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Abstract. For a symplectic manifold the Poisson bracket on the space offunctions 
is (uniquely) extended to a graded Lie bracket on the space of differentilzl forms 
modulo exact forms_ A large portion of the Hamiltonian formalism is still working. 

Let (M, w) be a symplectic manifold. Then there is an exact sequence of Lie 
algebras and Lie algebra homomorphisms 

0-+ HO(M) -+ C-(M) ~!!(6 (.) w = o(M) ~ H l(M) -+ 0, 

where HO(M), HI(M) are the de Rham cohomology spaces, !!(6(.)w=o(M) is the 
space of all vector fields X with (J (X)w = 0 (Lie derivative), a Lie subalgebra 
of the space!!(M) of all vector fields. C-(M) is equipped with the Poisson bracket 
{ , }, and H(f) is the Hamiltonian vector field for the generating function!. -rex) 
is the cohomology class of i(X)w (insertion). 

We will present the following generalisation: There is an exact sequence 
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where n(M) is the algebra of all differential forms, B(M) is the subspace of exact 

forms, nO(.)w=o(M; TM) is the space of all TM-valued differential forms Kwith 
8 (K)w = 0 (Lie derivative, see § 1), and where Ew is a sub vector bundle of 
AT*M 0 TM, consisting of all those K with i(K)w = 0 (insertion, see § 1). 

n/i(.)w=o(M; TM) is a graded Lie algebra with the Frolicher Nijenhuis bracket 
[ , ]. On n(M)/B(M) there is the generalized Poisson bracket { , } which makes 
n(M)/B(M) into a graded Lie algebra. H is the generalized Hamiltonian mapping, 
which is a homomorphism of graded Lie algebras. On H*(M) on the left hand 
side and on H*+l(M) on the right hand side we may put the zero braket, but 
on r(Ew) there is no compatible graded Lie bracket. For the full statment of 
the result see theorem 4.6 at the end of the paper. 

These results depend heavily on the properties of the Fr6licher Nijenhuis 
bracket. The first section is a short presentation of these, which are due to [1]. 

There are also some new formulas (l.8, 1.9), which are not +ntial for the 
following. The second section presents the usual Hamiltonian formalism with 
proofs in the form in which it will be generalized later. The reference here is 
[ ]. Section 3 is devoted to the generalized Hamiltonian mapping. Section 4 
contains the generalized Poisson bracket. 

I want to thank G. Kainz, J. Kijowski, A. Trautman and H. Urbantke for 
discussions and hints. 

§ 1. DERIVATIONS ON THE ALGEBRA OF DIFFERENTIAL FORMS 

1.1. Let M be a smooth second countable manifold, let n(M) = E9 nk(M) be the 
k 

graded commutative algebra of' differential forms. An R-linear mapping 
D : n(M) -+- n(M) is said to be of degree k if D(nh(M» c nh+k(M); and Dis 

said to be a (graded) derivation of degree k if furthermore 

D(I/J 1\ 1/1) = DI/J 1\ 1/1 + (_l)hk I/J /\D1/I for I/J E nh(M), 1/1 E n(M). 

Let Derkn(M) be the linear space of all derivations of degree k and let 
Der n(M) = E9 Derkn(M) be the space of all derivations. 

k 

PROPOSITION. Der n (M) becomes a graded Lie algebra with the graded commuta­

tor 

[Dl'D2] = Dl 0 D2 - (- 1/lk2D2 0 Dl' Dj E Derkp(M). 

This means that the bracket is graded anticommutative, [Dl'D 2] =­

-(-lllk2 [Dl'D2] and satisfies the graded Jacobi identity: [Dl' [D2,D3]] = 

= [[Dl'D 2],D3] + (_l)k 1k2[D 2, [Dl'D 3]] (so ad (D1) = [Dl"] is itselfa deriva­

tion). 
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The proof is by computation. 

1.2. A derivation DE Derkn(M) is called algebraic, if D InO(M) = O. 
Then D(f . cf» = f . Dcf> for f E C~(M) and D is tensorial.. 
Furthermore D is uniquely determined by Din l(M) : n l(M) ~ n k + l(M), 

which is induced by a vector bundle mapping K : T*M ~ Ak+ I T*M, which we 
view as an element of nk+ I(M; TM), the space of all TM-valued (k + I)-froms 
on M. We write D = i(K) and note the defining equation Dcf> = cf> 0 K for cf>E 
E nl(M). 

PROPOSITION. 1. For cf> E nh(M) and Xi E:T(M) (t~e space of vector fields) we 
have: 

(i(K) cf» (Xl' ... ' Xk +h ) = 

I 
= (k+ l)!(h-l)! L signacf>(K(Xal,···,Xa(k+I»,Xa(k+2),···,Xa(k+h»· 

aESk + h 

Note that this formula makes sense also if cf> E n\M; E) is a vector bundle valued 

differential form. 
2. For Ki E n kj+ I(M; TM) the derivation [i(KI), i(K2)] is again algebraic. so it 

is of the form i([K1, K2n for some unique [Kl' K2f E nkl+k2+I(M; TM). With 

the bracket [, r. n H l(M; TM) becomes also a graded Lie algebra. We have 

[Kl' K2r = i(KI)K2 - (- l)k1kz i(K2)KI (see 1). 

In [I] the expression i(K)cf> is denoted by cf> 7\ K. If X E n o(M; TM) is a vector 
field, then i(X) is the usual insertion operator of degree - I on n(M). 

1.3. The exteriour derivative d is also a derivation of degree I, which is not 
algebraic. In view of the well known equation 8(X) = i(X)d + di(X) (8 (X) the 
Lie derivation, X a vector field) we define the derivation 8(K) : = liCK), d] E 

E Derkn(M) for K E nk(M; TM) and call it the Lie derivation along K. Note 
that 8 (IdTM) = d. 

PROPOSITION. Any derivation DE Derkn(M) can uniquely be written in the 
form D = 8 (K) + i(L) for K E nk(M; TM) and L E nk + I(M; TM). D is algebraic 

ifand only ifK = o. [D, d] := 0 ifand only if L = o. 

Scetch of proof: Let Xi E.u£(M) be vector fields. Then f 1-+ (D!) (Xl' ... ,Xk ) 

is a derivation (of degree 0) of C~(M) := n O(M), so it is given by the action of a 
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vector field K(Xl' ... ,Xk ), which is skew and C~(M)-linear in the X" so K E 

Ok(M; TM). Then D - 0 (K) is algebraic, so equals i(L) for some L. 
Note that [0 (K), dJ = 0 by the graded Jacobi identity. 

. 
1.4. DEFINITION. Let K, E 0 

~ 

1 (M; TM). Then clearly [[0 (K}), o(K2)] , d] = O. So 
by 1.3 [0(K1), 0 (K2)] = O([Kl' K2]) for some unique [Kl' K2] E Okl + k2(M; TM), 

which is called the Frolicher Nijenhuis bracket of Kl' K 2• 

1.5. PROPOSITION. 1. With the Frolicher Nijenhuis bracket the space OeM; TM) 

becomes a graded Lie algebra. 

2. For vector fields X, Y the bracket [X, Y] is the usual Lie bracket of vector 

fields. 

The proof is clear. 

1.6. PROPOSITION. For K E Ok(M; TM) and L E Oh + l(M; TM) we have 

[0 (K), i(L)] = i([K, LD - (- I)kh 8 (i(L)K). 

Proof [8(K),i(L)] + (_l)hkO(i(L)K) vanishes on nO(M), so is algebraic. By 
the graded Jacoby identity we get [[O(K), i(L)], d] = [i([K, L]), d], and since 
[. ,d] is injective on algebraic derivations the formula follows. • 
1.7. PROPOSITION. 1. The space Der n(M) is a graded module over the graded 

commutative algebra n(M) with the action (tP AD)I/I = tP AD 1/1. 
2. 	For D j E Derkp(M) and tP E oq(M) we have 


(q +k1)k2 D 

[tP I\Dl' D2] = tP A[Dl' D2] - (- I) D2tP AI' 

3. For L E OeM; TM) we have i(tP I\L) = tP I\;(L). 
4. 	For K E Ok(M; TM) we have 0 (tP I\K) = q, "0 (K) +(- l)q + k dtP 1\i(K)' 

h·+ 15. For L j E n I (M; TM) we have 

[tP I\Ll' L 21" = tP 1\ [L1' L2r - (- dq + h1)h2;(L2) tP AL} . 

6. For K j E Oki(M; TM) we have 

[tP AKl' K2] = tP 1\ [Kl' K 2J - (- o<q +k,)k20 (K2)tP I\K} + 

+ (-l)q +k'dtPAi(K1) K 2· 

7. For X, Y E~(M), tP E Oq(M), 1/1 E O(M) we have: 

[tP ~ X, 1/1 ~ Y] = tP A 1/1 ~ [X, Y] + tP 1\ 0 (X) 1/1 ~ Y - 0 (Y)tP 1\ 1/1 I8IX 

+ (-lY'(dtPl\i(X)1/I18I Y + i(Y)tPl\dl/l l8l X). 
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Proof For 2, 3,4 just compute. For 5 compute i([</> I\Ll' L2n. For 6 compute 
(J ([</> I\Kl' K 2]). For 7 use 6. • 

Now we include two results which will not be essential for the following, but 
they probably give some insight into the Frolicher Nijenhuis bracket. We only 
sketch the proofs. 

1.8. PROPOSITION. For K E n,k(M; TM), </> E nh(M), Xi Efi,(M) we have 

«(J(K)</»(Xl"'" X k + h) = 

I 
= -,-, L signa8(K(Xol',,,,Xok))(</>(Xo(k+l),,,,,Xo(k+h)) + 

k.h. oES
h+k 

-1 
+ L signa </>([K(Xol"'" X ok )' Xo(k +1)]' Xo(k +2)"'" Xo(k +h» + 

k!(h-l)! 0 

(_l)k-l . 

+ (k-l)!(h -1)!2! ~ signa </>(K([Xol,Xo2],Xo3"",Xo(k + 1»,Xo(k +2)"" Xo(k +h»' 

This can be proved by combinatorics starting from the formula in 1.2.1 (diffi­
cult), or by putting K = l/J ® X and using 1.7.4. 

1.9. PROPOSITION. For K E nk(M; TM) and L E nh(M; 1M) we have 

[K, L] (Xl"'" Xk + h) = 

1 
= k'h' L signa [K(Xol',,,,Xok),L(Xo(k+l),,,,,Xo(k+h»] + 

•• oESk + h 

-1 
+ L sign a L ([K(Xol"'" Xok)' Xo(k +1)], Xo(k +2)"'" X o(k + h» + 

k1(h-l)! 0 

(_l)kh 

+ (k-l)!h! ~ signa K([L (Xo1''''' Xah ),Xo(h+l)]' Xo(h +2)"'" Xo(h +k» + 
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For the proof the following concepts are used: let E -+- M be a vector bundle. 
A derivation D of the graded O(M)-module n(M;E) is a pair (D, jj) such that 
D(w /\ '11) = Dw /\ '11 + (_l)kh w /\D'I1 for some D : O(M) ~ O(M), wE Oh(M), 

'11 E O(M;E). Then jj is uniquely determined and is in DerkO(M). The graded 
commutator [Dl'D2] makes Der OeM; E) into a graded Lie algebra. For K E 
E O(M; TM) the operator i(K) is in Der n(M; E). Any covariant exteriour deriva­
tive V is in Der OeM; E). So is ev(K) ; = [i(K), V], the covariant Lie derivative 
along K. 

If V is a torsionfree covariant exteriour derivative on the tangent bundle TM, 
then [K, L] = e.y<K)L - (- l)kh e,/L)K. Via this formula, the analogue of 
formula 1.8 for ev(K)L implies 1.9. 

§2. HAMILTONIAN MECHANICS 

2.1. Let (M, w) be a symplectic manifold, so wE O(M} is a 2-form, dw = 0, and 
w : TM -+- T*M is a fibre wise linear isomorphism, where (w(X), Y> = w(X, Y). 

We have (w)* = - w, so dim M = 2n and w /\ ... /\ w (n times) is a volume form. 

2.2. Put (wr1 = : p : T*M -+- TM, a fibrewise linear isomorphism. 
For a function [E C-(M) define HI: = pdf, the Hamiltonian vector field with 

generating function [. HI is uniquely determined by the equation w(HI' X) = 
= d[(X) = X[for any vector field X, or i(HI)w = dr. 

We also have HUg) = HI . g + [ . ~. 

2.3. Defme the Poisson bracket {t, g }of two functions by 

{t, g}: = w(Hg, HI} = i(Hf)i(Hg}w = i(HI}dg = e(Hf)g· 

Then (C-(M), {,}) is a Lie algebra (see 2.4) and {t, gh} = {t, g}. h + g . {t, h}, 
so ad: (C-(M), {,}) -+- Der (C-(M), . ) is a Lie algebra homomorphism. 

2.4. PROPOSITION. Let~(j(.)w=o(M) :={XE~(M) :e(X)w=O}. Then this is 
a Lie subalgebra o[fr(M) and we have the [allowing exact sequence o[ Lie algebras 

and Lie algebra homomorphisms with the indicated Lie brackets: 

o { , } [,] O. 

Proof i is the embedding of the locally constant functions. If HI = pd[= 0, then 
d[ = 0, so [is locally constant,[E HO(M). 
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9(H[)w = i(H[)w + di(H[)w = 0 + ddl= 0, so Htakes values in1'"8(.)w=o(M). 
Now H({f,g}) = [H[,~l follows from 

i(H {f, g})w =d {I, g} =d9(H[)g =9(H[) dg = 

= 9(H[)i(Hg)w - i(Hg)9(H[)w, since S(H[)w = 0, 

= [9(H[), i(Hg)] w = i([H[, HgDw + 0 by 1.6. 

For X E1'"(M) we have S(X)w = 0 + di(X)w, so i(X)w is closed if and and 

only if 9(X)w = O. Thus -r :,U£8(.)w=O<M)~H1(M) is well defined, where 
-r(X) is the (de Rham) cohomology class of i(X)w. Furthermore -reX) == 0 if 

i(X)w is exact, that is i(X)w =dl for some I, but then X == HI" So ker'Y = 
=imH. 

For X, YE;r8(.)W=o(M) we have by 1.6: 

i([X, YDw = [SeX), J(Y)]w = 9(X)i(Y)w - 0 = 

= i(X)di(Y)w + di(X)i(Y)w = 0 + di(X)i(Y)w 

so 'Y([X, Y]) = o. 
HO(M) is in the center of (C~(M), { ,D, for dl= 0 implies {f,g}= 8(Hf )g == 

== 8(0)g == O. 
Finally we show that { , } is a lie bracket: 

{f,g} = w(~, H[) = - w(H[, Hg) = --{g,f}. 

{{f,g},h}= 9(H{t,g})h = 9([H[,H,J)h = [9(H[), 9(Hg)]h = 

= 9(H[)9(H)h - 9(H)9(H[)h ={f,{g, h}} -{g,{I, h}}. • 

§3. THE GENERALIZED HAMILTONIAN MAPPING 

3.1. Let (M, w) be a symplectic manifold. Recall the fibrewise isomorphism 
p = w- 1 : T*M ~ TM from 2.2. We extend p to a module valued derivation of 
degree - 1 (see 3.2.1 below) p : OeM) ~ OeM; TM) by putting: 

k 

p(I/It', ... Al/lk) = [(-1)i-11/11A.. .Al/li_lAp(I/Ii)Al/li+l A.. .A I/Ik = 
i= 1 

=L (_1)i-1 1/11/\'" ~i ...AI/I" 0P(I/Ii)' I/Ii E01(M); 

p IOO(M) = o. 

3.2. OeM; TM) is a graded left O(M)-module and also a graded right O(M)­
-module by cf> AK = (_l)qk K Acf> for cf> E Oq(M) and K E Ok(M; 1M). 
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LEMMA. 1. p(</J A 1/1) = p(</J) A 1/1 + (- l)q </J I\.p( 1/1) for </J, 1/1 E n(M), </J of degree 

q. 
2. i(p</J)w = (- l)q-l . q . </Jfor </J E nq(M). 

3. [p, i(ifl 0X)] = pi(</J 0 X) - (- l)q-l i (cf>. 0 X)p = pljJ Ai(X), IjJ E nq(M), 

X Eg{(M). 

Proof 1. is clear. 2. take IjJ = 1/111\. . .. A1/Iq for 1/1; E n1(M) and compute. 3. p is a 
derivation n(M)-+n(M; TM) of degree -1 by 1, i(</J 0X) :n(M)-+n(M) is a 
derivation of degree q - 1, and i(1jJ 0X) : n(M; TM) -+ n(M; TM) is also a deriva­
tion of degree q - I of the n(M)-module in the sense indicated in 1.9. So the 
graded commutator in 3 makes sense and is a derivation n(M) -+ n(M; TM) of 
degree q - 2 which vanishes on n 0(M) and it is therefore uniquely determined 
by its action on n 1(M). The same is true for pljJ -i(X) :n(M)-+n(M;TM). 
So it suffices to check the equation on I-forms: 1/1 E n1(M). 

pi(</J 0X)1/I - (- l)q-l i(1jJ 0X)p 1/1 = p(</JA i(X) 1/1) + 0 

since p 1/1 is a vector field and i(X) 1/1 E n o(M) since = p IjJ I\. i (X) 1/1 + O. • 

3.3. Def"me Ii: nk(M) -+ nk-1(M; TM) by p(</J) = (- 1)'~-1 ! pljJ for k > 0 and 

pi nO(M);c O. Then i(]iljJ)w =</J for degree </J > 0, and 15 :n +(M) = $ nk(M)-+ 
k>O 

-+ n(M; TM) is a right inverse to i( .)w : n(M; TM) -+ n+(M). 

Since both operators are algebraic and hence of constant rank we may consider 
the sub vector bundle E~ : = ker i( .)w c...- Ak T*M 0 TM over M and we put 
E = $ Ek. Note that EO = 0 and EdimM = AdimM T*M 0 TM. 

W k>O W W w 

Furthermore we have Ak T*M 0 TM = E~ $ im pi Ak + 1T*M, and in tum 

nk(M; TM) = r(E~) $ im 151 nk+1(M) = I'(E~) $ nk+ l(M), 

n(M;TM)=I'(E )$imp=r(E )$n+(M).
w w 

The projection onto im 15 is 15 0 i( . )w, that onto n +(M) is i( . )w, than onto 
I'(Ew ) is Id - 15 0 i( .)w = :P. r(Ew) is a graded n(M)-module, since i(K)w = 0 
implies i(</J AK)w = IjJ Ai(K)w = O. Note that p is no longer a derivation. 

3.4. Now we define the generalized Hamiltonian mapping H : n(M) -+ n(M; TM) 
by Hq, = H(</J) : = pd</J E nk(M; TM) for IjJ E nk(M). For fE CCO(M) we get the 
usual Hamiltonian vector field HI discussed in §2. 

LEMMA. 1. i(Hq,)w = (-Il· (k + 1). dljJfor IjJ E nk(M). 

2. 9(Hq,)w = 0 
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3. H(qJ/\ vI)::::: H",AI/I + cpAH", + (-lY'(pcpAdl/l -dcp(\p 1/1) for cp ofdegree k. 

4. H(dcpAI/I):::::dcpAH",-(-l)kQ dl/lAH", for deg(cp):::::k and deg(I/I):::::q. 
k / " 

5. H(fodJ;. A.. .Adfk)::::: j~O (-1) dfoA ... d~ .. .Adft fi!J Hfj . 

Proof 1. i(H",)w = i(pdcp)w = (- Ok . (k + 0 .dcp by 3.2.2. 

2. 8(H",)w = [i(H",), d]w ::::: i(H",)dw - (- Ok-1 di (H)w::::: O+(k + 1)ddcp = 

::::: 0 by 1. 
3. 	H(cpAI/I) = pd(cpAI/I)::::: p(dcpA 1/1 + (_1)k cpAdl/l) 


::::: pdcpAI/I + (_l)k+1dcpApl/l + (-1'1' pcpAdl/l + cpl\pdl/l 


::::: H",I\I/I + cpl\H", + (-l)k(pcpAdl/l -dt/Jl\p 1/1). 

4. 	H(dcpA 1/1)::::: 0 + dcpl\H", + (_1)k+l(pdcpAdl/l - 0) by 3 


= dcpl\H", -(-1'1' H",l\dl/l = dcpAH",-(_1)kQdl/lAH",. 


5. H{fo dfi 1\ . . . I\dfic)::::: Hlo"dfi A .. .Adft + 0 + (-0 0 (0 -dfoAp(d..f .. .dft» 

by 3 
k '-1 " 

::::: dfi A ... Ad!,,; fi!J Hlo -dfoAj~ 1 (-1)1 dfiA ... d~ .. .Adft fi!Jd~ 

by 3.1 
k . " 

::::: .L (- 1)/ dlnoA ... dt ...Adfk fi!J H~.. 	 • 
J = 1 / '; 

3.S. We consider the following sequnece: 

1. 

Here Z(M) is the space of closed forms, i is the embedding, 08(.)W= oeM; TM) : = 

::::: {K E OeM; TM) : 8(K)w ::::: o}, 'Y(K) is the cohomology class ofi(K)w (see 3.6 
below), 'Y has degree + 1 as indicated in the sequence, and P is the fibre projec­

tion Id - P0 i(.)w of 3.3. 
Now let B(M) be the space of exact forms, so Z(M)/B(M) = H(M). We consider 

also the following sequence: 

i H 	 +P 
2. O-+H(M)---+ O(M)/B(M) ---+08(.)w =o(M; 1M)~HH1(M)ffi r(Ew)-+O. 

Note that the «degree 0 part» of both sequences is ithe «usual Hamiltonian 

sequence» of 2.4. 

3.6. LEMMA. The sequences 3.5.1 and 3.5.2 are both exact. 

Proof We only have to show that the first sequence is exact. 
Exactness at Z(M) is clear. 
Exactness at O(M): H",::::: pdcp = 0 if and only if dIP ::::: 0 since pi 0 +(M) is 

injective. 
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Exactness at ilO(.)w=o(M; TM): 

PH(cp) = (ld - P0 i(.)w)pdcp = pdcp - pi(pdcp)w = 

= pdcp - pi(pdcp)w = pdcp - pdcp = 0 by 3.3. 

Let KE il:(.)w=o(M; TM). Then 0 = 9(K)w = 0-(_l)k-1di(K)w, so i(K)w 

is closed and 'Y(K) = [i(K)w] EHk+I(M) is well defined. Since i(H",)w = (_1)k . 

. (k + 1) . dcp is exact we have 'Y(H",) = o. Now suppose that 'Y(K) = 0 and P(K) = 

=0. Then o=P(K)=K-75i(K)w, so K=pi(K)w; furthermore 'Y(K) =0 

means i(K)w =d 1/1 for some 1/1 E ilk(M), so K =pi(K)w =pd 1/1 = (- l)k --
1 H.,.. 

k+l 'Y 

Exactness atH*+I(M) $ r(Ew) : Let [cp] E Hk +1(M), so cp E ilk +1(M), dcp = O. 
9(pcp)w = 0 - (- 1)k-1di(pcp)w = (_1)k dcp = 0, so pcp E il:(.)w=o(M; TM), 

and i(pcp)w = cp, so 'Y<PCP) = [cp] and l' is suIjective. 
Let K E il(M; TM). Then K E r(Ew) if and only if i(K)w = o. But then 

clt(iij1.y 9(K)w=0-(_1)k- 1di(K)w=0, so KEilO(.)w=o(M;TM) and 
P(K) = K, 'Y(K) = o. So finally PCpcp + K) = K by 3.3 and 'YC75cp + K) = [cp]' 

thus l' + Pis suIjective. • 
3.7. LEMMA. ilO(.)w=o(M; TM) is a graded Lie subalgebra ofilCM; TM). For 
K, L in this space we have i([K, LDw = dA(K, L)w, where 

A(K, L) = (- II i(K)i(L) _(_1)(k-I)1 i(i(L)K)E Endk +1_2il(M) 

= _(_l)(k-I)Ii(L)i(K) + (- II i(i(K)L) = 

(-ll 
= -- (i (K)i(L) + (_l)k-l)(l-l)i(L)i(K) + 

2 

+ i(i(K)L + (_l)(k-I)(l-l)i(L)K). 

Proof 9(K)w = 0, 9(L)w = 0 implies 8([K, Ln = [9(K), 9(L)]w = O. 
i([K, LDw = [9(K), i(L)]w +(_l)k(l-l) 9(I(L)K)w by 1.6 
= 8(K)i(L)w -(-ll(l-l)i(L)9(K)w + (_l)k(l-l)(O - (_1)k+I-2di(i(L)K)w) 

= i(K)di(L)w - (-ll-ldi(K)i(L)w - (_l)(k-l)ldi(i(L)K)w 

= d«-ll i(K)i(L) - (_1)(k-l)li(i(L)K)w 

= dA(K, L)w. 

Now recall that liCK), i(L)] == i([K, L]") and [K, L]· =i(K)L - (_1)(k-I)(I-l) i(L)K 

ftom 1.2.2 and use this to transform the first expression for A(K, L) into the 
second one. The third expression is then the arithmetic mean of the first and 
the second. • 
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Remark. 1. It follows, that the mapping 'Y in the sequences of 3.5 induces the 
bracket 0 on HH I(M). 

2. Note the graded anticommutator i(K)i(L) + (_1)("-1)(1-1) i(L)i(K) and 
similar things in the expression of A (K, L). Here graded Jordan algebras make 
their appearence. 

3.8. Remark. r(E,) ~ ne( .)w = oeM; TM) is not a graded Lie subalgebra for 
the Frolicher Nijenhuis bracket, if dim M > 2. 

Proof K=i(H,)W0H,=df0H, and L=dg®Hg, then K,LEr(E~), but 
i([K, L))w = dA(K, L)w = d{f, g } Adf/\dg which is not 0 in general if dimM > 
> 2. ~ 1"'- f p,""-r>- • 

~ ,{ 9,' 

3.9. Remark. The kernel of p:ne(.)w=o(M;TM)-+T(Ew) is not an ideal for 
the Frolicher Nijenhuis bracket. 

"" '( Jell.,j f~, ~ ?p ~} r (E ,J <) 

Proof Let K=df0HfEr(E~). Theni([K,Hg])w=dA(K,Hg)w=~ +)..:r-~ <~~ 
+ ~, which is not 0 in general, if dim M> O. • 
M~t-b[>i "f i (C1(,I+l l)c.,o:: tJe~~q<dl-J!~,~1~~~ =1= J~~~f~,n" .t~®[44,WrJ~ [K,~\l 

3.10. LEMMA. 1. i(1/> 0X)HljJ = - I/>Api(X)dl/l for 1/>,1/1 E n(M), X E~(M). 

2. i(i(K)HljJ) = (-1)", k . i(K)dl/l for 1/1 E n"(M), K e n(M; TM). 

Proof 1. i(1/> rsX)HljJ = i(1/> rsX)pdl/l = U(I/> 0X), pjdl/l + (- l)"-lp i(1/> rsX)dl/l 
. = (-1)" pI/>M(X)dl/l- (-l)"p(I/>M(X)dl/l) by 3.2.3 

= (_1)k pt/J/\i (X)dl/l - (-1)" pl/>/\i(X)dl/l - I/> Api (X)dl/l 

by 3.2.1 
= - I/> Api(X)dl/l. 

2. i(i(1/> 0X)HljJ)w = i(-l/>l\pi(X)dl/l)w by 1 
= - I/> l\i(pi(X)dl/l)w = - I/> 1\{_1)k-l . k . i (X)dl/l 

by 3.2.2 
= (_1)k . k . i(1/> 0X)dl/l. • 

3.11. LEMMA. [X,H<p]=H(8(X)t{1). for I/>En(M). XEn~(.)w=o(M;TM)= 
=:!(O(.) w = oeM). If the degree ofX is not 0, then this is wrong. 

Proof Let us first take cp = fE C-(M). Then by using 3.7 we geti([H" X])w = 
=dA(H" X)w = di(H,)i(X)w - 0 = -di(X)i(H,)w = -di(X)df= -d(Xf). 

So by 2.2 we see that [HI' Xl = - H(Xj). 
Now in general we may take cp = to dfl 1\ . . . I\dfk. Then we use 3.4.5 and 

1.7.6 to get: 
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[Het>'X] = [~(-1)j dfol\·· .d~ ...I\dfk @Ht,.,X]= 

1 


= ~ (- l)i (dfo/l. . .. d~ .. . /l.dfk@ [Hfi' X]- S(X)(dfo/l. . .. d~ .. . /l.dfk)@ HI". + 0).
I 	 Jj 

This turns out to be - H(S(X) 1/» by using the derivation property of S(X) and 
the equation above. • 

§4. THE GENERALIZED POISSON BRACf'ET 

4.1. Let (M, w) be again a symplectic manifold. Consider the generalized Hamil­
tonian mapping H : n(M) -+ n(M; TM). We want to find a graded Lie bracket 

loYl. { , }on n(M), generalizing the Poisson bracket of § 2¢ nO(M) such that Hbecomes 
1 

a homomorphism. It will tum out that this is not possible, but that there is a generali­
zed Poisson bracket on n(M)/B(M). 

Suppose that there is a generalized Poisson bracket { , } on n(M). Then we 
have i(H{I/>,I/I})w=(_l)k+l·(k+I+l)d{I/>,I/I} by 3.4.1 for deg(I/»=k, 

deg (1/1) = I. On the other hand i(H{I/>, I/I})w = i([Het>' HI/J])w = dA(Het>' HI/J)w 

by 3.7. 

(-ll+ 1 
So we get { 1/>, I/I} = . A (H..." H ) w + sotnethingclosed. k + I + I 'I' --1/1 .,' . 

One can show that this equals i(H)dl/l + something closed, so we start our 
investigation with i(Het» d 1/1. 

4.2. Define {I/>, I/I}1 : = i(Het»dl/l for 1/>, 1/1 E n(M). For f, g E C"(M) the function 
{f, g}l coincides with the usual Poisson bracket of § 2. 

LEMMA. I. {dl/>/l.l/I, r}l = dl/>/I.{I/I, r}l- (_1)kl dl/l/l.{I/>, r}l for deg (I/» = k, 

deg (1/1) = I. 
2. 	{1/>,I/I}l=_(_l)kl{I/I,I/>}l 

3. 	H({I/>, I/I}l) = [Het>' HI/J]' 

4. 	{fodfiA ... /l.dfk,godg1/l.·· ./l.dglP = 
= i~ (- l)i+j q, ~ }dfo /I. ... d~ .. . /l.d!'Jdgo/l.· .. igj .. . /l.dg1• 

5. 	The bracket {, }l does not satisfy the graded Jacobi identity. See 4.4 below. 

Proof 1. {dl/>/l.I/I, rp = i(H(dl/>/l.I/I»dr=i(dl/>/l.HI/J - (_1)kl dl/l/l.H)drby 3.4.4 

=dI/>Ai(HI/J)dr-(-I)kl dI/lAi(Het»dr by 1.7.3 
= dl/>/I.{ 1/1, r}l- (- 1)kl dl/l/l.{I/>, r}l. 

2. Weuseinductiononk+l :{[,g}=-{g,f}holdsby §2. 
For the general induction step it suffices to consider {[dl/>, 1/1 p, since the 

bracket is local. 
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{fdifJ, 1/I}1 	={difJl\f, 1/I}1 = difJA.{f, 1/1 }1-dfA.{ifJ, I/I}l by 1, 
= - difJl\{ 1/1, f}1 +(- l)kl dfA.{ 1/1, ifJ}l by induction. 

{1/I,fdifJ}l 	= i(H",)d(fdifJ) = i(H",)(dfl\difJ) = i(H",)dfl\difJ + (_l)I-ldfA.i(H",)difJ 
= {I/I ,fPA.difJ-(-li dfA.{ 1/1, ifJ}1 =(_l)(k + 1)1 difJl\{ 1/1 ,f}1- (-Ii dfl\{ 1/1, ifJ}l 

= - (- l)(k + 1)1 {fdifJ, 1/1 P by the expression above. 

3. We use again induction on k + I: For k +1= 0 this is true by §2. 

Since both sides are local, it suffices again to consider H({fdifJ, 1/I}1). 


H({fdifJ, 1/I}1) =H(difJA.{f, l/I}l-dfA.{ifJ, 1/I}1) by 1 
(3.4.4) 	 = difJI\H({f, 1/I}1) - (-lfl d{fj 1/1 }ll\HtP-dfA.H({ifJ, 1/1 JI) +d {ifJ, 1/1 }l/1.Hf . 

= difJl\[Hf'H,.;) _(_l)kl d{f, l/I}l/1.HtP - df/l.[HtP,H",l +d {ifJ, l/I}lI\Hf , 

by induction. 

[H(fdifJ), H", 1= [difJ/l.Hf - dfA.HtP , H", 1 by 3.4.4 
= difJl\[Hf' H", 1- (- l)(k+l)1 8(H",)difJI\Hf + 0 by 1.7.6 

- df" [H , H 1+ (_l)(1+k)1 e(H )dfl\H + 0 
tP '" kl. '" f/I=difJl\[Hf,H",l-(-l) dl(H",)difJI\Hf 

-dfA[HtP ,H",l + (_1)kl di(H",)dfI\HtP 
= difJA[Hf , H", 1- (- l)kl d {I/I, ifJ}ll\Hf 

-dfA[HtP,H,] + (_1)kl d{I/I,[J1I\Hq, 

= difJl\[Hf'H",l ~d{ifJ, l/I}lI\Hf-dfl\[~,H",l-(_l)kl d{f, 1/I}11\~ by 2 
=H({fdifJ, 1/I}1). 

4.3. Define{ifJ, 1/I}2 : =8 (H) 1/1 =i(H)dl/l +(-lfdi(H) 1/1 = {ifJ, 1/I}1 +(_l)k di(HtP)1/1 
for ifJ E nk(M), 1/1 E n(M). For f, g E C-(M) the bracket { f, g}2 is again the 
usual Poisson bracket of §2. 

LEMMA. 	 ~ k andI. {•• "AT)' ~ {•• ")~M +(-I)"';,A {</>. T)'/tO,,{,g (</» 	 /
deg (1/1) = 1. 

2. H({ifJ, 1/I}2) = [H""H",l. 
3. {,} 2 satisfies the graded Jacobi identity in the form 

{ifJ,{ 1/1, r}2}2 = {{ifJ, 1/I}2, r}2 + (_l)kl{ I/I,{ ifJ, r}2}2. 

4. {to dfi. /I. .•. /\ dfk , go dg1".. ./l.dgl }2 = 

http:difJ/l.Hf
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= ~ (_1)i {f;,go}dfoA... if; ...Ad/kAdg1A ...Adgl, 
k k I i+' ~ ~ 

- (-1) i~Oj~ 1 (-1) I d{f;,gj}dfoll.·· .aft·· .Ad/kAgoAdg1A... dg/ ...Adgl 

5. { ,} 2 is not graded anticommutative, we have 

{I/I, 'l/I}2 + (_Okl {t/I, 1/>}2 =(-If d(i(H",) l/I - (- I)(k -1)(1-1) i(Hl/I)I/». 

Proof 1. {I/I, t/I AT}2 = 9(H",)(l/IAT) = 9(Hq,> VI AT + (_l)kl t/I A9(Hq,>T 

={I/>, t/I}2AT + (-Okl t/lII.{I/>, Tf 
2. 	H({r/J, t/I }2) =H({ 1/>, t/I}l + (_1)k di(H</» t/I) =H({I/>, t/I p) + 0 = [H</>, Hl/I]by 4.2.3. 
3. 	{l/l,{ l/I,T}2}2 = 8(Hq,>9(Hl/I)T = [9(H,pl,f)(Hl/I)]T + (_l)kI 9(Hl/I)9(H",)T 

= 9([H"" H1/iJ) + (_I)kl 9(H",)9(H</»T by 1.4 
= 9(H({I/>, t/I}2))T + (_l)kl 9(H1/i) 9 (H</>)T by 2 
={{I/>, t/I}2,T}2+ (- I)k/{t/I,{I/>,TP}2. 

4. 	{fod/jl\....Ad/k,godg/\.. .Adgl}2 = 

= {fodJ;,A...M/k,godg1A ...AdgY +(-Ifdi(H(fodJ;,A...Adfk»(godglA...Adgl) 

= .'T,. (_1)i+i{f;,~}dfoA... af; ...Ad/kAdgoA... dgj ...Adgl by 4.2.4 
',I 

+ (-Ifd(~ (-1); dfoA .. di; ...MikAi(Ht,.)(godg1A...Mg1» by 3.4.5 , 	 , 
The second expression equals in turn 

(-Ifd([ (_1)i dfoA.. .ii; ...Adf/,goA;:' (-I)/-ldglA ...Ai(Hf;)dg/A ...Adgl) 
I 1=1 

k I 

=(_l)k-l L L (_1)i+/d(go{f;,g/})dfoA... if; ...Ad/kAdg1A... i gj ...Adgl 
i=O/= 1 

k I 

=- L L (_1)i+/ {f;,gj}dfoA .. ii; ...Ad/kAdgoA ... a'Kj ... Adgl 
;= 0 /= 1 

k I 

- (-If L L 	(_1)i+i d {f;, g/}dfoA ... di; ...Adf,/\goAdgl 1\ .. .iii ...Adgl · 
;=0/= 1 

Putting this back we get the formula in the lemma. 
S. {I/>, t/lf + (_l)kl{ t/I, 1/>}2={1/>, t/I}l + (_1)k di(H,pl t/I + (_1)kl ({ t/I, I/>}l + (-Iidi(Hl/I)1/» 

= 0 + d« _1)k i(H",) t/I + (_l)(k-l)l i(H", )1/» by 4.2.2 
= (- l)kd(i(H</»l/I - (- l)(k-l) (1-1) i(Hl/i )1/1). • 

4.4. COROLLARY. {I/>, {t/I, T}l}l - {{I/>, t/I}l, T}l- (- l)kl {t/I, {I/I, T}l}l = - dA(H"" 

H",)d T, where A (K, L) is from 3.7, and this is not 0 in general if dim M > 2. 
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Proof, {I/>, {Iji, T}2f = {I/>, {Iji, T}2}1 + (- l)k di (Hrp)( {Iji, TP) 

={I/>, {Iji, T}l}l + {1>, (- 1)1 di(H>/J )T}l + (- Ifdi(Hrp)e(H>/J)T 

={ 1/>, {Iji, T}l}l + (- l)k di(Hrp)9(H>/J )T. 

Plug this and similar expressions into formula 4.3.3 and use 1.6,4.3.2 and 3.7 to 
derive the result. 

To see that this does not vanish in general we use canonical (Darboux-) coordi­
nates (qi,Pi) on M and choose I/> = ~ Pi dqi, Iji =f, T =g. Then H(I/» =IdroE 

Ql(U, TV), where U is the coordin~te domain, and -A(Hrp,H,)dg=d{!,g}, 

which is not 0 in general. • 
4.5. COROLLARY. If we try to make { , }2 graded anticommutative by force, i.e. 

if we put {1>, 1ji}3 : = {I/>, 1ji}2 - (- 111{ Iji, I/>f = e(Hrp)1ji - (- 111 e(H>/J)I/>, then 
{1>,{Iji,T}3}3_{{I/>, 1ji}3,T}3_(_l)kl{Iji,{I/>,T}3}3 = _(_l)kl+km[{Iji,T}2,l/>f+ 

+ (- 111 {{I/I, 1/>}2, T}2 - (- l)km + 1m {{T, 1/>}2, Iji }2. 

The second expression is a form of the graded Jacobi identity which would 

be equivalent to 4.3.3 if { ,}2 were graded anticommutative; however it is not 

oin general. 

Proof Write out the definition of { , }3 and use three times the graded Jacobi 
identity 4.3.3 to get the formula. For the last assertion choose again canonical 
coordinates (qi, p.) and I/> = PI' Iji = ~ P,' dqi, T = (q 1)2. Then the first two terms 

. I i 

in the second expression vanish and the third one gives 2dq 1 up to a sign. • 

4.6. THEOREM. Let (M, w) be a symplectic manifold. 

1. The following sequence is exact and consists ofgraded Lie algebras: 

H o-+H*(M) -+ Q(M)/B(M) -+ DO(.)w=o(M; TM), 

o {,} [,] 
where the brackets are written below the spaces. The graded Poisson bracket 

{ , } is induced from { , }l or { ,} 2 on D(M). All mappings are homomorphisms 

ofgraded Lie algebras. 

2. 

is also exact, but there is no compatible structure of a graded Lie algebra on 

r(Ew )' 

3. Any K E Dk(M; TM) induces an operator e(K) : D(M)/B(M) -+ D(M)/B(M) 

ofdegree k. For~, iii E D(M)/B(M) we have e(H~) ~ ={~, iii}, so e(H"¢)ifj ={~, ¢.} 
(= 0 for even degree of?i; «conservation ofenergy» in this case). 
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4. U(M)/B(M) is no longer an algebra. not even a U(M)-module. But it is a 
graded Z(M)-module. 

Proof 1. See 3.6 and §4. 
2. See 3.6, 4.4 and 4.5. 
3. Since leeK), d] = 0, e(K) factors to U(M)/B(M). 
4. B(M) is a gradedideal in Z(M), but not in OeM). 	 • 
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