groups are groups
objects in Bastiani C∞-manifolds modelled on locally convex spaces [31]. Note that in
general, there are more morphisms and products carry a finer topology, under choice (1)
compared to choice (2). For metrizable spaces or Fréchet manifolds there is no difference.

Acknowledgements. We gratefully acknowledge support in the form of a Research in
Teams stipend of the Erwin Schrödinger Institute Vienna. MB was partially supported
by NSF grants DMS-1912037 and DMS-1953244 and by FWF grant FWF-P 35813-
N. PH was supported by NRF Singapore grant NRF-NRFF13-2021-0012 and by NTU
Singapore grant NAP-SUG.

2. Half-Lie groups

We start by introducing the central objects of the present article, half-Lie groups:

2.1 Definition. Half-Lie groups. A right (left) half-Lie group is a smooth man-
ifold, possibly infinite dimensional, whose underlying topological space is a topological
group, such that right (left) translations are smooth. We shall speak of Hilbert, Banach,
Fréchet, etc. half-Lie groups to designate the nature of the modeling vector space. A
homomorphism of half-Lie groups is a smooth group homomorphism.

Lie groups are both right half-Lie groups and left half-Lie groups with smooth multi-
plication and inversion. Every finite-dimensional half-Lie group is a Lie group by a result
of Segal [64]. Every Banach half-Lie group with uniformly continuous multiplication is
already a Banach Lie group. This can be seen as a solution of Hilbert’s 5th problem
in infinite dimensions, due to Birkhoff [17] and Enflo [26], see also [16]. Marquis and
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Neeb [46] have collected a long list of examples of half-Lie groups. We next present two
important special cases.

2.2 Example. Diffeomorphism groups. The main motivating examples for the
present investigation of half-Lie groups are diffeomorphism groups with finite regularity.
These appear naturally in shape analysis [67, 65, 12] and mathematical fluid dynamics [4,
20, 41]. If (M, g) is a finite-dimensional compact Riemannian manifold or an open
Riemannian manifold of bounded geometry, then the diffeomorphism group DiffHs(M)
of Sobolev regularity s > dim(M)/2 + 1 is a half-Lie group. Likewise, the groups
DiffW s,p(M) for s > dim(M)/p + 1 and DiffCk(M) for 1 ≤ k < ∞ are half-Lie groups.
However, they are not Lie groups because left multiplication is non-smooth.

2.3 Example. Group representations. Let ρ : G → U(H) be a representation of a
Banach Lie group G on an infinite-dimensional Hilbert space H, which is continuous as
a mapping G×H ∋ (g, h) 7→ ρ(g)h ∈ H. Then the right semidirect product G⋉H with
operations

(g1, h1).(g2, h2) = (g1g2, ρ(g
−1
2 )h1 + h2), (g, h)−1 = (g−1,−ρ(g)h)

is a right half-Lie group but not a Lie group. This class of examples has been studied in
detail by Marquis and Neeb [46]. In their work, the roles of left and right translations
interchanged compared to ours, but this makes no difference as one may always pass to
the group of inverses.

2.4 Remark. Continuity of left translations. By definition, left translations on
half-Lie groups are continuous. This is not automatic. Indeed, there are diffeomorphism
groups where right translations are smooth, but left translations are discontinuous. An
example is the group

DiffB(M)
loc

(Rn) =
{
Id+f : f ∈ B(M)

loc (Rn,Rn), inf
x∈Rn

det(In + df(x)) > 0
}

modeled on a space of ultradifferentiable functions

B(M)
loc (Rn) := E(M)(Rn) ∩ B(Rn),

where (M) is a strongly non-quasianalytic weight-sequence such that Mk+1/Mk ↗ ∞
and E(M) ⊇ E{(k!)1/2}, and where B(Rn) is the Fréchet space of smooth functions with

bounded derivatives. An example is Mk := (k!)1/2. See [43, Theorem 13.3] for more
details.

3. Differentiable elements in half-Lie groups

We next consider subsets of half-Lie groups where left multiplication has better dif-
ferentiability properties than mere continuity. Specifically, we consider k-fold Fréchet
differentiability, denoted by Ck, of left multiplication.

3.1 Definition. Differentiable elements. Let G be a Banach right half-Lie group.
Then, x ∈ G is called a Ck element if the left translations µx, µ

−1
x : G→ G are Ck. The

set of all Ck elements of G is denoted by Gk.

We do not know if the Ck property of µ−1
x follows automatically from the Ck property

of µx. By the inverse function theorem, this is the case if µx has an invertible derivative
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at some (and hence any) point. But we do not know this, so we require µ−1
x to be Ck in

Section 3.1.
Next, we will show that the set of Ck elements in a Banach half-Lie group G is again

a Banach half-Lie group, provided that G carries a right-invariant local addition.

3.2 Definition. Right-invariant local additions. Let G be a right half-Lie group.
A local addition on G is a smooth map τ : TG ⊇ V → G, which is defined on an
open neighborhood V of the 0-section in TG, such that τ(0x) = x for all x ∈ G and
(πG, τ) : V → G × G is a diffeomorphism onto its range. The local addition τ is called
right-invariant if Tµy(V ) = V and τ ◦ Tµy = µy ◦ τ holds for all y ∈ G.

3.3 Remark. Existence of right-invariant local additions. Right-invariant local
additions exist on many important examples of half-Lie groups:

• Any local addition on a compact manifold M induces a right-invariant local addition
on the half-Lie group DiffCk(M), k ≥ 1.

• Any local addition on a finite-dimensional manifoldM with bounded geometry induces
a right-invariant local addition on the half-Lie group DiffHk(M), k > dim(M)/2 + 1.

• The exponential map on a Banach half-Lie group, provided it exists and is smooth, of
any right-invariant weak Riemannian metric is a local addition.

• The semidirect products considered in [46] are half-Lie groups with local additions.

Local additions are closely related to linear connections, sprays, and geodesic struc-
tures, as explained in Section 8. The following theorem is the first main result of this
article.

3.4 Theorem. Differentiable elements. For any Banach right half-Lie group G
carrying a right-invariant local addition, the following statements hold:

(a) For any k ∈ N, Gk is a Banach half-Lie group.
(b) The tangent space TeG

k is the set of all X ∈ TeG such that the right-invariant
vector field RX : G ∋ x 7→ Teµ

x(X) ∈ TG is Ck.
(c) The inclusion Gk → G is smooth.
(d) For any ℓ ∈ N, Gk+ℓ is a subset of (Gk)ℓ.
(e) The smooth right-invariant local addition on G induces a smooth right-invariant

local addition on the subgroup Gk.

The section is proven at the end of Section 10. The idea is to identify any x ∈
Gk with the left-multiplication µx, which belongs to the space of right-invariant Ck

diffeomorphisms on G. This space is a Banach manifold, and the Banach manifold
structure is inherited by Gk.

3.5 Example. Differentiable elements in diffeomorphism groups. (DiffCk(M))ℓ =
DiffCk+ℓ(M), for any closed manifold M . To see that any g ∈ (DiffCk(M))ℓ is Ck+ℓ, we
fix x ∈ M , y ∈ TxM , and a vector field h ∈ X(M) which is constant and equal to y
locally near x in some chart. Then, in this chart,

∂ks |0∂ℓt |0 g ◦ (Id+th)(x+ sy) = g(k+ℓ)(x)(y, . . . , y),

with continuous dependence on x and y. Therefore, g ∈ DiffCk+ℓ(M). Conversely, any
g ∈ DiffCk+ℓ(M) is a Cℓ element in DiffCk(M) by Section 9.9. Thus, G := DiffC1(M)
satisfies (Gk)ℓ = Gk+ℓ, i.e., equality holds in Section 3.4.(d).
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The charts for Gk restrict to charts for Gℓ for any ℓ ≥ k. This implies that the
intersection G∞ =

⋂
kG

k is an inverse limit of Banach (ILB) manifold in a sense similar
to Omori [59].

3.6 Definition. ILB manifold. An ILB manifold is a manifold M modeled on a
Fréchet space E with the following properties:

(a) E =
⋂

k∈NE
k is the inverse limit of a chain of Banach spaces Ek, such that Ek+1

is continuously embedded in Ek, for each k ∈ N.
(b) There is a collection, indexed by α ∈ A, of open sets Uα covering M , open sets Vα

in E0, and homeomorphisms uα : Uα → E ∩ Vα.
(c) For any α, β ∈ A with Uα ∩Uβ ̸= ∅, there are open subsets Vαβ and Vβα in E0 such

that u−1
α (Uα ∩Uβ) = Vαβ ∩E, u−1

β (Uα ∩Uβ) = Vβα ∩E, and u−1
α ◦ uβ : Vβα ∩E →

Vαβ ∩ E extends to a smooth map Vβα ∩ Ek → Vαβ ∩ Ek, for all k ∈ N.
Compared to this section, Omori [59] additionally requires Ek+1 to be densely included

in Ek. This is not true in the present generality. Indeed, there are examples where
G1 = {e} is trivial [58]. Moreover, the further properties in Omori’s definition of ILB
Lie groups [59, Definition III.3.1] may also fail. Nevertheless, the following statement
holds:

3.7 Lemma. Smooth elements in half-Lie groups. For any Banach half-Lie group
G carrying a right-invariant local addition, the set G∞ = ∩k∈NG

k of smooth elements
in G is an ILB manifold and a Lie group.

The section is proven at the end of Section 10 using the explicit construction of the
manifold charts for Gk.

Finally, we investigate Lie algebras of half-Lie groups. The term Lie algebra is some-
what misleading because the Lie bracket is not globally defined, as shown next.

3.8 Lemma. Lie bracket on half-Lie groups. Let G be a Banach half-Lie group
carrying a right-invariant local addition. For any k ∈ N, the Lie bracket

[·, ·] : TeGk+1 × TeG
k+1 → TeG

k

is well defined in the following three equivalent ways:

(a) Any vectors X,Y ∈ TeG
k+1 extend uniquely to right-invariant C1 vector fields

RX , RY on Gk, and [X,Y ] := dRY (e)(X)− dRX(e)(Y ), where the right-hand side
is interpreted in a chart around e ∈ Gk.

(b) The derivation f 7→ (RXRY f−RYRXf)(e) on smooth real-valued functions defined
near e ∈ Gk is the derivative in the direction of a vector in TeG

k, which is denoted
by [X,Y ].

(c) The vector field RX has a C1 flow FlRX : R × Gk → Gk, and consequently, the

derivative [X,Y ] := −∂t|0(FlRX
t )∗RY (e) ∈ TeG

k exists.

Proof. (a) By Section 3.4.(d), TeG
k+1 is included in Te(G

k)1, and by Section 3.4.(b),
RX , RY are right-invariant C1 vector fields onGk. In particular, the expression dRY (e)(X)−
dRX(e)(Y ) is well defined in a chart around e ∈ Gk. The definition is independent of
the chosen chart and therefore determines a unique element [X,Y ] ∈ TeG

k.
(b) The tangent vector [X,Y ] ∈ TeG

k defined in (a) acts on functions f as the deriva-
tion f 7→ RXRY f −RYRXf(e). Thus, the definitions in (a) and (b) coincide.
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(c) The vector field RX is right-invariant C1 on Gk by (a). It has a global C1 flow

FlRX : R×Gk → Gk. The flow T FlRX
t : TGk → TGk is differentiable in t at 0 since its

velocity field TX is Lipschitz by 10.5. Therefore, the expression

(FlRX
t )∗RY (e) = T (FlRX

−t ) ◦ RY ◦ FlRX
t

is differentiable in t at t = 0, and we have shown that [X,Y ] in (c) is well defined. This
definition coincides with the one in (b) by a well-known argument [42, Lemma 32.15]:
for any smooth function f defined near e ∈ Gk and for sufficiently small s, t ∈ R, define

α(t, s) = RY (f ◦ FlRX
−s )(Fl

RX
t (e)).

Then, ∂uα(u, u) = [X,Y ]f in the sense of (b) because

α(t, 0) = RY (f)(Fl
RX
t (e)), α(0, s) = RY (f ◦ FlRX

−s )(e),

∂tα(0, 0) = RXRY f(e), ∂sα(0, 0) = −RYRXf(e).

Moreover, one also has ∂u|0α(u, u) = [X,Y ]f in the sense of (c) because

α(u, u) = (T FlRX
−u RY )(f)(Fl

RX
u (e)) = ((FlRX

u )∗RY )(f)(e).

Thus, the definitions in (b) and (c) coincide. □

4. Regularity of half-Lie groups

4.1 Definition. Regular half-Lie groups. Let G be a Banach right half-Lie group,
and let F be a subset of L1

loc(R, TeG). Then, G is called F-regular if for all X ∈ F ,

there exists a unique solution g ∈W 1,1
loc (R, G)

1 of the differential equation

∂tg(t) = Teµ
g(t)X(t), g(0) = e.

This solution is called the evolution of X. It will be denoted by Evol(X), and its evalu-
ation at t = 1 by evol(X). In the special case F = C∞(R, TeG), we shall simply speak
of regularity of G.

Every Banach Lie group G, and in particular every finite dimensional Lie group, is
regular. Indeed, the time-dependent right-invariant vector field

RX : R×G ∋ (t, x) 7→ Teµ
x(X(t)) ∈ TxG

is smooth, hence its integral curves exist uniquely for all time, and the evolution of X
is the integral curve of RX started at the identity element. On half-Lie groups G, the
situation is more subtle because RX may be non-smooth, even if X is smooth. However,
if X takes values in TeG

k, then RX is a time-dependent Ck vector field on G. This is
used in the following section to show regularity of Gk for any k ≥ 1.

4.2 Theorem. Regularity of Gk. Let G be a Banach right half-Lie group carrying a
right-invariant local addition. Then, for any k ∈ N≥1 ∪∞, Gk is regular.

Proof. We use superscripts G to denote invariance with respect to the right-action of
G. Let X ∈ C∞(R, TeGk) for k ∈ N≥1. Then, X extends uniquely to a time-dependent
right-invariant Ck vector field RX ∈ C∞(R,XCk(G)G). Consequently, RX has a global
flow FlRX : R × G → G. As RX is right-invariant and Ck, it follows for each t ∈

1The space W 1,1
loc (R, G) consists of all g such that g and g′ ∈ L1

loc.
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R that FlRX
t is right-invariant and Ck. The curve R ∋ t 7→ FlRX

t ∈ DiffCk(G)G is
differentiable. To see this, one works locally in a chart for DiffCk(G)G as described in
Section 10.8, rewrites the flow equation in integral form, verifies using Section 9.9.(d)
that the integrand is a continuous function of time with values in the function space
Ck(G,G), and concludes that the left-hand side of the integral equation is continuously
differentiable in Ck(G,G). Thus, the evolution of RX in DiffCk(G)G exists and is given
by FlRX . Using the diffeomorphism eve : DiffCk(G)G → Gk described in the proof of
Section 3.4, one obtains that the evolution of X in Gk exists and is given by FlRX (e). □

5. Extensions

In this part we study extension theory in the category of right half-Lie groups, with
morphisms defined as smooth group homomorphisms. For Lie groups, the (cohomolog-
ical) extensions have been worked out by O. Schreier [62, 63], R. Baer [7], S. Eilenberg
and S. MacLane [22], G. Hochschild [34, 35], and G. Hochschild and J.-P Serre [36].
This theory has been extended to infinite dimensional Lie groups by Neeb [55, 56, 57].
A comprehensive presentation of this theory for (finite dimensional) Lie groups can be
found in [51, Sections 15.11–15.27], and we shall refer to this, but we translate every-
thing to right actions, which are better suited for our goal. We refrain from pushing the
extension theory to its cohomological description; this can done similarly as in Neeb [57]
by considering appropriate local C0,∞-cocycles.

5.1 Definition. Smooth extensions. Let N and G be right half-Lie groups. A right
half-Lie group E is called an extension of G over N if there is a short exact sequence of
smooth group homomorphisms:

e // N
i // E

p // G // e .

The extension is said to admit:

(a) local sections if p admits a local smooth section s near e (equivalently near any
point), and i is initial [42, Section 27.11].

(b) local retractions if i admits a local smooth retraction r near e (equivalently near
any point), and p is final [42, Section 27.15].

The extension is called a smooth extension if both (a) and (b) are valid.

If E is a Lie group, then the two conditions (a) and (b) are equivalent because
s(p(x)).i(r(x)) = x ∈ E. They imply that E is locally diffeomorphic to N × G via
(r, p) with local inverse (i ◦ pr1).(s ◦ pr2). Under conditions (a) and (b) E is locally
diffeomorphic to N×G via (r, p) with local inverse (i ◦ pr1).(s ◦ pr2). Not every smooth
exact sequence of even Lie groups admits local sections as required above. Let, for ex-
ample, N be a closed linear subspace in a convenient vector space E which is not a
direct summand, and let G be E/N . Then the tangent mapping at 0 of a local smooth
splitting would make N a direct summand.

For extensions of Lie groups conjugation by elements in E is automatically smooth
on N . This can fail in the context of extensions of half-Lie groups, which leads us to the
following definition:
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5.2 Definition. Smooth conjugation. An extension of half-Lie groups e → N
i−→

E
p−→ G → e is said to admit a smooth conjugation if for any x ∈ E, conjugation

n 7→ x i(n)x−1 induces a smooth automorphisms of N .

5.3 Definition. Equivalent extensions. Two extensions are topologically (smoothly)
equivalent if there exists a continuous (diffeomorphic) isomorphism φ fitting commuta-
tively into the diagram

e // N
i // E

p //

φ
��

G // e

e // N
i′ // E′ p′ // G // e.

Note that if a homomorphism φ exists, then it is an isomorphism. We first consider
the important special case of split extensions.

5.4 Definition. Split extensions. An extension is called split if there exists a smooth
group homomorphism s : G→ E which is a section of p.

A seemingly weaker condition is that the section s is a group homomorphism and
smooth near e; then s is automatically smooth on all of G. By the following section,
split extensions are equivalent to semidirect products.

5.5 Lemma. Split extensions and semidirect products. Consider an extension

of half-Lie groups e→ N
i−→ E

p−→ G→ e with smooth conjugation.

(a) Any smooth group homomorphism s, which is a section of p, determines a contin-
uous right action ρ : N ×G→ N with n 7→ ρ(n, x) smooth for all x ∈ G, via

ρ : N ×G→ N, iρ(m,x) = s(x−1).i(m).s(x)

(b) Any such right action ρ defines a half-Lie group and semidirect product G ⋉ N ,
which is the product manifold G×N with the group operations

(x,m).(y, n) = (xy, ρ(m, y)n), (x,m)−1 = (x−1, ρ(m−1, x−1))

(c) The extension E is topologically equivalent to the smooth split extension

e // N
(e,IdN ) // G⋉N

pr1 // G // e

via the continuous isomorphism G⋉N ∋ (x, n) 7→ s(x).i(n) ∈ E.

Note that this implies that every semidirect product is a smooth (split) extension.

Proof. (a) One easily verifies that ρ is a right action, and the claimed continuity and
smoothness properties follow from conditions (a)–(b) of Section 5.1 and the smoothness
of the conjugation.

(b) One easily verifies that the group operations are well defined, and the continuity
and smoothness properties follow from those of ρ.

(c) One easily verifies that G⋉N is a smooth extension of G over N where the group
homomorphism is given by s(x) = (x, e) and where prN : G ⋉ N → N plays the role
of the local smooth retraction required by Section 5.3. The equivalence of extensions
is described by the continuous isomorphism G ⋉ N ∋ (x, n) 7→ s(x).i(n) ∈ E which is
smooth in x for fixed n, and is also smooth in n for fixed x since n 7→ (ρ(n, x−1)).s(x) =
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s(x).i(n) is smooth. So G ⋉ N ∋ (x, n) 7→ s(x).i(n) ∈ E is separately smooth and a
group homomorphism, but we do not know that is smooth. It has the continuous inverse
(p, r) : E → G×N , where r : E → N is given by i(r(x)) = s(p(x)−1).x. □

The following theorem explicitly characterizes differentiable elements in semidirect
products. We have no corresponding characterization for general split extensions because
to our knowledge, these are only topologically and not smoothly equivalent to semidirect
products.

5.6 Theorem. Differentiable elements in semidirect products. Consider the
semidirect product of Banach half-Lie groups

e // N
i // G⋉N

p // G // e,

for some right action ρ as in Section 5.5 with right-invariant local additions, where
i = (e, IdN ) and p = pr1. Then, for any k ∈ N, the set of Ck elements in G ⋉ N is a
semidirect product of Banach half-Lie groups

e // Nk,ρ i // (G⋉N)k = Gk ⋉Nk,ρ p // Gk // e,

where

Nk,ρ := i−1
(
(G⋉N)k

)
=

{
m ∈ Nk : ρ(m, y)n is Ck in (y, n) ∈ G⋉N

}
⊆ Nk.

Note that Section 5.6 does not hold with Fréchet differentiability replaced by Gateaux
differentiability, as in [58]. Indeed, the action on Gateaux-Ck elements is discontinuous
[58, Proposition 9.7]. Therefore, the multiplication in the semidirect product is discon-
tinuous, in contradiction to the definition of half-Lie groups.

Proof. One easily verifies that (G ⋉ N)k = Gk ⋉ Nk,ρ as sets. Recall from Section 3.4
that Gk is a Banach right half-Lie group with right-invariant local addition, as is (G⋉
N)k. Hence, the projection p : Gk × Nk,ρ → Gk is a splitting submersion between
Banach manifolds, i.e., the differential of p is surjective at every point, and its kernel
is complemented by the tangent space of Gk. By the implicit function theorem [45,
Proposition II.2.2] (G⋉N)k is locally diffeomorphic to the product manifold Nk,ρ ×Gk

for a uniquely determined Banach manifold structure on Nk,ρ = p−1(e). Moreover, the
mappings i and p are smooth and admit smooth local sections and local retractions,
respectively. □

Differentiable elements have been widely studied in representation theory. Classi-
cally, one considers a representation of a finite-dimensional Lie group G on an infinite-
dimensional vector space N . Then, differentiable elements in N can be characterized in
terms of the Lie algebra, form a dense subspace, and carry a natural topology, namely,
the one induced from Ck(G,N) [32, 50, 28]. For infinite-dimensional Lie groups, several
problems arise: there are several distinct notions of differentiability, the set of differen-
tiable elements may be trivial, and there seems to be no ‘good’ topology on Ck(G,N)
[58]. For instance, the smooth compact-open topology on Ck(G,N) is too coarse to
ensure continuity of the action [58]. Our solution to these problems, obtained as a
corollary of Section 5.6, is based on the following two observations: first, it suffices
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to consider the subspace of G-invariant functions in Ck(G,N), and second, the action
becomes continuous when this subspace is endowed with the Fréchet-Ck topology.

5.7 Corollary. Group representations. Let ℓ : G → L(N) be a representation of a
Banach half-Lie group G on a Banach space N such that ℓ : G×N → N is continuous.
Then, the set of all n ∈ N such that g 7→ ℓ(g−1)n is Ck is a Banach space, whose norm
is induced by the norm on the k-jets at e ∈ G of the maps g 7→ ℓ(g−1)n ∈ N .

Proof. One obtains a right-action, which satisfies the conditions of Section 5.6, by defin-
ing

ρ : N ×G→ N, ρ(n, g) = ℓ(g−1)(n).

Then, Nk,ρ is a Banach manifold, and

Nk,ρ =
{
n ∈ Nk : ρ(n, g′)n′ is Ck in (n′, g′) ∈ N ×G

}
=

{
n ∈ Nk : ℓ(g−1)n is Ck in g ∈ G

}
=

{
n ∈ Nk : ℓ(g)n is Ck in g ∈ G

}
if G is a Lie group. □

5.8 Remark. Describing general extensions. In general, there does not exist a
continuous section s : G → E. Indeed, an extension is in particular a topological
principal N -bundle E → G, and thus existence of a continuous section s would imply
that the bundle is topologically trivial. If the extension admits local sections as in (a) of
5.1, then there exists a discontinuous section s : G → E with s(e) = e which is smooth
on an open e-neighborhood U ⊆ G. Without loss of generality, s is also smooth on U−1

and U.U , thanks to G being a topological group. The section s induces mappings

α : G→ Aut(N), αx(n) = s(x)−1ns(x),(1)

f : G×G→ N, f(x, y) = s(xy)−1s(x)s(y).

Assuming smoothness of conjugation in the sense of Section 5.2 implies that α takes
values in the group Aut(N) of smooth group automorphisms of N . Moreover, the asso-
ciativity of multiplication implies the following properties of α and f :

(2)

αx ◦ αy = conjf(x,y)−1 ◦αyx,

f(e, e) = f(x, e) = f(e, y) = e,

e = f(xy, z)−1f(x, yz)f(y, z)αz(f(x, y)−1).

Note that the first property in (??) means that α induces a group anti-homomorphism ᾱ :
G→ Aut(N)/ Int(N), where Int(N) is the normal subgroup of all inner automorphisms
in Aut(N). In terms of (α, f), the group structure on E is given by

(3)
s(x)m.s(y)n = s(x)s(y)s(y)−1ms(y)n = s(xy)f(x, y)αy(m)n,

(s(x)m)−1 = s(x−1)αx−1
(m−1)f(x, x−1)−1

Since E is a right half-Lie group this implies that (x,m) 7→ f(x, y)αy(m)n ∈ N is smooth
near (e, e). As m 7→ αy(m) is smooth, we conclude that x 7→ f(x, y) is smooth on U if
N is a Lie group, as shall be assumed in the sequel.

This leads us to make the following definition:
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5.9 Definition. Extension data. An extension datum for a half-Lie group G and a
Lie group N is

(a) a pair of mappings α : G → Aut(N) and f : G × G → N satisfying the properties
listed in (??), such that

(b) there exists an open neighborhood U of e ∈ G such that α : U ×N → N is smooth,
f : U×U → N is continuous, and x 7→ f(x, y) is smooth on U for each fixed y ∈ U .

Using this notation we obtain the following characterization for smooth extensions:

5.10 Theorem. Smooth extensions. Let e → N
i−→ E

p−→ G → e be an extension of
half-Lie groups that admits local sections as in (a) of Section 5.1 and smooth conjugations
as in Section 5.2. Assume in addition that N is a Lie group.

(a) Any (possibly discontinuous) section s : G→ E of p with s(e) = e, which is smooth
on some neighborhood of e, defines an extension datum (α, f) via (??).

(b) Any extension datum (α, f) defines a half-Lie group E(α, f), whose underlying set
is the product G×N , endowed with the group operations

(x,m).(y, n) = (xy, f(x, y)αy(m)n),

(x,m)−1 = (x−1, αx−1
(m−1)f(x, x−1)−1),

and with the manifold structure extended by right translations from U × N , where
U is as in Section 5.9.

(c) The extension E is topologically equivalent to the smooth extension

e // N
(e,IdN ) // E(α, f)

pr1 // G // e.

(d) Two data (α, f) and (α1, f1) define equivalent smooth extensions if there exists a
mapping b : G→ N (smooth near e) such that

αx
1 = conjb(x)−1 ◦αx,

f1(x, y) = b(xy)−1f(x, y)αy(b(x))b(y).

The induced smooth isomorphism E(α, f) → E(α1, f1) between the corresponding
extensions is given by (x, n) 7→ (x, b(x)n).

For a comprehensive description of cohomological interpretations of extension data
(α, f) we refer to [51, Sections 15.11–15.27] with the appropriate changes (from left
actions to right actions, and with appropriate weakened smoothness assumptions near
e). Note that for split extensions, one may choose α = ρ to be a right action and f to
be constant and equal to e, as seen by comparison with Section 5.5.

Proof. (a) has been shown in Section 5.8.

(b) We describe the manifold structure on E(α, f) in some more detail. Let Ũ :=
pr−1

1 (U) with the topological and manifold structure from U × N . By assumption,
α : U × N → N is smooth, f : U × U → N is continuous, and x 7→ f(x, y) is smooth.
The group multiplication on E(α, f), which is inspired by formula (??), is continuous

pr−1
1 (V ) × pr−1

1 (W ) → Ũ for all e-neighborhoods V,W ⊂ U with V.W ⊆ U . Likewise,

right translations are smooth µy : pr−1
1 (V ) → Ũ for all y ∈ pr−1

1 (W ). We then use the

charts (Ũ .x, µx
−1

: Ũ .x→ Ũ), indexed by x ∈ E(α, f), as an atlas for E(α, f). The chart
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changes are µy
−1 ◦ µx = µx.y

−1
: (Ũ .x ∩ Ũ .y).x−1 = Ũ ∩ (Ũ .y.x−1) → Ũ ∩ (Ũ .x.y−1), so

they are smooth. The resulting smooth manifold structure on E(α, f) has the property
that multiplication and inversion are continuous, and that right translations are smooth.
Moreover, E(α, f) is Hausdorff: Either pr1(x) = pr1(y), and then we can separate them

already in one chart x.Ũ = pr−1
1 (pr1(x).U), or we can separate them with open sets of

the form pr−1
1 (U1) and pr−1

1 (U2). This proves that E(α, f) is indeed a half-Lie group.
(c) The projection pr1 : E(α, f) → G and inclusion (e, IdN ) : N → E(α, f) are

smooth and admit smooth local sections and retractions as required in Section 5.1. Thus,
E(α, f) is a smooth extension of G over N . The topological equivalence of extensions
is again given by the mapping E(α, f) ∋ (x, n) 7→ s(x).i(n) ∈ E, where s is the global
section smooth near e which was used to contruct the extension datum in 5.8. This
is a group isomorphism by comparing (??) and the multiplication in E(α, f) and is
continuous near (e, e) and separately smooth in x for fixed n and in n for fixed x since

s(x).i(n) = αx−1
(n).s(x). We do not know whether it is smooth in general.

(d) The remaining assertion follows easily. □

Next, we characterize the differentiable elements for non-split extensions described by
extension data.

5.11 Theorem. Differentiable elements in extensions. Consider a smooth exten-
sion described by an extension datum (α, f) as in Section 5.9:

e // N
i // E = E(α, f)

p // G // e,

where i = (e, IdN ) and p = pr1. Assume that N , G, and E are Banach half-Lie groups
with right-invariant local additions, that N is a Lie group and that the local addition on
E respects i(N). Let k ∈ N. Then the set of Ck elements in E is a smooth extension

e // i−1(Ek)
i // Ek p // Ek/(i(N) ∩ Ek) // e,

where all spaces are Banach half-Lie groups with right-invariant local additions, and the
local addition on Ek respects i(i−1(Ek)) = i(N) ∩ Ek. Moreover, the extension Ek is
described by the restriction of the extension datum (α, f) to the above spaces, and

i−1(Ek) = Nk,α = {n ∈ N : α(n, x) is Ck in x}.

Proof. We consider the subgroup Ek of Ck-elements for k ∈ N>0. We first show that p
maps Ek to Gk and i−1(Ek) ⊆ Nk. Therefore let x ∈ Ek, so µx : E → E is Ck. Then
p ◦ µx = µp(x) ◦ p : E → G is Ck and since p is final, µp(x) : G → G is Ck. Thus

p(x) ∈ Gk. If n ∈ i−1(Ek) ⊂ N , i.e, i(n) ∈ Ek ∩ i(N) then i ◦ µn = µi(n) ◦ i : N → E is

Ck and since i is initial, µn : N → N is Ck. Thus i−1(Ek) ⊆ Nk.
Next we will show that

i−1(Ek) = Nk,α = {m ∈ N : α(m, ·) : G→ N is Ck near e ∈ G}

Ek/(i(N) ∩ Ek) ⊆ Gk,f = {x ∈ Gk : f(x, ·) : G→ N is Ck near e ∈ G} .

Note that, in general, Gk,f does not seem to be a group.
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Namely, in terms of the extension datum (α, f), we have near (e, e) where the extension
is diffeomorphic to UN × UG, and using that N is a Lie group,

i(i−1(Ek)) = ({e} ×N) ∩ Ek

= {(e,m) : (e,m)(y, n) = (y, f(e, y)α(m, y)n) = (y, αy(m)n) is Ck in (y, n)}

= {m ∈ N : α(m, ·) : G→ N is Ck} .

Since a left translation commutes with all right translations, it is Ck if and only if it is
Ck near the identity.
For the second assertion we look again at the multiplication near the identity: Since

(x,m).(y, n) = (xy, f(x, y)α(m, y)n) is Ck in (y, n)

it follows that x ∈ Gk and that f(x, y)α(m, y)n is Ck in (y, n) with values in the Lie group
N . Thus y 7→ f(x, y)α(m, y) is Ck and since we already know that α(m, ·) : G → N is
Ck we conclude that f(x, ·) : G→ N is Ck.

Next we study the subgroup i(N) ∩ Ek in terms of the diffeomorphism Ek x7→µx−−−−→
Diffk(E)E from Section 10.5. We aim to show that

i(N) ∩ Ek = {φ ∈ Diffk(E)E : φ(i(N)) = i(N)}

= {φ ∈ Diffk(E)E : Teφ(Te(i(N))) ⊆ Ti(N)}.

To see this let c : R → i(N) be a smooth curve then ∂t(φ(c(t))) = Tφ.c′(t) ∈ Ti(N) if

and only if Ti(N) ∋ Tµc(t)
−1
.Tφ.c′(t) = Teφ.Tµ

c(t)−1
.c′(t), by the right invariance of φ.

Thus ∂t(p ◦ φ ◦ c)(t) = 0 and φ maps i(N) to i(N). The rest is clear.
Thus we have shown that i(N) ∩ Ek is locally near IdE diffeomorphic to an open set

in the space of all right invariant Ck-vectorfields on E which are tangent to i(N), via
the chart induced by a right invariant local addition τE respecting i(N). This space is
a closed linear subspace in the Banach space XCk(E)E from Section 10.5 which has as
complement the closed linear subspace of all X ∈ XCk(E)E such that X(e) is tangent
to Tes : TeG → TeE where s is a section of p which is smooth near e. Thus Ek is
locally diffeomorphic to the product manifold Nk,α × Ek/Nk,α for uniquely determined
differentiable structures on both factors. In particular the conditions in Section 5.1 hold.

The right invariant local addition τ : TE ⊇ V → E maps TEk∩V → Ek smoothly by
Section 3.4 and Ti(N)∩ V → i(N), thus also T (i(N ∩Ek))∩ V → i(N)∩Ek smoothly.
Thus, the induced local addition τ : TEk ∩ V → Ek respects the normal subgroup
i(N) ∩ Ek. Since it is smooth on Ek, it induces local additions on i−1(Ek) and the
quotient Ek/Nk,α. □

The above theorem supposes the existence of a right-invariant local addition respecting
i(N). This means that i(N) is totally geodesic in E with respect to the induced linear
connection described in Section 8. The following result is included only to show how
difficult it is to construct such a right invariant local addition on a general extension.

5.12 Proposition. Local additions respecting a subgroup. Consider a smooth

extension of half-Lie groups e → N
i−→ E

p−→ G → e, where N is a Lie group. Let
τE : TE ⊃ V → E be a local, right invariant addition that respects i(N).
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Then τE induces right invariant local additions τN : TN ⊃ i−1(V ) → N and τG :
TG ⊃ p(V ) → G satisfying p ◦ τE = τG ◦ Tp and i ◦ τN = τN ◦ Ti and relating to the
extension data (α, f) as follows:

f(τG(Xx), y)α
y(τN (Ym)) = τN (Tµα

y(m).Txf(·, y).Xx + Tµf(x,y).Tmα
y.Ym) .

Note the special case f(τG(Xx), y) = τN (Txf(·, y).Xx).

Proof. In general, the tangent bundle of a half-Lie group is not a group since we cannot
differentiate the multiplication µ. But we get a sequence of vector bundles carrying right
actions of the base half-Lie groups

(4) TN
T i //

πN

��

TE
Tp //

πE

��

TG

πG

��
e // N

i // E
p // G // e

which is fiberwise exact in the sense that Tzp : TzE → Tp(z)G is onto with ker-
nel ker(Tzp) = Tµz(Tei(TeN)) and Tni : TnN → Ti(n)E is injective with im(Tni) =
ker(Ti(n)p) for all z ∈ E and n ∈ N . In terms of the extension data (α, f), differentiat-
ing the right translation on E near the identity, where E looks locally like (G×N), we
get

(x,m).(y, n) = (xy, f(x, y)αy(m)n)(5)

T(x,m)µ
(y,n)(Xx, Ym) =

(
Txµ

y.Xx, Tµ
αy(m)n.Txf(·, y).Xx + Tµf(x,y).Tµ

n.Tmα
y.Ym

)
.

Given τE we get τN by assumption and τG by (??) so that near (e, e) we have τE(Xx, Ym) =
(τG(Xx), τ

N
m (Y,m)). Since τE is right invariant,

τE
(
T(x,m)µ

(y,n)(Xx, Ym)
)
= µ(y,n)τE(Xx, Yn) = (τG(Xx), τ

N (Ym))(y, n)

=
(
τG(Xx).y, f(τ

G(Xx), y)α
y(τN (Ym)).n

)
On the other hand, by using (??) we get

τE
(
T(x,m)µ

(y,n)(Xx, Ym)
)

= τE
(
Txµ

y.Xx, Tµ
αy(m)n.Txf(·, y).Xx + Tµf(x,y).Tµ

n.Tmα
y.Ym

)
=

(
τG(Txµ

y.Xx), τ
N (Tµα

y(m)n.Txf(·, y).Xx + Tµf(x,y).Tµ
n.Tmα

y.Ym)
)

Comparing parts, we first see that τG and τN are right invariant as follows:

τG(Xx).y = τG(Txµ
y.Xx), so τ

G is right invariant, and

f(τG(Xx), y)α
y(τN (Ym)).n = τN (Tµα

y(m)n.Txf(·, y).Xx + Tµf(x,y).Tµ
n.Tmα

y.Ym)

τN (Ym).n = τN (Tµn.Ym), by choosing y = e above, and

f(τG(Xx), y).n = τN (Tµn.Txf(·, y).Xx) = τN (Txf(·, y).Xx).n,

where at the end we chose m = e and Ym = 0e and used right invariance of τN . □
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5.13. Central extensions. An extension e → N
i−→ E

p−→ G → e is central if the Lie
group N is in the center of the right half-Lie group E. In terms of the extension datum
(α, f) we have αx = IdN , and f : G×G→ N is continuous near (e, e) with x 7→ f(x, y)
smooth near e and, since N is abelian,

f(e, e) = f(x, e) = f(e, y) = e, f(y, z)f(xy, z)−1f(x, yz)f(x, y)−1 = e;

i.e., f is a normalized group cocycle. The central extension is then the half-Lie group E
given on the set G×N by

(x,m)(yn) = (xy, f(x, y)mn), (x,m)−1 = (x−1,m−1f(x, x−1)−1),

the topology and the smooth structure is extended from a neighborhood of (e, e) by right
translations. The set of Ck-elements in E is then the central extension by N described
by the cocycle f restricted to

Gk,f = {x ∈ Gk : f(x, ·) : G→ N is Ck near e} ,

which in the central case is a group. Here e → N
i−→ Ek p−→ Gk,f → e is again a central

extension. An example is the central extension of DiffHs(S1) or DiffHs(R) over S1 or R,
the Sobolev version of the Virasoro-Bott group.

6. Examples of extensions

In the following we will present two important examples of extensions which even in
the case of regular Lie groups seem to be new.

Following [1] we introduce the following spaces, which will be the building blocks of
our first extension example.

6.1 Definition. For a smooth principal bundle q : P →M over a (for simplicity) com-
pact Riemannian manifold M with finite dimensional structure group G with principal
right action ρ : P ×G→ P we let

AutCk(P ) = {f ∈ DiffCk(P ) : ρg ◦ f = f ◦ ρg for all g ∈ G} ,
GauCk(P ) = {f ∈ AutCk(P ) : p(f) = IdM ∈ DiffCk(M)} ,

where p : AutCk(P ) → DiffCk(M) is defined by q ◦ f = p(f) ◦ q. This is well-defined
as q ◦ f : P → P → M is constant on the fibers and thus factors in the above way.
For k = ∞ we will also write Aut(P ) = AutC∞(P ) and Gau(P ) = GauC∞(P ) and for
l > dim(P )/2 + 1 we will also consider the H l versions AutHl(P ) and GauCl(P ).

Note, that the mapping p is a group homomorphism onto an open normal subgroup
of Diff(M), which we will denote by DiffP (M). Namely, the action of Diff /Diff0 (where
Diff0 denotes the connected component) on the moduli space of G-principal bundles over
M might be non-trivial. Note that DiffP (M) can be made into Diff(M) by replacing P
by the disjoint union of all these bundles below. Furthermore, the gauge group Gau(P )
is isomorphic to the group C∞(P, (G, conj))G of smooth maps h : P → G which are
equivariant in the sense that h ◦ ρg = conjg ◦h; this in turn is isomorphic to the space
Γ(P [G, conj]) of smooth sections of the associated group bundle P [G, conj] → M ; see
[51, Section 18.15].
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6.2 Theorem. Automorphism groups of principal fiber bundles. In the setting
of Section 6.1 the following is a smooth extension of regular Lie groups:

{IdP } // Gau(P )
i=incl // Aut(P )

p // DiffP (M) // {IdM}

For the corresponding counterpart of mappings with finite regularity we obtain exten-
sions of half-Lie groups admitting local sections as in (a) of Section 5.1 and smooth
conjugations as in Section 5.2:

{IdP } // GauCk(P )
i=incl // AutCk(P )

p // DiffP
Ck(M) // {IdM}

{IdP } // GauHk(P )
i=incl // AutHk(P )

p // DiffP
Hk(M) // {IdM}

The smooth case for even infinite dimensional srtucture groups is also treated in [66].

Proof. We will first show the result in the smooth category. That Aut(P ) and Gau(P )
are smooth manifolds and regular Lie groups can be shown similarly as in the proof of
the more complicated case in Section 6.5. It remains to show existence of local smooth
sections of p and retractions of i. For that we use a principal connection ω ∈ Ω1(P, g) on
the bundle P →M and the corresponding horizontal lift mapping C : P ×M TM → TP
given by C(u, ·) := (Tuq|kerωu)

−1 : Tq(u)M → kerωu ⊂ TuP which satisfies C(u.g,Xx) =
Tur

g.C(u,Xx) for x = q(u) and Xx ∈ TxM . Note that for any smooth vector field X ∈
X(M) onM its horizontal lift C(X) ∈ X(P ) which is given by C(X)(u) = C(u,X(q(u)))
is horizontal (i.e., in the kernel of ω) and is invariant under the principal right action,
(rg)∗C(X) = X. This also holds for non-autonomous vector fields on M .

We now choose a Riemannian metric on M and use its exponential mapping exp :

TM → M , which gives us a diffeomorphism TM ⊇ V
πM ,exp−−−−→ U ⊆ M ×M from an

open neighbourhood V of the 0-section onto an open neighborhood U of the diagonal.
For a diffeomorphism φ ∈ DiffP (M) which is so near to IdM that (x, φ(x)) ∈ U for all
x ∈ M , we consider the smooth curve [0, 1] ∋ t 7→ φt ∈ DiffP (M) given by φt(x) =
exp(t.(πM , exp)

−1(φ(x))) from IdM to φ and its right logarithmic derivative t 7→ Xt

given by Xt(φ
−1
t (x)) = ∂tφt(x) or Xt = (∂tφt) ◦ φ−1

t . The evolution (integral curve up
to time 1) of the horizontal lift f = evol(t 7→ C(Xt)) is then a G-equivariant smooth
diffeomorphism of P with p(f) = φ which also depends smoothly on φ and thus gives
us the required smooth local section s of p. The corresponding smooth local retraction
r : Aut(P ) → Gau(P ) is then given by i(r(f)) = f ◦ s(p(f))−1. This proves that we
have a smooth extension. The inclusion i : Gau(P ) → Aut(P ) is initial because i is the
embedding of a closed smooth submanifold. This can be seen by adding G-equivariance
to the proof of Section 6.5.

Next we prove the result for the case of finite regularity spaces. To see that GauCk(P ) ∼=
ΓCk(P [G, conj]) and GauHk(P ) ∼= ΓHk(P [G, conj]) are actually Lie groups we note that
the group structure is pointwise: the smooth fiberwise group multiplication and inver-
sion on the finite-dimensional group bundle P [G, conj] → M acts by composition from
the left on the space of Ck- or Hk-sections.

Conjugation in AutCk(P ) induces smooth automorphisms of ΓCk(P [G, conj]) and sim-
ilarly for the Hk-case: To see this we use the smooth mapping τ : P ×M P → G which
is uniquely given by ux.τ(ux, vx) = vx and satisfies τ(ux.g, vx.g

′) = g−1.τ(ux, vx).g
′ and
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τ(ux, ux) = e, where ux.g = ρg(ux) for short; see [51, Sections 18.2 and 18.15]. For
f ∈ AutCk(P ) with f(ux) =: vy and h ∈ GauCk(P ) we have

(f ◦ h ◦ f−1)(vy) = (f ◦ h)(f−1(vy)) = f(h(ux)) = f(ux.τ(ux, h(ux)))

= f(ux).τ(ux, h(ux)) = vy.τ(ux, h(ux))

Since P ∋ ux 7→ τ(ux, h(ux)) is the representative of GauCk(P ) ∋ h in Ck(P, (G, conj))
by [51, Section 18.15], the result follows.

Local smooth sections of p : AutCk(P ) → DiffP
Ck(M) can be constructed as in the

smooth category, since the horizontal lift of a smooth connection on P is smooth. More-
over, i is initial, again for the same argument as in the smooth category. Similarly for
Hk instead of Ck. □

6.3 Remark. Note, that Aut(P ) is a split smooth submanifold of Diff(P ) if G is com-
pact, see the proof of Section 6.5. Furthermore, if the principal bundle P →M admits a
flat connection, then the construction of s given above yields a smooth group homomor-
phism up to the action of a discrete subgroup of holonomy transformations. This can
be seen as follows. For a flat connection, the horizontal bundle is integrable and thus
through each point u ∈ P there exists a horizontal leaf L such that q|L : L → M is a
covering map. The deck transformations of this covering map, extended G-equivariantly,
form this discrete subgroup. If M is furthermore simply connected, then q : L→M is a
diffeomorphism, and s(φ)(u.g) = (q|L)−1(φ(p(u))).g is a smooth group homomorphism.
In this case the above extensions reduce to direct products.

Next we will study the situation for general fiber bundles. We introduce the following
spaces of diffeomorphisms; In the following we will restrict ourselves to the connected
components Diff0 of all diffeomorphism groups.

6.4 Definition. For a finite dimensional, compact, fiber bundle q : E →M we let

Diff0
Ck,fiber(E) :=

{
f ∈ Diff0

Ck(E) : q ◦ f = p(f) ◦ q
}
,

Diff0
Ck,fiber(E)IdM :=

{
f ∈ Diff0

Ck,fiber(E) : p(f) = IdM

}
where p : Diff0

Ck,fiber(E) → Diff0
Ck(M) is uniquely determined by the defining relation

q ◦ f = p(f) ◦ q. For k = ∞ we will also write Diff0
C∞,fiber(E) = Diff0

fiber(E) and

Diff0
C∞,fiber(E)IdM = Diff0

fiber(E)IdM and for l > dim(P )/2 + 1 we will also consider the

H l versions Diff0
Hl,fiber(E) and Diff0

Hl,fiber(E)IdM .

Then p turns out to be a surjective group homomorphism, which can be seen similarly
as in the proof of Section 6.2. We assume that the total space E of the fiber bundle is
compact to simplify the exposition. The constructions can be done also for non-compact
E and M with more technical effort (all diffeomorphisms have to fall to the identity
suitably near infinity).

6.5 Theorem. Fiber preserving diffeomorphisms of a compact fiber bundle.
In the setting of Section 6.4, the following is a smooth extension of Lie groups:

{IdE} // Diff0
fiber(E)IdM

i=incl // Diff0
fiber(E)

p // Diff0(M) // {IdM}
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For the corresponding counterpart of mappings with finite regularity we obtain extensions
of half-Lie groups admitting local sections as in (a) of Section 5.1:

{IdE} // Diff0
Ck,fiber(E)IdM

i=incl // Diff0
Ck,fiber(E)

p // Diff0
Ck,(M) // {IdM}

{IdE} // Diff0
Hk,fiber(E)IdM

i=incl // Diff0
Hk,fiber(E)

p // Diff0
Hk,(M) // {IdM}

In contrast to Section 6.2, the kernels Diff0
Ck,fiber(E)IdM and Diff0

Hk,fiber(E)IdM are only

half-Lie groups, and conjugation is only continuous.

Proof. We first show that the space Diff0
fiber(E) is a regular Lie group and a closed

subgroup of Diff0(E). Therefore we start with C∞
fiber(E,E) where Diff0

fiber(E) is open.
We use a spray S : TE → T 2E which is tangent to the fibers TEx and q-projectable to
a spray S̄ : TM → T 2M ; this exists by a slightly elaborated version of [52, Section 5.9]
which will appear in the future second edition of [42]. We use their induced exponential
mappings which satisfy

q ◦ expE = q ◦ πE ◦ FlS1 = πM ◦ Tq ◦ FlS1 = πM ◦ FlS̄1 ◦Tq = expM ◦Tq .

TE ⊃ UE (πE ,expE)−−−−−−→ V E ⊂ E × E and TM ⊃ UM (πM ,expM )−−−−−−−→ VM ⊂M ×M

are diffeomorphisms between neighborhoods of the zero sections and the diagonals which
induce smooth charts taking values in the modelling spaces Γ(f∗TE) = C∞

f (E, TE) =

{s ∈ C∞(E, TE) : πE ◦ s = f}.

C∞(E,E) ⊃ Uf = {g ∈ C∞(E,E) : (f, g)(E) ⊂ V E}
uf−→ Ũf ⊂ Γ(f∗TE)

uf (g) = (πE , exp
E)−1 ◦ (f, g), uf (g)(x) = (expE)−1

f(x)(g(x)),

u−1
f (s) = expE ◦ s, (u−1

f (s))(x) = expEf(x)(s(x)), and

C∞(M,M) ⊃ Uf̄ = {ḡ ∈ C∞(M,M) : (f̄ , ḡ)(M) ⊂ VM}
uf̄−→ Ũf̄ ⊂ Γ(f̄∗TM)

uf̄ (ḡ) = (πM , exp
M )−1 ◦ (f̄ , ḡ), u−1

f̄
(s̄) = expM ◦ s̄

Note that the chart changes are just compositions from the left (push forwards) by
smooth mapping like

C∞
f ′ (E, TE) ∋ s 7→ (uf ◦ u−1

f ′ )(s) = (πE , exp
E)−1 ◦ (f, expE ◦ s) ∈ C∞

f (E, TE).

If f, g ∈ C∞
fiber(E,E) with f̄ = p(f), ḡ = p(g) ∈ Diff0(M) then

Tq ◦ uf (g) = Tq ◦ (πE , exp
E)−1 ◦ (f, g) = (πM , expM )−1 ◦ (q × q) ◦ (f, g)

= (πM , expM )−1 ◦ (q ◦ f, q ◦ g) = (πM , expM )−1 ◦ (f̄ , ḡ) ◦ q = uf̄ (ḡ) ◦ q

so that uf (g) ∈ C∞
f (E, TE) is q-projectable to uf̄ (ḡ) ∈ C∞

f̄
(M,TM). Since Tq : TE →

TM is fiber linear over q : E → M , the space of q-projectable vector fields along f is a
closed linear subspace of the space C∞

f (E, TE) of all vector fields along f .
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It is even a complemented linear subspace: To see this, we choose a smoothly varying
family of probability densities µx on the fibers Ex over x ∈M . For any s ∈ C∞

f (E, TE),

we define s̄ ∈ C∞
f̄
(M,TM) by averaging over the fibers:

s̄(x) =

∫
Ex

Tf(y)q.s(y)µx(dy) ∈ Tf̄(x)M, x ∈M.

Next, we choose an Ehresmann connection, determined by a horizontal bundle HE in
TE complementary to the vertical bundle V E = kerTq, and define the linear map

C∞
f (E, TE) ∋ s 7→ sver + C(s̄ ◦ q, f) ∈ C∞

f (E, TE),

where sver is the vertical component of s, and C : TM ×M E → TE is the horizontal lift.
This linear map retracts the set of all vector fields along f onto the set of all q-projectable
vector fields along f .

Thus C∞
fiber(E,E) is a split closed smooth submanifold of C∞(E,E); consequently,

Diff0
fiber(E) is a splitting smooth submanifold of Diff0(E) and the group operations are

smooth as restrictions. The Lie algebra of Diff0
fiber(E) is the space of all projectable

smooth vector fields. The evolution of a smooth curve of projectable vector fields fur-
nishes a smooth curve of projectable diffeomorphism, thus we get a regular Lie group.
These arguments carry over to the group Diff0

fiber(E)Id of fiber preserving diffeomor-
phisms, which is again a smooth split submanifold of both Diff0

fiber(E) and Diff0(E).
Consequently, i : Diff0

fiber(E)IdM → Diff0
fiber(E) is initial.

We can construct local smooth sections s of p : Diff0
fiber(E) → Diff0(M) with the help

of the smooth horizontal lift C : TM ×M E → TE of an Ehresmann connection, see [51,
Section 17.3], similarly as in the proof of Section 6.2.

It remains to show the result for diffeomorphisms of finite regularity: note that the
construction of charts, centered only at C∞-diffeomorphisms f , carries over to the situ-
ation here, i.e., to manifolds modeled on the Banach spaces of q-projectable vector fields
in ΓCk(f∗TE) = Ck

f (E, TE) and ΓHk(f∗TE) = Hk
f (E, TE) and those which q-project

to the identity, respectively. The chart changes described there are smooth, since they
are push-forwards by the same smooth mappings.

There are several ways to show that right translations are smooth: Either we consider
charts centered at Ck- or Hk-diffeomorphisms, verify that chart changes are smooth, and
note as in the proof of Section 10.8 that a right translation by f is the identity in the
charts Ck

h(E, TE) → Ck
h ◦ f (E, TE); similarly for Hk. Alternatively, we use only charts

centered at smooth maps. Then, right translations are given by right compositions by
functions of Ck or Hk regularity and left compositions by smooth functions; these are
again smooth [52, Lemmas 5.4 and 5.7]. Yet another alternative is to use that right
translations on Diff0(E) are smooth and that the inclusion of Diff0

fiber(E) in Diff0(E) is
smooth and initial.

Either way, this shows that all the involved spaces are half-Lie groups. The mappings i
and p are smooth homomorphisms of groups since they are again bounded linear between
suitably chosen charts. Finally, smooth sections s of p can again be constructed with
the help of an Ehresmann connection, as explicitly done in the proof of Section 6.2. □
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7. Riemannian geometry on half-Lie groups

This section investigates at various levels the links between the metric and mani-
fold topologies for weak and strong Riemannian metrics, culminating in a Hopf–Rinow
theorem for strong Riemannian metrics on half-Lie groups.

7.1 Definition. Riemannian metrics on half-Lie groups. Let M be an infinite
dimensional manifold, that is equipped with a smooth Riemannian metric g. The metric
is called right-invariant if

gx(Teµ
xh, Teµ

xk) = ge(h, k), x ∈ G, h, k ∈ TeG.

The metric g is called strong if the inner product gx induces the manifold topology on
TxM for each x ∈M ; otherwise it is called weak.

Note that any right-invariant Riemannian metric g is uniquely determined by the
inner product ge on TeG. However, a given inner product on TeG does not necessarily
extend to a smooth right-invariant Riemannian metric on G because x 7→ Teµ

x may
be non-smooth and even discontinuous. Nevertheless, many important half-Lie groups
admit smooth right-invariant Riemannian metrics.

The following theorem states that any manifold carrying a strong Riemannian metric
is a Hilbert manifold (i.e., modeled on a Hilbert space). The only assumption is that
the manifold is modeled on a convenient vector space, i.e., a Mackey complete locally
convex space. This is a mild completeness condition, and all Banach and Fréchet spaces
are convenient. The theorem is adapted from unpublished notes of Martins Bruveris and
appears in a similar form without proof in [2].

7.2 Theorem. Strong Riemannian metrics. Let g be a weak Riemannian metric
on a convenient manifold M . Then the following are equivalent:

(a) g is a strong Riemannian metric on M .
(b) M is a Hilbert manifold and g∨ : TM → T ∗M is surjective.
(c) M is a Hilbert manifold and g∨ : TM → T ∗M is a vector bundle isomorphism.

Proof. (a) ⇒ (b): Fix a point x ∈M . By assumption, the locally convex topology of
TxM is normable by ∥·∥gx . In a normed space every Cauchy sequence is Mackey–Cauchy,
and in a convenient vector space every Mackey–Cauchy sequence is convergent. Thus,
(TxM, gx) is a Hilbert space. This implies that M is a Hilbert manifold because M is
locally diffeomorphic to TxM , as is easily seen in a chart. Moreover, g∨ : TM → T ∗M
is surjective by the Riesz representation theorem.

(b) ⇒ (c) By the open mapping theorem, g∨x : TxM → T ∗
xM is a linear isomorphism

for each x ∈M .
(c) ⇒ (a): Fix a point x ∈ M and define U = {u ∈ TxM : ∥u∥gx < 1}. Then U

is absolutely convex. As g∨x is surjective, every bounded linear functional on TxM is
of the form g∨(v) for some v ∈ TxM . Every such functional is bounded on U because
supu∈U |⟨g∨(v), u⟩| = |g(v, u)| ≤ ∥v∥g. Hence U is bounded in TxM . The inner product
gx is bounded bilinear, which is equivalent to continuous bilinear because TxM is metriz-
able. Thus, the norm ∥ · ∥gx is continuous, and consequently U is open in TxM . Now
U is an absolutely convex and bounded 0-neighborhood in TxM . Then the Minkowski
functional v 7→ inf{t > 0 : v ∈ tU} is a norm which induces the locally convex topology
of TxM [37, Proposition 6.8.4]. As µU = ∥·∥gx , the topology induced by g coincides with
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the topology of TxM . This holds for all x ∈M , and therefore g is a strong Riemannian
metric. □

Geodesic distance. For a weak Riemannian metric, the topology induced by the metric
on a tangent space is weaker than the manifold topology. In this sense, the link between
the metric and manifold topology is broken at an infinitesimal level. At a global level,
this results in the surprising phenomenon that the geodesic distance may fail to separate
points or may even vanish completely. Examples of such weak Riemannian metrics have
been found first by Eliashberg and Polterovich [24] on the symplectomorphism group
and then by Michor and Mumford on the full diffeomorphism group and on spaces of
immersions [53]. See also [9, 38]. In the following theorem, which appeared first in [15],
we characterize the vanishing-geodesic-distance phenomenon for Banach half-Lie groups:

7.3 Theorem. Vanishing geodesic distance. Let G be a Banach half-Lie group
with a right-invariant Riemannian metric. Assume that left-translation by any x ∈ G is
Lipschitz continuous with respect to the geodesic distance d, i.e.,

|µx| := inf {C ∈ R+ : d(xx0, xx1) ≤ Cd(x0, x1), ∀x0, x1 ∈ G} <∞ .

Then the group elements with vanishing geodesic distance to the identity form a normal
subgroup. If the Riemannian metric is strong, then the geodesic distance is always non-
degenerate, i.e., the normal subgroup of elements with vanishing geodesic distance is the
trivial subgroup.

Proof. Let G0 be the set of all group elements x ∈ G with vanishing geodesic distance
to the identity, i.e., d(e, x) = 0. Then G0 is a subgroup of G because it holds for each
x0, x1 ∈ G0 that

d(e, x0x
−1
1 ) ≤ d(e, x−1

1 ) + d(x−1
1 , x0x

−1
1 ) = d(x1, e) + d(e, x0) = 0,

where we have used the triangle inequality and right-invariance of the geodesic distance.
Moreover, G0 is a normal subgroup of G because it holds for all x0 ∈ G0 and x ∈ G that

d(e, xx0x
−1) = d(x, xx0) ≤ |µx|d(e, x0) = 0,

where we have used the right-invariance of the geodesic distance and the Lipschitz prop-
erty of left-translations. The non-degeneracy for strong metrics follows by the same
arguments as in finite dimensions, see eg. [45]. □

Geodesic equation. The geodesic equation on Lie groups can be expressed equivalently
in Lagrangian form as ∇∂tct = 0 or in Eulerian form as ut = ad⊤u u, where u = (Teµ

c)−1ct
is the right-trivialized velocity [3, 4]. This is thanks to the formula ∇RX

RX = Rad⊤X X ,
which relates the Levi-Civita covariant derivative to the transpose of the adjoint; here RX

is the right invariant vector field corresponding to X Existence of one implies existence
of the other and always holds for strong Riemannian metrics but not necessarily for weak
Riemannian metrics [11]. For half-Lie groups, the Lagrangian description remains valid,
but the Eulerian description breaks down. There are several reasons for this. First, the
right-trivialized velocity u may not be differentiable (or even continuous) in time and
therefore cannot solve the Eulerian geodesic equation ut = ad⊤u u in any standard sense.
Second, as we show next, the transposed adjoint ad⊤u u exists merely for u ∈ TeG

1 and
is non-unique unless TeG

1 is dense in TeG.



REGULARITY AND COMPLETENESS OF HALF-LIE GROUPS 23

7.4 Lemma. Geodesic equation. Let G be a right half-Lie group carrying a right-
invariant Riemannian metric g. Then, existence of the Christoffel symbol Γ, defined in
charts as

g(Γ(X,X), Y ) =
1

2
dg(Y )(X,X)− dg(X)(X,Y ), X, Y ∈ TxG,

implies the existence of the transpose of the adjoint as a quadratic mapping TG1 → TG,
defined as

ge(ad
⊤
X X,Y ) = ge(X, adX Y ), X, Y ∈ TeG

1.

Proof. For any X,Y ∈ TeG
1, we compute in a chart

g(∇RX
RX , RY ) = g(dRX .RX , RY )− g(Γ(RX , RX), RY )

= g(dRX .RX , RY )− 1
2dg(RY )(RX , RX) + dg(RX)(RY , RX)

= g(dRX .RY , RX)− g(dRY .RX , RX)

= −g([RX , RY ], RX) = g(R[X,Y ], RX) = g([X,Y ], X).

Therefore, ∇XRX = ∇RX
RX(e) ∈ TeG satisfies the defining property of ad⊤X X. □

Next, we show that the existence of solutions to the geodesic equations is passed on
from G to Gk, endowed with the induced (weak) Riemannian metric. Thus, there is
no loss or gain of regularity along geodesics. Similar results have been shown in many
specific cases [20, 18, 14, 10]. We will formulate the following theorem for general right
invariant flows; the result for the geodesic equation follows by interpreting this equation
as a flow equation (with respect to the geodesic spray) and noting that the geodesic
spray is a right-invariant vector field.

7.5 Theorem. No-loss-no-gain. Let G be a half-Lie group. Let S be a smooth vector
field on TG which is invariant for the right action of G on TG and which is a second
order differential equation, i.e., T (πG) ◦ S = IdTG. Let t0 ∈ (0,∞] and let U ⊂ TG be
a maximal open set such that the flow of S exists as a map

FlS : (−t0, t0)× U → TG.

Then the flow restricts to a smooth map

FlS : (−t0, t0)×
(
U ∩ TGk

)
→ TGk

for any k ≥ 1, i.e., there is no gain or loss in regularity during the evolution along S.

The vector field S : TG→ T 2G is a spray if it also satisfies T (mG
t ).m

TG
t S(X) = S(tX)

for the scalar multiplications mG
t on TG→ G and mTG

t on the bundle πTG : T 2G→ TG.
Then πG ◦ FlSt is a geodesic structure; see [51, Section 22.7], for example.

Proof. Note that TG is not a half-Lie group since it is not a group; it just carries a
continuous right action of G. Since S is invariant also the set U is invariant under the
right action of G. For X ∈ U and 0 ≤ t < t0 we have

µ(πG ◦FlSt )(X)(y) = (µy ◦ πG ◦ FlSt )(X) = (πG ◦ Tµy ◦ FlSt )(X)

= (πG ◦ FlSt ◦Tµy)(X) = ((πG ◦ FlSt ) ◦ RX)(y).
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If X ∈ TGk then RX : G → TG is Ck. Since πG ◦ FlSt : U → G is C∞, the mapping
µ(πG ◦FlSt )(X) = (πG ◦ FlSt ) ◦ RX : G→ G is Ck. Since T (πG) ◦ S = IdT G we have

∂t(πG ◦ FlSt )(X) = T (πG)(∂t Fl
S
t (X)) = (T (πG) ◦ S ◦ FlSt )(X) = FlSt (X)

This implies that FlSt : U ∩ TGk → TG is Ck with inverse FlS−t. Moreover,

(πG ◦ FlSs+t)(X) = (πG ◦ FlSs ◦ FlSt )(X) = (πG ◦ FlSs )(∂t(πG ◦ FlSt )(X)),

so µ(πG ◦FlSt )(X) has µ(πG ◦FlS−t(X) as C
k inverse and thus (πG ◦ FlSt )(X) ∈ Gk and thus

FlSt : U ∩ TGk → TGk. □

As a corollary of the above theorem we immediately obtain the following result con-
cerning the exponential map of right invariant Riemannian metrics:

7.6 Corollary. No-loss-no-gain for exp. Let G be a half-Lie group and let g be a
right invariant smooth Riemannian metric on G. If the Riemannian exponential mapping
expg exists and is smooth on a maximal open set U = −U in TG, then expg restricts to
a smooth map

expg :
(
U ∩ TGk

)
→ TGk

for any k ≥ 1, i.e., there is no gain or loss in regularity during the evolution along S.

The theorem of Hopf-Rinow. The following theorem is the second main result of our
article; a Hopf–Rinow theorem for half-Lie groups. Recall that in finite dimensions, the
Hopf–Rinow theorem asserts the equivalence of geodesic completeness, metric complete-
ness, and geodesic convexity. For strong Riemannian manifolds in infinite dimensions,
metric completeness implies geodesic completeness [45, 29], but all other implications
may fail [33, 47, 5]. Not so for half-Lie groups with strong right-invariant metrics:
These are metrically and geodesically complete and, under a weak closure condition,
also geodesically convex, as shown next.

7.7 Theorem. Hopf–Rinow on half-Lie groups. Let G be a connected half-Lie group
equipped with a right invariant strong Riemannian metric g, and let d : G×G→ R+ be
the induced geodesic distance on G.

Then the following completeness properties hold for (G, g):

(a) the space (G, d) is a complete metric space, i.e., every d-Cauchy sequences converge
in G;

(b) the exponential map expge : TeG→ G is defined on all of TeG;
(c) the exponential map expg : TG→ G is defined on all of TG;
(d) the space (G, g) is geodesically complete, i.e., every geodesic is maximally definable

on all of R.
Assume in addition that G is L2-regular and that for each x ∈ G the sets

Ax :=
{
ξ ∈ L2([0, 1], TeG) : evol(ξ) = x

}
⊂ L2([0, 1], TeG)

are weakly closed. Then

(e) the space (G, g) is geodesically convex, i.e., any two points in G can be connected
by a geodesic of minimal length.
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In addition, the geodesic completeness statements, items(b)– (d), hold for the weak Rie-
mannian manifolds (Gk, g), where g is the restriction of the Riemannian metric on G.

7.8 Remark. The closure condition for the sets Ax follows if evol : L2([0, 1], TeG) → G
is continuous with respect to the weak topology on L2([0, 1], TeG) and some Hausdorff
topology on G.

Proof. By Section 7.2 we know that G is a Hilbert manifold, and we will use this repeat-
edly throughout the proof. To show (a), let d be the geodesic distance inG, defined as the
infinimum of the length of all piecewise smooth curves connecting two points. We know
that d is a metric whose induced topology is the manifold topology. Let expg : TG→ G
be the Riemannian exponential mapping. Then

g := TeG ⊃ Bε
expge−−−→ Uε ⊂ G

is a diffeomorphism from a ge-ball Bε = {X ∈ g : ∥X∥ge < ε} in g to an open neighbor-
hood Uε = expge(Bε) of e in G, for some ε > 0. By the Gauss lemma [51, Lemma 23.2,
Corollary 23.3] we have

Uη := expge(Bη) = {x ∈ G : d(e, x) < η} and

Ūη := expge(Bη) = {x ∈ G : d(e, x) ≤ η} for all 0 < η < ε.

We consider now the strong Riemannian metric g̃ := (expge)∗(g|U ) on Bε ⊂ g and the
smooth mapping

Bε ∋ X 7→ ((g∨e )
−1 ◦ g̃∨X : g = TXBε → T ∗

XBε → TXBε = g) ∈ L(g, g).

For a suitably small ball Bη we have

∥(g∨e )−1 ◦ g̃X∥L(g,g) ≤ 2 and ∥(g̃∨X)−1 ◦ g∨e ∥L(g,g) < 2

for all X ∈ Bη. Thus the strong Riemann metrics g̃ and g are uniformly bounded
with respect to each other on Bη. Next we consider a d-Cauchy-sequence (xi) in G.

For suitable N we have d(xN , xi) < η/2 for all i ≥ N . Then (yi := xi.x
−1
N )i≥N is a

Cauchy sequence in Uη/2 since right translations are isometric, and (Yi := (expge)−1(yi)
is a Cauchy sequence in (Bη/2, g̃) and thus also in (Bη/2, ge). Therefore, the sequence

(Yi) has a limit Y in B̄η/2 in the ge-norm, and y := expge(Y ) is the limit of the sequence
(yi), which concludes the proof of (a).

(b)–(d) follow directly from metric completeness, as this assertation of the theorem of
Hopf-Rinow is still valid in infinite dimensions, see e.g. [45]. Alternatively, it can also be
seen directly, as argued in [29]: As g is strong, the geodesic exponential map is defined
on some neighborhood of 0 ∈ TeG. Moreover, as g is right invariant, the right translation
of a geodesic is a geodesic. This allows one to extend a geodesic defined on an interval
(−s, s) to a geodesic defined on a larger interval (−t, t) for some t > s. It follows that
the geodesic exponential map is defined on all of TeG.

It remains to show that the space (G, g) is geodesically convex. We will first show
that there exist minimizing paths connecting any two elements x0 and x1. The geodesic
distance between x0 and x1 can be calculated by minimizing the Riemannian energy

E(x) =

∫ 1

0
gx(xt, xt)dt,
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over all paths x ∈ H1([0, 1], G), such that x(0) = x0 and x(1) = x1. Using the right
invariance of the Riemannian metric we can rewrite this as

E(x) =

∫ 1

0
⟨Tµx−1

.xt, Tµ
x−1

.xt⟩dt := ∥Tµx−1
.xt∥2L2([0,1],g).

Thus, by the L2-regularity of the half-Lie group G, i.e., the bijection between H1-paths
in the Lie group and L2-paths in g, we can reformulate the calculation of the geodesic
distance as the minimization problem

inf ∥ξ∥2L2([0,1],g)

where the infimum is taken over the set

B = Ax1.x
−1
0

∩
{
ξ ∈ L2([0, 1], g) : ∥ξ∥2L2([0,1],g) ≤ 2 dist(x0, x1)

2
}
={

ξ ∈ L2([0, 1], g) : evol(ξ) = x1.x
−1
0

}
∩
{
ξ ∈ L2([0, 1], g) : ∥ξ∥2L2([0,1],g) ≤ 2 dist(x0, x1)

2
}
.

By definition B is bounded. Using the assumption that Ax1.x
−1
0

is weakly closed it follows

that B is also weakly closed and thus compact.
Next, we choose a sequence ξn ∈ B such that∣∣∣∣ infξ∈B

∥ξ∥2L2([0,1],g) − ∥ξn∥2L2([0,1],g)

∣∣∣∣ < 1

n

As B is compact, there exists ξ̃ ∈ B which is a cluster point for ξn. By choosing a
subsequence we may assume that ξn → ξ weakly. Since every norm on a Banach space
is sequentially weakly lower semi-continuous this implies that

∥ξ̃∥2L2([0,1],g) = inf
ξ∈B

∥ξ∥2L2([0,1],g).

Thus x = Evol(ξ) is an energy minimizing path. It remains to show that x is a solution
of the geodesic equation, but this follows by standard arguments: since x is a minimizing
path for t ∈ [0, 1], it is also minimizing on each subinterval and thus the statement follows
by the Gauss lemma.

Finally we note, that the geodesic completeness for Gk follows directly from the no-
loss-no-gain result; Corollary 7.6. □

7.9 Example. Sobolev metrics on groups of diffeomorphisms. For a compact,
finite dimensional, Riemannian manifold (M, g) we consider the group of Sobolev diffeo-
morphisms DiffHs(M) as introduced in Example 2.2. We equip this infinite dimensional
half-Lie group with the strong, right invariant Sobolev metric of order s, i.e.,

Gs
φ(h ◦ φ, k ◦ φ) =

∫
M
g((1−∆)s/2h, (1−∆)s/2k) vol,

where h and k are Hs vector fields and where ∆ (vol, resp.) are the Laplacian (volume
form, resp.) of the (finite dimensional) Riemannian metric g. To see that G is indeed a
Riemannian metric, one only has to check that it depends smoothly on the foot point:
for integer orders this is relatively easy as one can derive an explicit formula for the
dependence on φ, see eg. [20]. For real s, on the other hand, this involves highly,
non-trivial estimates and has been shown only recently [13, 8]. Thus one immediately
obtains the geodesic and metric completeness of (DiffHs(M), Gs). To prove the existence
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of minimizers one has to show the additional assumption in Theorem 7.7, which has been
shown implicitly in [19]. Thereby we have recovered all completeness statements on the
group of Sobolev diffeomorphisms as obtained in [19].

7.10. Curvature. On a Lie group equipped with a right invariant Riemannian metric
there are well developed formulas for curvature which for diffeomorphism groups are
due to [3]; but these make use of the Lie bracket on the Lie algebra, which we do not
have in the case of half-Lie groups. Here we want to sketch another formula, due to
[49], which involves the inverse metric and locally constant 1-forms and make use of
the symmetriced force (from Newton’s law F = m.c′′ which lives in T 2G and its dual)
and stress (which is half the Lie bracket). This formula is well adapted to the O’Neill
formula for Riemannian submersions, and has been used to compute the curvature on
landmark space in [48] and [49, Section 9.6].

So let G be a half-Lie group with a right invariant smooth Riemannian metric g. We
consider smooth 1-forms α, β : G→ g(TG) ⊂ T ∗G in the case of a weak metric g. Note
that for a strong metric we have g(TG) = T ∗G. Then we introduce auxiliary vector fields
Xα and Xβ playing the role of ‘locally constant’ extensions of the value of α♯ = g−1 ◦ α
and β♯ for the 1-forms α, β at the point x ∈ G where the curvature is being calculated
and for which the 1-forms α, β appear locally constant too. More precisely, assume we
are given Xα and Xβ such that:

(a) Xα(x) = α♯(x), Xβ(x) = β♯(x),

(b) Then α♯ −Xα is zero at x hence has a well defined derivative Dx(α
♯ −Xα) lying in

Hom(TxG,TxG). For a vector field Y we have Dx(α
♯ −Xα).Yx = [Y, α♯ −Xα](x) =

LY (α
♯ −Xα)|x. The same holds for β.

(c) LXα(α) = LXα(β) = LXβ
(α) = LXβ

(β) = 0,
(d) [Xα, Xβ] = 0.

Locally constant 1-forms and vector fields with respect to a chart satisfy these properties.
Using these forms and vector fields, we then define:

F(α, β) : = 1
2d(g

−1(α, β)), a 1-form on M called the symmetriced force,

D(α, β)(x) : = Dx(β
♯ −Xβ).α

♯(x)

= d(β♯ −Xβ).α
♯(x), a tangent vector at x ∈ G called the stress.

Then in the notation above, by [49, Section 2.3], we have the following formula for the
the sectional curvature, where ⟨α,X⟩ denote the evaluation of a 1-form on a tangent
vector.

g
(
R(α♯, β♯)β♯, α♯

)
(x) = R11 +R12 +R2 +R3

R11 =
1
2

(
L2
Xα

(g−1)(β, β)− 2LXαLXβ
(g−1)(α, β) + L2

Xβ
(g−1)(α, α)

)
(x)

R12 = ⟨F(α, α),D(β, β)⟩+ ⟨F(β, β),D(α, α)⟩ − ⟨F(α, β),D(α, β) +D(β, α)⟩

R2 =
(
∥F(α, β)∥2g−1 −

〈
F(α, α)),F(β, β)

〉
g−1

)
(x)

R3 = −3
4∥D(α, β)−D(β, α)∥2gx
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8. Auxiliary results on local additions

Local additions are defined in Section 3.2. Here, we collect some further properties
and explain their relation to sprays, linear connections, and geodesic structures.

8.1 Remark. Local right-invariance of local additions. The restriction of a right-
invariant local addition τ to an open e-neighborhood U ⊆ G is a smooth mapping
τU := τ |TU∩V : TU ∩ V → G with the following properties:

(a) τU (0x) = x for all x ∈ U ;
(b) τU (Txµ

y(Xx)) = µy(τU (Xx)) for x, y ∈ G with x ∈ U ∩ U.y−1 and Xx ∈ TxG ∩ V ;
(c) (πU , τ

U ) : TU ∩ V → G×G is a diffeomorphism onto its image.

We call τU a local right invariant local addition near e. Obviously, we can reconstruct τ
from τU .

8.2 Remark. Normalization of local additions. Every local addition τ : TG ⊇
V → G can be normalized such that ∂t|0τ(tXx) = Xx, for all Xx ∈ TG. To this aim,
one has to replace τ by τ ◦A−1, where A is the fiber-wise linear map given by

Ax : TxG→ TxG, Ax(Xx) = ∂t|0τ(tXx) = (T0xτ ◦ vl)(0x, Xx).

Here, vl : TG×GTG→ V (TG) ⊂ T 2G is the vertical lift, which is given by vl(Xx, Yx) =
∂t|0Xx+tYx; see [42, Section 29.9] or [51, Section 8.12]. The map A ∈ L(TG, TG) is fiber-
wise invertible with inverse A−1

x = vpr ◦T0x(τ |TxG∩V )
−1 because (πG, τ) : V → G × G

is a diffeomorphism onto its image.

8.3 Remark. Sprays, linear connections, and geodesic structures. Local addi-
tions are closely related to sprays, linear connections, and geodesic structures; see [51,
Sections 22.6–22.8] for definitions and notations. Let τ : TG ⊇ V → G be a local
addition. Without loss of generality, τ is already normalized. Then, the vector field

S : TG→ T 2G, S(Xx) := ∂2t |0τ(tXx),

satisfies the defining properties of a spray :

πTGS(Xx) = πTG∂
2
t |0τ(tXx) = ∂t|0τ(tXx) = Xx,

T (πG)S(Xx) = T (πG)∂
2
t |0τ(tXx) = ∂t|0(πG∂tτ(tXx)) = ∂t|0(τ(tXx)) = Xx,

S(sXx) = ∂2t |0τ(tsXx) = ∂t|0
(
mTG

s ∂r|0τ(trsXx)
)
= mT 2G

s T (mTG
s )S(Xx),

where mTG
s is scalar multiplication by s ∈ R on the bundle TG → G. The spray S can

equivalently be expressed as a symmetric linear connection. If G is a Banach manifold,
then the flow of S exists locally and gives rise to a geodesic structure geo(X)(t) =
(πG ◦ FlSt )(X). A geodesic structure is a local addition with some extra properties. If
the local addition τ is right-invariant, then the spray, linear connection, and geodesic
structure are also right-invariant.

9. Auxiliary results on jets

This section collects several technical results on jets and differentiability of functions
for subsequent use. See [42, Section 41] for unexplained standard notation. Throughout
Section 9, x, y, z are points in open subsets U, V,W of Banach spaces E,F,G, respec-
tively, f : U → V and g : V →W are k times differentiable functions, and k ∈ N.
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9.1 Definition. Jets. The space of k-jets from U to V is defined by

Jk(U, V ) := U × V × Polyk(E,F ), where Polyk(E,F ) =
k∏

j=1

Lj
sym(E;F )

carries the sum of the norms for multilinear mappings. It is an open subset of the Banach
space Jk(E,F ). We write α and β for the source and target projections, i.e.,

α = pr1 : J
k(U, V ) → U, β = pr2 : J

k(U, V ) → V.

The k-jet of a function f : U → V at x ∈ U is defined as

jkxf =
(
x, f(x), df(x),

1

2!
d2f(x), . . . ,

1

k!
dkf(x)

)
∈ Jk(U, V ).

9.2 Definition. Jet composition. On the fibered product

Jk(V,W )×V J
k(U, V ) =

{
(τ, σ) ∈ Jk(V,W )× Jk(U, V ) : α(τ) = β(σ)

}
,

jet composition • : Jk(V,W )×V J
k(U, V ) → Jk(U,W ) is defined as

(y, z, q) • (x, y, p) =
(
x, z, πk(q ◦ p)

)
,

where πk discards all monomials of order zero or greater than k, and where ◦ denotes
composition of polynomials.

9.3 Lemma. Jet composition. Jet composition satisfies the defining property

jkf(x)g • j
k
xf = jkx(f ◦ g)

and satisfies the bounds

∥τ • σ∥ ≤ (1 + ∥τ∥)(1 + ∥σ∥k),

∥τ̃ • σ̃ − τ • σ∥ ≤ ∥τ̃ − τ∥(1 + ∥σ̃∥k) + (1 + ∥τ∥)∥σ̃ − σ∥(1 + k∥σ̃∥k−1 + k∥σ∥k−1).

Proof. The defining property is the multi-dimensional version (see [54, Section 2.4], e.g.)
of Faà di Bruno’s formula [27], which states that the Taylor series of a composition of
two functions is the composition of their respective Taylor series. We will also use that
multi-composition of mulilinear mappings is a bounded operation for Banach spaces. In
the subsequent computations, σ = (x, y, p) ∈ Jk(U, V ), τ = (y, z, q) ∈ Jk(V,W ), and all
indices run from 1 to k.

∥q ◦ p∥ =
∥∥∥∑

j

qj

(∑
i1

pi1 , . . . ,
∑
ij

pij

)∥∥∥ ≤
∑
j

∥qj∥
(∑

i1

∥pi1∥
)
· · ·

(∑
ij

∥pij∥
)

=
∑
j

∥qj∥∥p∥j ≤ ∥q∥max
j

∥p∥j ≤ ∥q∥(1 + ∥p∥k),

∥τ • σ∥ = ∥(x, z, πk(q ◦ p))∥ ≤ ∥x∥+ ∥z∥+ ∥q∥(1 + ∥p∥k) ≤ (1 + ∥τ∥)(1 + ∥σ∥k),
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∥q ◦ p̃− q ◦ p∥ =
∥∥∥∑

j

j∑
ℓ=1

qj

(∑
i1

pi1 , . . . ,
∑
iℓ

p̃iℓ − piℓ , · · ·
∑
ij

pij

)∥∥∥
≤

∑
j

j∑
ℓ=1

∥qj∥∥p̃∥ℓ−1∥p̃− p∥∥p∥j−ℓ

≤ ∥q∥max
j

j∑
ℓ=1

∥p̃∥ℓ−1∥p̃− p∥∥p∥j−ℓ

≤ ∥q∥∥p̃− p∥(1 + k∥p̃∥k−1 + k∥p∥k−1),

∥q̃ ◦ p̃− q ◦ p∥ ≤ ∥(q̃ − q) ◦ p̃∥+ ∥q ◦ p̃− q ◦ p∥

≤ ∥q̃ − q∥(1 + ∥p̃∥k) + ∥q∥∥p̃− p∥(1 + k∥p̃∥k−1 + k∥p∥k−1),

∥τ̃ • σ̃ − τ • σ∥ =
∥∥(x̃− x, z̃ − z, πk(q̃ ◦ p̃− q ◦ p)

)∥∥
≤ ∥z̃ − z∥+ ∥q̃ − q∥(1 + ∥p̃∥k)

+ ∥x̃− x∥+ ∥q∥∥p̃− p∥(1 + k∥p̃∥k−1 + k∥p∥k−1)

≤ ∥τ̃ − τ∥(1 + ∥σ̃∥k) + (1 + ∥τ∥)∥σ̃ − σ∥(1 + k∥σ̃∥k−1 + k∥σ∥k−1). □

9.4 Definition. Jet evaluation. Let πH and πV denote the projections onto the first
and second component of TU ∼= U × E. On the fibered product

Jk(U, V )×U TU =
{
(σ, ξ) ∈ Jk(U, V )× TU : α(σ) = πH(ξ)

}
,

jet evaluation ⊙ : Jk(U, V )×U TU → Jk−1(TU, TV ) is defined as

(x, y, p)⊙ (x,X) =
(
(x,X),

(
y, p1(X)

)
, . . . ,(

pk−1(πH , . . . , πH), pk(πH , . . . , πH , X) + (k − 1)pk−1(πH , . . . , πH , πV )
))
.

9.5 Lemma. Jet evaluation. Jet evaluation satisfies the defining property

jkxf ⊙ ξ = jk−1
ξ Tf, ξ ∈ TxU

and satisfies the bounds

∥σ ⊙ ξ∥ ≤ ∥ξ∥+ (k + 1)∥σ∥+ ∥ξ∥∥σ∥,

∥σ̃ ⊙ ξ̃ − σ ⊙ ξ∥ ≤ ∥σ̃ − σ∥(k + ∥ξ̃∥) + ∥ξ̃ − ξ∥(1 + ∥σ∥).

Proof. To verify the defining property, one starts from the expression

Tf(x,X) =
(
f(x), df(x)(X)

)
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and computes iterated derivatives with respect to (x,X). These are given by:(
df(x)(πH), d2f(x)(πH , X) + df(x)(πV )

)
,(

d2f(x)(πH , πH), d3f(x)(πH , πH , X) + 2d2f(x)(πH , πV )
)
,(

d3f(x)(πH , πH , πH), d4f(x)(πH , πH , πH , X) + 3d3f(x)(πH , πH , πV )
)
,

. . .(
dk−1f(x)(πH , . . . , πH), dkf(x)(πH , . . . , πH , X) + (k − 1)dk−1f(x)(πH , . . . , πH , πV )

)
.

These terms coincide with the expression of σ⊙ξ with σ = (x, y, p) = jkxf and ξ = (x,X).
To verify the first bound, one collects for any ℓ ∈ {1, . . . , k−1} the terms in the formula
for ∥σ ⊙ ξ∥ involving pℓ. These terms are:

pℓ(πH , . . . , πH , X), pℓ(πH , . . . , πH), ℓpℓ(πH , . . . , πH , πV ).

The sum of the norms of these terms is bounded by ∥pℓ∥(∥X∥ + k). Thus, overall, one
obtains

∥σ ⊙ ξ∥ ≤ ∥σ∥+ ∥ξ∥+ ∥σ∥(∥ξ∥+ k) = ∥ξ∥+ (k + 1)∥σ∥+ ∥ξ∥∥σ∥.

For the second bound, one estimates

∥σ̃ ⊙ ξ̃ − σ ⊙ ξ∥ ≤ ∥x̃− x∥+ ∥X̃ −X∥+ ∥ỹ − y∥+ ∥(p̃1 − p1)(X̃)∥+ ∥p1(X̃ −X)∥

+ · · ·+ ∥(p̃k−1 − pk−1)(πH , . . . , πH)∥+ ∥(p̃k − pk)(πH , . . . , πH , X̃)∥

+ ∥pk(πH , . . . , πH , X̃ −X)∥+ (k − 1)∥(p̃k−1 − pk−1)(πH , . . . , πH , πV )∥

≤ ∥σ̃ − σ∥(k + ∥ξ̃∥) + ∥ξ̃ − ξ∥(1 + ∥σ∥). □

9.6 Definition. Jet inversion. On the set of invertible k-jets,

Jk(U, V )× = U × V ×GL(E,F )×
k∏

j=2

Lj
sym(E;F ),

inversion (·)−1 : Jk(U, V )× → Jk(V,U)× is defined as

(x, y, p1, . . . , pk)
−1 =

(
y, x, q1, . . . , qk

)
,

where (q1, . . . , qk) is defined recursively as

q1 = p−1
1 ∈ GL(F,E), qk = −

k−1∑
j=1

∑
1≤i1,...,ij≤k
i1+···+ij=k

qj(pi1 ◦ q1, . . . , pij ◦ q1).

9.7 Lemma. Jet inversion. Jet inversion is continuous and satisfies for any diffeo-
morphism f the defining property

(jkxf)
−1 = jkf(x)(f

−1).

Proof. The continuity of jet inversion follows from the continuity of the inversionGL(E,F ) →
GL(F,E) and the continuity of the composition map in the category of multi-linear func-
tions between Banach spaces. By k-fold differentiation of the equation g ◦ f = IdU , one
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obtains for k = 1 that (g(1) ◦ f)(f (1)) = IdE and for k ≥ 2 that

k∑
j=1

∑
1≤i1,...,ij≤k
i1+···+ij=k

(g(j) ◦ f)(f (i1), . . . , f (ij)) = 0.

Setting pj = f (j) and qj = g(j) ◦ f and solving for qk yields the defining property. □

9.8 Lemma. The space of smooth curves c ∈ C∞(R, Ck(U, V )) is isomorphic to the
space of all ĉ : R × U → V such that for all i ∈ N and j ∈ N≤k, the iterated derivative

∂itd
j
U ĉ : R× U → Lj(E,F ) exists and is continuous.

Proof. lims→0
1
s (c(t+ s)− c(t)) = c′(t) exists and converges in Ck(U,F ) if and only

lim
s→0

∥∥∥1
s

(
djV ĉ(t+ s, x)− djV ĉ(t, x)

)
− ∂td

j
V ĉ(t, x)

∥∥∥
Lj
sym(E;F )

= 0 for 0 ≤ j ≤ k

uniformly for (t, x) in compact subsets of R × U , since open subsets of Banach spaces
are compactly generated. By iteration this holds also for ∂it instead of ∂t. □

9.9 Lemma. Pull-backs and push-forwards. (a) The pull-back f∗ : Ck(V,W ) ∋
g 7→ g ◦ f ∈ Ck(U,W ) along any function f ∈ Ck(U, V ) is smooth.

(b) The push-forward g∗ : Ck(U, V ) ∋ f 7→ g ◦ f ∈ Ck(U,W ) along any function
g ∈ C∞(V,W ) is smooth.

(c) The push-forward g∗ : Ck(U, V ) ∋ f 7→ g ◦ f ∈ Ck(U,W ) along any function
g ∈ Ck+ℓ(V,W ) is Cℓ.

(d) The composition Ck(U, V )×Ck(V,W ) ∋ (f, g) 7→ g ◦ f ∈ Ck(U,W ) is sequentially
continuous.

Proof. As usual, the topology on Ck(V,W ) is induced via k-jets from the compact-open

topology on C(V,W×Polyk(F,G)). Here, Polyk(F,G) =
∏k

j=1 L
j
sym(F ;G) is the Banach

space described in Section 9.1.

(a) For f ∈ Ck(U, V ) the pull-back mapping

f∗ = Ck(g,W ) : Ck(V,W ) → Ck(U,W ) is the restriction of the linear mapping

f∗ = Ck(g,G) : Ck(V,G) → Ck(U,G), which is bounded, thus smooth.

(b) For g ∈ C∞(V,W ), the push-forward g∗ = Ck(U, g) : Ck(U, V ) → Ck(U,W )
maps smooth curves to smooth curves by Section 9.8 and the iterated chain rule. By the
principles of convenient analysis [42], the mapping g∗ is C∞ in the usual sense since the
spaces Ck(U,F ) are inverse limits of Banach spaces and thus the c∞-topology coincides
with the usual one.

(c) We first consider ℓ = 0. By Faà di Bruno’s formula, for any m ≤ k,

∂mx g(f(x)) =
m∑

n=1

g(n)(f(x))Bm,n(f
(1)(x), . . . , f (m−n+1)(x)),

where Bm,n are the Bell polynomials. The function

C(U, V ) ∋ f 7→ jnf g ∈ C(U,Polyn(F,G))
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is continuous in the compact-open topologies. Thus, overall, one has a continuous map

Ck(U, V ) ∋ f 7→ g(f(x)) ∈ Ck(U,G).

This proves the statement for ℓ = 0. We next consider ℓ = 1. To identify a candidate
derivative of g∗, we compute for any x ∈ U

(6) d(evx ◦g∗)(f)(h) = lim
t→0

1

t

(
g(f(x) + th(x))− g(f(x))

)
= g′(f(x))h(x).

Thus, if dg∗ is differentiable, then its derivative is given by

(7) Ck(U, V ) // Ck(U,L(F,G)) // L(Ck(U,F ), Ck(U,G))

f � // g′ ◦ f � // (h 7→ (g′ ◦ f).h)
The continuity of the left arrow follows from the already established case ℓ = 0. The
continuity of the right arrow can be seen as follows. For any compact set K ⊆ U , the
function

Ck(K,L(F,G))× Ck(K,F ) = Ck(K,L(F,G)× F )
ev∗−−→ Ck(K,G)

is continuous because the evaluation map ev is linear, and differentiation commutes with
linear maps. By the exponential law for continuous linear maps between Banach spaces,
this is equivalent to the continuity of the function

Ck(K,L(F,G)) → L(Ck(K,F ), Ck(K,G)).

As the restriction Ck(U, · · · ) → Ck(K, · · · ) is continuous, one obtains continuity of the
function

Ck(U,L(F,G)) → L(Ck(U,F ), Ck(K,G)).

AsK is arbitrary, and Ck(U,G) carries the initial topology with respect to all restrictions
to Ck(K,G), one obtains continuity of the function

Ck(U,L(F,G)) → L(Ck(U,F ), Ck(U,G)).

This establishes the continuity of the candidate derivative (??) in the sense of Fréchet.
Evaluating the candidate derivative along the curve s 7→ (f+sh, h) results in a continuous
curve, whose Riemann integral is determined by (??) and given by∫ t

0
(g′ ◦ (f + sh))(h)ds = g ◦ (f + th)− g ◦ f.

It follows that g∗ is Gateaux differentiable at f in the direction h with derivative (g′ ◦
f)(h). Overall, we have shown that g∗ is continuously Fréchet differentiable. This proves
the case ℓ = 1. Finally, for ℓ > 1, one proceeds by induction, using the fact that the
Fréchet derivative of g∗ is a push-forward (??).

(d) We first consider the case k = 0; see [30, Proposition 13.9 (c)]. Let fn → f and
gn → g in the compact-open topologies, let K be a compact subset of U , and let O be
an open subset of V which contains g(f(K)). Then, the set L = f(K) ∪

⋃
n fn(K) is

compact. Thus, for sufficiently large n, gn ◦ fn(K) ⊆ gn(L) ⊆ O. As K and O were
arbitrary, gn ◦ fn converges in the compact-open topology to g ◦ f . This proves the case
k = 0. Applying this result to the Faà di Bruno formula as in (c) proves case k > 0. □
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9.10 Definition. Jets between manifolds. Let M and N be manifolds with atlas
(Ui, ui) and (Vj , vj), respectively. Then Jk(M,N) is the manifold obtained by gluing

together the open sets Jk(ui(Ui), vj(Vj)) via the chart change mappings

Jk(ui′(Ui ∩ Ui′), vj′(Vj ∩ Vj′)) ∋ σ 7→

7→ jk(vj ◦ vj−1) • σ • jk(ui′ ◦ u−1
i ) ∈ Jk(ui(Ui ∩ Ui′), vj(Vj ∩ Vj′)).

9.11 Definition. Jets of sections of fiber bundles. Let M be a manifold with atlas
(Ui, ui), and let p : N →M be a fiber bundle over M with standard fiber S, fiber bundle
atlas (Ui, ψi : N |Ui → Ui×S), and chart changes (ψij = pr2 ◦ψi ◦ ψ−1

j : Ui∩Uj×S → S).

Then Jk(E) is the manifold obtained by gluing together the manifolds Jk(Ui, S) via the
chart change mappings

Jk(Ui ∩ Uj , S) ∋ σ 7→ jk(ψij(α(σ), ·)) • σ ∈ Jk(Ui ∩ Uj , S).

The source projection α : Jk(N) →M defines a fiber bundle over M .

10. Auxiliary results on right-invariant functions

The methods developed in this section are used to identify the half-Lie group structure
on the groups Gk of differentiable elements in G. Throughout Section 10, G is a Banach
right half-Lie group with identity element e ∈ G, and k ∈ N.

Left-translation by any group element is a right-invariant function. Conversely, every
right-invariant function is a left-translation by some group element. This motivates the
following definition.

10.1 Definition. Right-invariant Ck functions. A function f : G → G is called
right-invariant if f ◦ µy = µy ◦ f for all y ∈ G. For any k ∈ N, let DiffCk(G)G denote
the space of right-invariant Ck diffeomorphisms on G, endowed with the compact-open
topology of C(G, Jk(G,G)).

The main result of this section is Section 10.2, which establishes that DiffCk(G)G is
a Banach half-Lie group if G admits a right-invariant local addition. This result would
be wrong without the condition of right-invariance. Indeed, if G is infinite-dimensional,
then DiffCk(G) is not a Banach manifold, and the composition DiffCk(G)×DiffCk(G) →
DiffCk(G) is discontinuous.

10.2 Theorem. Right-invariant Ck diffeomorphisms. Let G be a Banach right
half-Lie group carrying a right-invariant local addition. Then, for any k ∈ N, the space
DiffCk(G)G is a Banach half-Lie group with right-invariant local addition, and evaluation
at the identity element e ∈ G is smooth:

eve : DiffCk(G)G ∋ f 7→ f(e) ∈ G.

Proof. This follows from Sections 10.8 and 10.9 below. □

10.3 Lemma. Local boundedness of right multiplication. There exists a neigh-
borhood U of e ∈ G, contained in some chart domain, such that for all k ∈ N and all
compact subsets K ⊆ G,

sup
x∈K

sup
y∈U

(∥jkxµy∥+ ∥jkxµy
−1∥) <∞,
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with respect to the norm induced from TeG via the chart.

Proof. Let U be the domain of some chart around e ∈ G. Via this chart, U can be
identified with an open subset of the Banach space E = TeG. By shrinking U if necessary,
we achieve that U is bounded in E. Using the continuity of inversion and multiplication,
we achieve additionally that U = U−1 and that µ(U,U) is bounded in E. Then, for
any x ∈ U , the set {µy(x) : y ∈ U} is bounded in E. As the bornology on C∞(U,E)
is generated by point evaluations, the set {µy : y ∈ U} is bounded in C∞(U,E). As jet
prolongation is bounded linear, the set {jkµy : y ∈ U} is bounded in C∞(U, Jk(E,E)).
In particular, the set {jkxµy : x ∈ K, y ∈ U} is bounded in Jk(E,E). This set coincides

with {jkxµy
−1

: x ∈ K, y ∈ U} because U = U−1. Boundedness in the normed space
Jk(E,E) can be expressed equivalently as in the statement of the lemma. □

10.4 Definition. Right-invariant Ck vector fields. A vector field X : G → TG is
called right-invariant if X ◦ µy = Teµ

y ◦ X for all y ∈ G. For any k ∈ N, let XCk(G)G

denote the space of right-invariant Ck vector fields on G, endowed with the compact-open
topology of C(G, Jk(TG)).

10.5 Lemma. Jets of right-invariant vector fields. For any k ∈ N and right-
invariant k-times differentiable vector field X, the k-jet at y ∈ G is uniquely determined
by the k-jet at e ∈ G as follows:

jkyX = (jk+1
e µy ⊙X(e)) • jkeX • jkyµy

−1
,

for some smooth binary operations • and ⊙, which are defined in Section 9.

Proof. Thanks to the right-invariance of X, one has

jkyX = jkyX • jkeµy • jkyµy
−1

= jke (X ◦ µy) • jkyµy
−1

= jke (Tµ
y ◦ X) • jkyµy

−1
= jkX(e)Tµ

y • jkeX • jkyµy
−1

= (jk+1
e µy ⊙X(e)) • jkeX • jkyµy

−1
. □

10.6 Corollary. Bound on jets of right-invariant vector fields. Let k ∈ N, and
let X and Y be k-times differentiable right-invariant vector fields on G. Then, for any
y in the domain of some chart around e ∈ G, one has

∥jkyX − jkyY ∥ ≤ ∥jkeX − jkeY ∥p(∥jkeX∥, ∥jkeY ∥, ∥jk+1
e µy∥, ∥jkyµy

−1∥),
for some polynomial p depending only on k, in the norm induced from TeG via the chart.

Proof. This follows from the estimates of Sections 9.3 and 9.5 applied to the expression
in Section 10.5. □

10.7 Lemma. Right-invariant Ck vector fields. For any k ∈ N, the space XCk(G)G

is Banach with respect to the norm

∥X∥ := ∥X(e)∥TeG + · · ·+ ∥dkX(e)∥L(k)(TeG,...,TeG;TeG).

Proof. The compact-open topology on k-jets dominates the norm topology. To show
that it coincides with the norm topology, let (Xn) be a sequence which converges in
norm to X ∈ XCk(G)G. By Section 10.3, there is a neighborhood U of e ∈ G where right
translations are uniformly bounded on compacts in the sense detailed there. It follows
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from Section 10.6 that jkXn converges to jkX uniformly on compacts in U . This is
equivalent to convergence in the compact-open topology on C(U, Jk(G,G)). By using
right translations, similarly to Section 10.5, one obtains convergence in the compact-
open topology on Ck(µy(U), Jk(G,G)), for any y ∈ G. As the sets µy(U) form an open
cover of G, one obtains convergence in the compact-open topology on Ck(G, Jk(G,G)).
By definition, this means convergence in XCk(G). A similar argument shows that the
norm topology is complete: for any Cauchy sequence (Xn), it follows from Sections 10.3
and 10.6 that ∥jkXn − jkXm∥ → 0 uniformly on compacts in U , which implies the
existence of a limit X ∈ XCk(G). □

10.8 Lemma. Banach manifold of right-invariant Ck diffeomorphisms. Let G
carry a right-invariant local addition. Then, for any k ∈ N, the space DiffCk(G)G is a
Banach manifold with right-invariant local addition. For any g ∈ DiffCk(G)G, the pull-
back g∗ : DiffCk(G)G ∋ f 7→ f ◦ g ∈ DiffCk(G)G is smooth. Moreover, the evaluation
map eve : DiffCk(G)G → G is smooth.

Proof. A right-invariant Ck function f : G → G belongs to DiffCk(G)G if and only
if Tef is continuously invertible. Indeed, by right-invariance, this implies invertibility
of Txf at all x ∈ G, and by the inverse function theorem, this implies that f−1 is Ck.
Thus, DiffCk(G)G is an open subset of the set Ck(G,G)G of right-invariant Ck functions,
endowed with the compact-open topology of C(G, Jk(G,G)). We next show that the set
Ck(G,G)G of right-invariant Ck functions is a Banach manifold. Let τ : TG ⊇ U → G
denote the local addition on G, let π : TG→ G be the canonical projection. Recall from
Section 10.7 that the space XCk(G)G of right-invariant Ck vector fields is Banach, and
define the open subset

V = {X ∈ XCk(G)G : X(e) ∈ U}.
For any f ∈ Ck(G,G)G and X ∈ V , the function τ ◦ X ◦ f is right-invariant and Ck as
a composition of Ck functions. Thus, the following map is well-defined:

vf : V → Ck(G,G)G, X 7→ τ ◦ X ◦ f.

It is injective because right-invariant functions are uniquely determined by their value
at the identity. Let Uf = vf (V ). Then Uf consists of all h ∈ Ck(G,G)G such that
(h ◦ f−1(e), e) ∈ (τ, π)(U). As (τ, π)(U) is an open subset of G×G, it follows that Uf is

open. The chart around f is defined as uf = v−1
f : Uf → V , which is a homeomorphism.

For any g ∈ Ck(G,G)G, the set uf (Uf ∩ Ug) consists of all X ∈ V such that (τ ◦ X ◦
f ◦ g−1(e), e) is contained in (τ, π)(U). Thus, uf (Uf ∩ Ug) is open in V . By symmetry,
ug(Uf ∩ Ug) is open, too. The chart change is given by

uf ◦ u−1
g :

{
ug(Uf ∩ Ug) → uf (Ug ∩ Ug),

X 7→ (τ, π)−1 ◦ (τ ◦ X ◦ g ◦ f−1, IdG).

The right-hand side is a Ck vector field, which depends smoothly on the Ck vector fieldX
by Section 9.9. Thus, the chart changes are smooth, and we have shown that Ck(G,G)G

is a smooth Banach manifold. We define a right-invariant local addition on Ck(G,G)G

by mapping any X ∈ T DiffCk(G)G with X(e) ∈ U to τ ◦ X ∈ DiffCk(G)G; one easily
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verifies that this has the desired properties. In charts uf and ug ◦ f , right-composition

by g ∈ Ck(G,G)G is the identity on V ,

uf ◦ g(µ
g(uf (X))) = uf ◦ g(µ

g(τ ◦ X ◦ f)) = uf ◦ g(τ ◦ X ◦ f ◦ g) = X,

and is therefore smooth. Moreover, the evaluation map is smooth, as can be seen in the
chart uf :

eve ◦u−1
f (X) = τ ◦ X ◦ f(e).

This concludes the proof. □

10.9 Lemma. Topological group of right-invariant Ck diffeomorphisms. Let G
carry a right-invariant local addition. Then, for any k ∈ N, the space DiffCk(G)G is a
topological group.

Proof. Composition DiffCk(G)G ×DiffCk(G)G → DiffCk(G)G is sequentially continuous
by Section 9.9.(d). Sequential continuity implies continuity because DiffCk(G)G is locally
homeomorphic to the metrizable space XCk(G)G, as shown in Section 10.7.

We claim that inversion DiffC0(G)G → DiffC0(G)G is sequentially continuous (and
thus continuous) in the compact-open topology. Let fn → f be a converging sequence
in DiffC0(G)G. Then, fn(e) → f(e) and fn(e)

−1 → f(e)−1 thanks to the continuity
of the inversion G → G. By right-invariance, f−1(e) = f(e)−1 and f−1

n (e) = fn(e)
−1.

Thus, f−1
n (e) → f−1(e). By Section 10.3, right-translations are uniformly bounded on

compacts in U , for some sufficiently small chart domain U of e ∈ G. Thus, f−1
n → f−1

uniformly on compacts in U . Equivalently, f−1
n → f−1 in the compact-open topology

on U . By right translations, f−1
n → f−1 in the compact-open topology on µy(U), for

any y ∈ G. As the sets µy(U) form an open cover of G, this implies convergence in the
compact-open topology on all of G. This proves the claim.

We claim that inversion DiffCk(G)G → DiffCk(G)G is sequentially continuous (and
thus continuous). Let fn → f be a converging sequence in DiffCk(G)G, and let K be a
compact subset of G. As f−1

n → f−1 in DiffC0(G)G, the set L = f−1(K) ∪
⋃

n f
−1
n (K)

is compact. We assume that K and L are contained in chart domains. This assumption
is without loss of generality because any given compact set is a finite union of compact
sets such that the desired property holds for sufficiently large n. In the charts, f−1

n

converges to f−1 uniformly on K, and jkfn converges to jkf uniformly on L. Then,
jk
f−1
n
fn converges to jkf−1f uniformly on K because

∥jk
f−1
n (x)

fn − jkf−1(x)f∥ ≤ ∥jk
f−1
n (x)

fn − jk
f−1
n (x)

f∥+ ∥jk
f−1
n (x)

f − jkf−1(x)f∥

where the first summand tends to zero uniformly in x ∈ K because jkfn tends to jkf
uniformly on L, and the second summand tends to zero uniformly in x ∈ K because
jkf is uniformly continuous on L. By Section 9.7 jet inversion is continuous, and thus
uniformly continuous on compacts, and consequently (jk

f−1
n
fn)

−1 converges to (jkf−1f)
−1

uniformly on K. Equivalently, by Section 9.6 of jet inversion, jk(f−1
n ) converges to

jk(f−1) uniformly on K. This proves the claim. □

10.10 Lemma. Banach manifold of right-invariant k-jets. Let G carry a right-
invariant local addition. Then, the set

Jk
e (G,G)

G =
{
jke f : f ∈ DiffCk(G)G

}
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is a submanifold of Jk
e (G,G), and DiffCk(G)G is diffeomorphic to Jk

e (G,G)
G via the

map

jke : DiffCk(G)G ∋ f 7→ jke f ∈ Jk
e (G,G)

G.

Proof. We will construct a submanifold chart around any given σ = jke f ∈ Jk
e (G,G)

G.
Let U be the domain of the right-invariant local addition τ : TG ⊇ U → G, let Uk

f be

the open set of all ρ = (e, x, p) ∈ Jk
e (G,G) such that (x, f(e)) ∈ (τ, π)(U), and let V k

f be

the open set of all η = (f(e), X, q) ∈ Jk
f(e)(TG) such that X ∈ U . Then, the function

ukf : Uk
f ∋ ρ 7→ jk(τ, π)−1 • (ρ, jke f) • jkf(e)f

−1 ∈ V k
f

is smooth with smooth inverse

(ukf )
−1 : V k

f ∋ η 7→ jkτ • η • jke f ∈ Uk
f .

Moreover, ukf restricts to right-invariant jets as follows:

ukf : Uk
f ∩ Jk

e (G,G)
G → V k

f ∩ Jk
f(e)(TG)

G.

By Section 10.7, XCk(G)G is a closed linear subspace of XCk(G), and as these spaces are
isomorphic to jet spaces, Jk

f(e)(TG)
G is a closed linear subspace of Jk

f(e)(TG). Thus, u
k
f

is a submanifold chart around jke f ∈ Jk
e (G,G)

G, and we have shown that Jk
e (G,G)

G is
a submanifold of Jk

e (G,G).
It remains to show that this submanifold is diffeomorphic to DiffCk(G)G. In the chart

for DiffCk(G)G constructed in Section 10.8,

uf : Ck(G,G)G ⊇ Uf → Vf ⊆ XCk(G)G,

the map jke is the identification of right-invariant vector fields with their k-jets at e ∈ G:

ukf ◦ jke ◦ u−1
f : Vf ∋ X 7→ jkf(e)X ∈ V k

f ∩ Jk
f(e)(TG)

G.

This is a continuous linear map with continuous inverse by Section 10.7. □

10.11 Lemma. Push-forwards. Let G carry a right-invariant local addition. For any
k, ℓ ∈ N and f ∈ Ck+ℓ(G,G)G, the push-forward along f is a Cℓ function

DiffCk(G)G ∋ g 7→ f ◦ g ∈ DiffCk(G)G.

Proof. By Section 10.10, DiffCk(G)G is diffeomorphic to Jk
e (G,G) via the identification

of right-invariant functions with their k-jets at e ∈ G. Thus, one has to show that the
function

Jk
e (G, f) : J

k
e (G,G)

G ∋ σ 7→ jkβ(σ)f • σ ∈ Jk
e (G,G)

G

is Cℓ. Here, Jk
e (G, ·) is viewed as a covariant functor, and Jk

e (G, f) is the functor applied
to the morphism f .

We claim that Jk
e (G, f) is Gateaux-Cℓ, i.e., that the map

(8) T ℓJk
e (G, f) : T

ℓJk
e (G,G)

G → T ℓJk
e (G,G)

G

is continuous. The functors T ℓ and Jk
e (G, ·) commute up to a natural isomorphism

κ, which is called canonical flip. Abstractly, at least in finite dimensions, this is a
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consequence of these functors being product-preserving [40, Sections 36–37], but it can
also be verified easily by hand. Thus, the claim is equivalent to the continuity of
(9)

Jk
e (G,T

ℓf) = κ−1 ◦ T ℓJk
e (G, f) ◦ κ : Jk

e (G,T
ℓG)G ∋ σ 7→ jkβ(σ)T

ℓf • σ ∈ Jk
e (G,T

ℓG)G.

This follows from the continuity of jet composition and the continuity of jkT ℓf . Thus,
we have shown that Jk

e (G, f) is Gateaux-Cℓ, as claimed.
The Fréchet-Cℓ property of Jk

e (G, f) is equivalent to uniform continuity of the func-
tion (??) on bounded subsets with compact base, i.e., on subsets B of the bundle
π : T ℓJk

e (G,G)
G → Jk(G,G)G such that π(B) is compact and such that the verti-

cal component of B is uniformly bounded in any bundle chart. Similarly to before, by
commutation of the functors T ℓ and Jk

e (G, ·), this is equivalent to the uniform continuity
of the function (??) on bounded subsets with compact base. This is a consequence of
the following facts: jet composition is uniformly continuous on bounded subsets with
compact base by Section 9.3, and the map jkT ℓf is uniformly continuous on bounded
subsets with compact base because f is Ck+ℓ in the sense of Fréchet. □

This concludes our investigation of right-invariant Ck diffeomorphisms on G. We next
transfer these results to the group of Ck elements in G by identifying any Ck element
x ∈ Gk with the left translation µx ∈ DiffCk(G)G.

Proof of Section 3.4. Left-multiplication is a bijection

Gk ∋ x 7→ µx ∈ DiffCk(G)G,

whose inverse is the evaluation map

DiffCk(G)G ∋ f 7→ f(e) ∈ Gk.

Via this bijection, multiplication in Gk corresponds to composition in DiffCk(G)G, in-
version in Gk corresponds to inversion in DiffCk(G)G, and the inclusion Gk → G cor-
responds to the evaluation map DiffCk(G)G → G at e ∈ G. Thus, by declaring the
bijection to be a diffeomorphism, we obtain from Sections 10.8, 10.9 and 10.11 that Gk

is a Banach half-Lie group, which is smoothly included in G, and that Gk+ℓ is con-
tained in (Gk)ℓ. Moreover, the tangent space TeG

k is identified with the tangent space
TeDiffCk(G)G, i.e., with the space of right-invariant Ck vector fields on G. Under this
identification, the right-invariant local addition on Gk is obtained by restricting the
right-invariant local addition on G. In the locally defined charts τ−1 : G → TeG and
(τ, τ)−1 ◦ (π, τ) : TG → TeG × TeG, the map τ : TG → G is continuous linear and
restricts to a locally defined linear map τ : TGk → Gk. By the closed graph theorem,
the restriction τ : TGk → Gk is continuous linear in the local charts, hence smooth. □

Proof of Section 3.7. DiffC∞(G)G is an ILB manifold because the charts and chart changes
for DiffC0(G)G constructed in Section 10.8 restrict to charts and chart changes for
DiffCk(G)G, k ∈ N. Multiplication G∞ × G∞ → G∞ is smooth because composi-
tion DiffC∞(G)G × DiffC∞(G)G → DiffC∞(G)G is smooth by convenient calculus [42,
Corollary 3.13]. □
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