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The Division Theorem on Banach Spaces

Von

P. Michor

(Vorgelegt in der Sitzung der math.-nat. Klasse am 24. Jinner 1980 durch das
w. M. Edmund Hlawka)

The following is a detailed exposition of the proof of the division
theorem for smooth functions, following Nirenberg [7] up to his
extension lemma and Mather’s proof [5] of the latter. This proof is
developped in the context of Banach spaces—the necessary modifi-
cations are minor.

1. The Division Theorem: Let E, F be real Banach spaces and let
d:Rx E—>R be a smooth function, defined near 0, such that
d(t,0)=d(t)tt for some k>0, where d(0)+0, d: R— R is smooth,
defined near 0.

Then given any smooth function near 0 f: R x E— F there are

smooth functions near 0 g:Rx E—F, r;: E—>F, i=0, 1, ..., k—1,
such that

k-1

i=0

2. Notation: Let Pj;: R x Rk — R be the Polynomial

k-1
Py, 2) =tk + ) M, A=A, ..., Apr)-
i=0
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3. The Polynomial Division Theorem: Let f(t,xz) be a smooth
function Rx E-CQF.

Then there are smooth functions, defined near 0 in R* ,
GRXEXR>COQF, ri: EXxR-CQF, i=0, ..., k—1, such that

‘ k-1
ftx)=q(t, @, 2) Py (t,2) + 3 ri(x, x)#. If f is realvalued in C® F (i.e.
, i=0 '
takes its values in the real subspace 1 ® F), then q and r; may be chosen
realvalued too.

4. Remarks: a) CQF = F®iF is just the canonical complexifi-
cation of the Banach space £, with some suitable norm.

b) The last assertion is trivial: just apply the projection
CR®F—->1QF toqand r,.

c) If f is in £ defined near 0 only, then the polynomial division
theorem remains valid for ¢ and »; defined near 0. Nothing in the proof
to follow has to be changed. But the global version does not imply the
local one in general, since there need not exist smooth partitions of
unity on £ (on C([0,1]) e.g. there is no smooth function with bounded
support, cf. Bonic and Frampton [1]).

d) Without loss of generality we may assume that f(., x) has
compact support in R for each x€E (or near 0). For suppose the
theorem is valid in this case and [ is arbitrary, let g; (t), h;(t), je N be
two locally finite families of smooth functions with compact support
such that (g; (¢) h; (t)); is a partition of unity. Then for each j we may
write

k-1
hy (O f (@) =g; (t,2,2) P (t,0) + Y. ryy (2, 0) 8,
i=0

but then clearly
k-1
Jt.x)=q(t,2,0) Pp(t,0)+ Y (2,08
i=1

for

q (t5 x>7\) = zg] (t) Qj (t’xﬂ\)’ Ty (xa)\) = Zgj (t) Tij (x’)\)'
J J
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5. Proof of the division theorem using the local form of the
polynomial division theorem:

Given d as in 1. there are smooth functions defined near 0
g RxXExRk—>R ri: EXRt->R, i=0, ..., k—1, so that
k-1
d(t,x)=q(t, 2. 0) Pp(t.0)+ Y, rs(x,0) 8, (6)
i=0
We claim that

d
7(0,0,0)%0,7,(0,0) =0, 5%(0,0)#0 for all j,

-a—’(o 0)=0 forj<i. (7)
By (6) we have M
, k-1
tkd(t)=d(t,0)=q(t0,0)tk + Y i (0,0)¢
i=0

Looking at the Taylor expansions at 0 of both sides of this equation
we see that 7;(0,0)=0 for all ¢ and ¢(0,0,0)=d(0)+0. Now
differentiate (6) at x =0, A =0 with respect to 2;, to obtain
dq
0=¢q(t,0,0)# +—(t,0,0) ¢ + Z 20,0)8.
O\ o axi

Again Taylor expansion at 0 tells us that for J <t we have

0 or;
6:: (0,0)=0 and 5:\1(0,0) =—¢q(0,0,0) £ 0. So (7) follows. Let now
i

0
R=(ry,...,74-1): E x R¥—> R¥ then DyR (0, 0) =<a—:i—(0, O)): Rk — Rk and
J

this matrix is invertible by (7).
Now consider the mapping (x,4) (x, R (x,2)) from E x RF into
itself, defined near 0. Its derivative at 0 has the form

( Idy 0 )
DR (0,0) DyR(0,0)

1%
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and so is invertible too. By the inverse function theorem on Banach
spaces (cf. N. Lang [4], 1. §5. this mapping is locally invertible at (0, 0),
its inverse (again fibered over £) being of the form (x,2) (z, s (x,1)).
Then of course R (x, s(x,1)) = 2.

Let now P.g:RxE—R be given by P(t,x)=P(t, s(x,0)),
q(t,x)=q(t,z,s(x,0)). Using (6) again for » = s(x,0) we have

k-1
d(t,x)=q(t,x,s(x,0)) Py (t,s(x,0)) + Y 7 (x,s(x,0))t
i=1
=q(tx)P(t x).
1/q(¢,x) exists and is smooth near 0 since 4(0,0)=@(0,0,0)%0, so
P(t,x)=d(t,x)/d (t, ) near 0.

Now if some f is given as in 1. then by 3. again there are functions
m:RxExRk—>F, n;:E x RE—F, i=0, ..., k—1, defined near 0,
such that (for A =s(x,0))

k-1 o
Jtx)=m(t,z,s(x,0)) Py (t,s(x,0) + Y n;(x,s(z,0) 8

i=0

m(t,z,s(x,0)) k-1 :
1) dt,x)+ EO n; (x,s(x,0))t

k-1
=q(t.x)d(tx)+ ), 7 (x)t. qed.

=0

8. For the proof of 3. we will need two lemmas. Before proving the
first one, some notation :

Let f:C'—C be smooth as a real function. If z =z + 1Y,

of of of .~ of
=—d dy =— dz,
then df . x+ay 6zdz+6z
where — af (ﬂ_ —ai) f <2j—c+ f>
0z 2\0x oy 0z 2\0x oy

0
d(fdz)=df/\dz=0+a—{dz'/\dz.
Z
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9. Lemma: Let f:C—>C®F be smooth. Let v be a simple closed
curve in (' whose interiour is U. Then for we U we have

B fz) J‘J‘ﬁ z)dz Adz
f(w)_-é;z_ z—w 0Z z—w

0
(If f is holomorphic C>C®F, i.e. 6—{ =0, this reduces to the Banach
z

space valued Cauchy formula. The integrals in this lemma are meant to
be Bochner integrals: Riemannian sums will converge in the Banach
space C @ F. See Dunford-Schwartz I [3] for a discussion of vector
valued integration.)

Proof: First we reduce the lemma to the one dimensional case: The
first integral exists in C @ F since y is compact and f(z)/(z—w) is
continuous on vy. The second one exists, since 0 /07 is continuous on [

dz ndz

z—w

Now we use duality. Take any continuous C—linear functional ¢
on C®F. That commutes with integration (with the limits of
Riemannian sums by continuity and with those sums by linearity) and

defines a finite Radon measure on U.

and

with Er by the chain rule, since it is its own derivative. So we may
Z :

< 1 J'J‘ dz Adz>
¢ :
2wl Jz—w z—w

Y

_ J@(f dz/\dz
271 )] z—w 21‘C’L —w

Y

compute:

=¢(f(w)) by the one dimensional formula. So by the theorem of
Hahn Banach the formula holds in C ® F.
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Now we prove the one dimensional case. Let we [/ , choose
e <min{jw—z|:zey}. Let U,=U\(disc of radius about w) and
Ye=0U,.

We apply 8. and Stokes’ theorem to the function f(2)(z—w),
which is smooth on a neighbourhood of U .

ﬂ gdZAdz’:__fj d(f(z) dz>=__ - f2) i
0Z z—w z—w z—w
U, U, *

U,
2
=— /(@) dz+ff(w+eexp(z3))ieexp(i%)d%}.
Yz—w cexp (¢ 9)
0

As £— 0, the last integral converges to 2x ¢ f(w) by uniform continu-
ity of f, and the integral on the left-hand-side converges to

102 z—w z z—w
measure which, applied to the difference set U \U,, converges to 0.
qed.

Ofdz ndz 0 dzrdz
f f ofdzna z’ since a—"j is bounded, ——"~ induces a finite Radon

10. The Nirenberg Extension Lemma: Let fi RxE->CQ®F be a
smooth function with support contained in K x E for some compact
K in R. Then there exists a smooth function [ CXExCk>CQF
such that

~

S, 2,0)=f(t,x) for te R and all AeCk, (11)

~

0
6—{ (2,2,2) vanishes to infinite order for {Im 2 =0} (12)
z

and on {(z,A): Py (z,1\) =0} for all xe E.

13. Proof of the polynomial division theorem 3., using the
Nirenberg extension lemma 10.

Let f be as in 10. and let f be its extension. It suffices to prove the
theorem for such an f, cf. 4.d).
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Let v be a smooth simple closed curve near 0 in C, U the interiour
of vy, 0eU.

k-1

For Py (z,0) =2k + ) W2l, A= (g, ..., hy—y)ECK, z€C
i=0 .
we have
k-1
Py (2,0)— Py (w,n) =2k —uk + ) 5 (28 —wi)
i=1

=(@2—w) (K 1+ 2w+ .. fzuwk2 4 wk-14

k-1
+ Y METI+ 22w w2 4 wi=1))
i-1
k-1
—w) Y, p;(z,2) wt for polynomials p; in z,\.
i=0

Il
—_
N

Py(z,n) P A) k-l
So k(z )= k(w szZ)\

—Ww 2w i=0

Now by 9. we can compute

ffzxx H@fzx)\dz/\dz
ka
Zm oz w

—w Pk

Z +

jf@fzxx ) Py (2,0 dz rdZ

02  Pr(z,\) 2—w

fzxk 1
[27”‘[ )dz+
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k-1
=q(w,x,\) Py (w,\) + Z ri (x,\)w?, where

=0

1 (fxn 1
’ ,)\ = . d
1= ) e—w e &t

Haf sx) 1 dzadz d*
0z Pi(z )z—w’an

0f (z,x.2) py(2,2) -
ff 7z sz )dZ/\dz.

All these integrals are Bochner integrals in C ® F. We have to
check, that they are defined and yield smooth functions. The (formal)
computation above is valid, since we used only linearity of the integral.
Now a Bochner integral is defined, if the function is continuous and
the domain (or its closure) is compact. The result is smooth in the
remaining variables, if all derivatives of the integrand are continuous
(we may interchange differentiation and integration).

The first integrals in the definition of both ¢ and r; are defined and
smooth as long as the zeros of Py, (z,) in z do not occur on the curve Y

if A is small enough.
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Let wus check this: Assume that for €y we have
0 <7 <zl <72 <1, max |z <e. Then

k-1 k-1
[+ 3 2] 2 K — Y llet] > f— ke,
i=0 i=0 *

For e small enough the last number will be positive.
The second integrals in the definitions exist and are smooth,

~

0
since 35 vanishes to infinite order on the zeros of P, and for real z (we
z
need w real in the theorem): this takes care of 1/(z—w). qed.

14. To prove the Nirenberg extension lemma we need another
lemma first. We denote ’

3(y,2)=inf{ly—1Imz|:zeC, P} (2,2) =0} for ye R and reCFk,

15. Lemma (Mather): There exists a continuous function
p: B x C¥ x R—[0,1] such that

e (€,2,%) =0 in a neighbourhood of y = 0. (16)
(&2 y)=0 when [£y| > 1. (17)
0 : :
5—9(5,?\,?/) =0 1n a neighbourhood of § (y,1) = 0. (18)
Y

(19) The function ¢ (£,2, y) is infinitely often differentiable with respect
to %, y, and its derivatives are continuous with respect to all variables
and satisfy

o glel oy

wgﬂ;pm,y) < C (o, B,v, K) (1 + [g] Tl + B+

for all multiindices «, # and all vye N, and all A€ K where K is compact
in C* and C' is a constant depending as indicated.
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20. Proof of the Nirenberg extension lemma 10., using lemma,
15.

Given a smooth function fSIRXxE-CQ®PF, in R compactly
supported, we consider the Fouriertransform

00 -
~

& x)= ff(t,x) e“éﬁitidt.

—o0

This integral exists in O ® F since f(., ) is compactly supported, and

-~

S(&,x) is smooth (compare the last arguments in 13.). Furthermore

|[f(£,x)|| < f If (¢, )|l d¢, so is uniformly bounded in £ for each xe E. If

p(E)is a po_l;nomial, then

o]

pE)E )= ff(t, x) p (E) e~2mite ¢t

—0

1

ft.x)p <“§:;;_t) (e727UE) d¢

I
8 ——8

r 1 0
— —2mitE (¢

' 1
the last equation holds, since R is formally selfadjoint (use
2T
integration by parts, after reducing to F = R by duality as in the proof
of 9.).
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So |p (&) Ilf(i, )| is uniformly bounded too and If (5, )| is rapidly
decreasing in £, and each derivative of f has the same property (use the
same argument for the derivative). We define now the extension foff.
For (z,x2,0)eC x E x Ck we put

o0

fzan)= f o (8.2, Imz)e2ri& f (£, 2) d,

where o is the function of lemma 15.

We claim that this integral is uniformly absolutely convergent in
C'® F and that we can differentiate under the integral sign, i.e. for any
multiindices «, # and v,3€ N the following integral is again uniformly

absolutely convergent:
(e 0]

5Ial OBl oY o
fax“aiﬁazmz*

(p (5,7, Im z) e2mi2E) £ (£, &) dE.

—o0

For, by (17) and (19),

o glel gy 0°
|0A*0%P 02705

(p (8,2, Imz) e225)

is uniformly bounded by a polynomial in [£|, and If (5, )|l is rapidly
decreasing. So the integral exists in C'® F (it does s0 on each compact in
R, and if we piece together compacts in an appropriate manner the
integrals of the norm of the function over these compacts will
converge). An even simpler argument applies to each derivative of f
with respect to z. So f exists and is smooth.

By (16) and the Fourier inversion formula (which holds C ® F too:

use duality to reduce it to the case F = R as in the proof of 9.) fis an

extension of f:
f(t,x)= ff(i,x)ezﬂiitdi =f(t,x,2), teR.

So (11) holds.
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0
By (16) again 6—{ vanishes to infinite order on {Imz =0} and by
z

(18) to infinite order on {(z,1): P (z,1) =0}, so (12) holds. qed.

21. Proof of lemma 15. Let

1 d ‘ ’
c(n,)\)=——J‘———long(x+ni,)\)2dx, soc:RxCk— R, (22)
27 ) [dx

—00

We claim that (3 is defined in 14.)

1/28 (1,%) < 6 (,0) < k228 (n,2) if 3(n, %) %0, (23)

To show this we integrate by residues.
Fix ne R and A€ Ck, let z,, ..., 2, be the zeros of z - Py (z,2). Then
Pr(z,0) =[] (z—=2).

[

2

d
2= '——logn(x+ni—zj)
dx 4

= (,Zx + ﬁli—zj)(gx-—nli—fj).

Let Q(2)= ! (Z ! )(2—1————>, z€C, so that for xe R
J

d
’—long (€ +m2,2)
dx

k
Y (@ +ni—z)
j=1

1
Q(x)=-—

=27t

d
—log Py (x + 711, 3)

2
dx )

Clearly @ (z) is meromorphic and 22 Q (z) is bounded outside a suitable
compact set. If @ (x) has no real poles, i.e. if 5(n,2) > 0, then by the
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method of residues it follows that

[e¢]

c(m,\)=2= JQ (x)dx =1 (sum of all residues of @ (z) in the upper half

plane)

where A denotes the set of all j such that Imz; > v and B denotes the
set of all j such that Imz; <v; we suppose furthermore that
zi—mnt+ 2z +7n1 for all j,k (this is a condition on A), so the last
equation holds.

Let now by =1 if jked, by=—1 if j keB, and by =0
otherwise. Then the above is equal to

Imz;+Imz,—2n

> by

1<ji<k  |l—Z—2ni

This is the sum of k2 nonnegative quantities each of which
is <1/23(n,2) and at least one of them is =1/25(x,2). Hence (23)
follows in case that z;—mv 1 % Z; + v ¢ for all j, I. By continuity, (23) holds
in general.

Now we want to estimate the partial derivatives of 5. We claim
that
o glel oy

vy

<C8 v, K)(1+ 8(7),)\)”’2’“(1+'“|+IBI+Y)) (24)

for all multiindices «,8, all vye N and all A e K, a compact subset
of C¥, whenever §(n,1) 0.
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We have

; N
——log Py (x +10,4)[* = R (2,1, )/ | P (x + 7i,) 2, (25)

dx

where R (x,7,1) is a polynomial i (x, An)ERXCE X R of degree
2k—2in z.

Any first partial derivative of (25) is of the form
By (2,9, 0)/|Py (x +n14,2)4, where R, is a polynomial of degree at most
2k—2+2k=4k—2in z.

Any j-th partial derivative of (25) is of the form
Bj (2,1, \)/|Py (x + 14,220+, where R; is a polynomial of degree at
most 2k(1+j—1)—2+2(1 +)j—1)k=2kj—2 in z by induction.
[P (2 + 4,0+ is a polynomial in xeR, neR, \eCk, with leading
coefficient 1 in x, of degree 2k (1 + J)in x, this is 2 k + 2 higher than the
degree of R; in z. The same argument applies to 7, if § (4,7) £ 0, i.e. if
there are no poles on the line 2 + i, z€ R. So the dominating factor is
the distance to the next pole, in the appropriate power, and § (1, )
measures the ‘“‘vertical’” distance to the next pole. So we obtain the
following: For any compact subset K of C* there exists a constant
C (K,j) such that

R; (2, 1,2 , 1
; < (C(K,j) .
P (x + 11,0204 (1 + |w2k+2) (1 4 n[2e-+2)

. (1 + 8 (Y)’ )\)-2]0(1 +|¢l+|ﬂ|+Y)).

1/(1 +[x?%+2) is integrable along R, so we may integrate the above

estimate with respect to x to obtain (24).
We will construct the function 0.
Let g be a smooth function [0, o) — R satisfying

gt)=1 if 0 <t<4i3,
OSg(t)Sl if4k‘3StS8k3, (26)
git)=0 if 843 < t.
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Let % be a second smooth function [0, c0) — R satisfying

h(t)=0 iftszorsomeO<s<1/2, )
0<ht)<1 ife<t<1—e¢, (27)
h(t)=1 if1—e<t. . ‘

Then define p (£,2,y) for (£,x,y)e R x C* x R as follows:

e Ay)=0 if 1/(1+[E]) <yl

—1 1 if [yl <1/2(1+)),

1+

=h<4(1 +|E|)f g (s (n,2)/(1 +lE|))dvz>
' Y

i 1/2(1+ ) < y < 1)1 +[8),

Y
=h(4(1+|€|)f g(c(n,k)/(1+|~£l))dn>
1

1+ f—1/A+E)<y<—1/2(1+[¢).

First we claim that
1

f 1+
L 9le /(D) dy > 14 (1 + ) 29)
21+
1
2(1+2))
j \ g (o (n,\)/(1+ &) dn > 1/4(1 + [5]). (30)
I

For that remember the definition of § (14) and (23).
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Let m be Lebesque measure on R and I (£) = [1/2(1+[g)), 1/(1 +|E))].
Then a simple geometrical argument (there are at most k different
zeros of Py (., &) for fixed 1) gives

m({nel():3(n.2)=r})=m( (i))_—m({nel(i)ib‘(ml) <r})
>1/2(1+[E)—2rk.

We are interested in the set of those n, for which g(c(n,A)/(1+E)) =1.
Sufficient for that is o (q,A)/(1 + ) <4k by (26). By (23)
o (n,2) < k2/28(n,%), so we obtain the sufficient condition
3(0,2) 2 1/8k (1 +[E). But now m({nel(£):5(nn) > 1/8k(1 +[E])}) >
=>1/4(1+[]) as we-computed above. (29) follows since on this set
g=1.

A similar argument proves (30).

Using (29) and (30) we see that the definitions of e (5,1, ) coincide
on overlapping intervalls, so p (£,2, ) is smooth in A and y for fixed &.

Let us check now wether the conditions (16)-(19) of lemma 15 are
satisfied :

(16)  On a neighbourhood of y = 0, exactly for lyl <1/2(1 + [¢]), we have
e (&,%,¥) =1 by definition.

(17) If[yl > 1, then |y| > 1/E| > 1/(1 + I€]), s0 ¢ (,2, y) = 0 by definition.
(18) We want that 3, ° (£,2,) =0 in a neighbourhood of 3(y,2)=0.
Y

1

1+[g|

0
3y° Ery)=H (4(1 + lEl)f g (s (n.0)/(1+ IEI))dT‘)'

y

(4D g (o (/L +18)), if yel (£).
If y is so near at {1:3 (n,1) =0} that

Oy 1) < /1643 (1 +[]), then o (y,n)/(1+[E)) > 1/25(y,)) (1 + [¢]) > 82,

using (23), s0 g (s (¥, 1)/(1 + [£])) =0 by (26). If 8 (y,2) = 0, then (23) does




The Division Theorem on Banach Spaces 17

0
not hold but the conclusion holds by continuity. So 72 ° E.ny)=0.
Yy |

Exactly the same argument applies, if ye—1 (£).

(19) We already know that p (£,2, y) is smooth with respect to A, y. So
we have only to estimate .

ol gltt gy
|02%0%F dy

s e E N y)|-

For fixed £ we know that p (£,2,y) is constant outside I (§) \U (— I (8)),
in particular for |y| > 1/(1 + [§]).

Let now K < (* be compact and consider AeC¥. We want to
estimate for A€ K the expression

1

okl el v 1+[g| .
a)\aﬁgé‘y—yhé(l + IEI)J- g (o (n,\)/(1 + |a|))dn) (31)
Yy

and the similar expression for ye(—1 (£)).

The partial derivative (31) is a polynominal in the partial derivatives
of h and g (which are uniformly bounded since both are constant out-
side a compact set) and in 1+ [§|, 1/(1 + |£|) and the parial derivatives
of o.

The latter are bounded by an expression

C (8,7, K) (1 + 3 (y,n) 2R+l +IEl+7))

using (24). Recall that & (y,2) is the “vertical’” distance from y to the
next zero of Py (., 2). If A remains in K then the set of all these zeros
is bounded, so this expression above becomes big only in a compact
set, where we can bound it uniformly. So we can disregard all partial
derivaties and of course 1/(1+¢]) in (31). So (31) is bounded by
a polynomial in 1+¢|, of order |«|+|8|+y, i.e. just the order
partial derivative (31). So finally we obtain a bound of the form
C (oK) (1 + 5] IR, ged.

Sitzungsberichte der mathem.-naturw. K1., Abt. 11, 189. Bd., 1.—3. Heft. 2




18 P. Michor

References

[1] Bonic, R., and J. Frampton: Smooth functions on Banach manifolds, Journ.
Math. and Mech. 15 (1966), 877—898.

[2] Brécker, Th.: Differentiable germs and catastrophes, London Math. Soc. Lecture
Notes 17 (1975).

[3] Dunford, N., and J.T. Schwartz: Llnear Operators I, Interscience Publishers,
New York, London 1958. -

[4] Lang, S.: Differential manifolds. Addison Wésley 1972.

[5] Mather, J.N.: On Nirenbergs proof of Malgrange’s preparation theorem, Pro-
ceedings of Liverpool Singularities—Symposium I, 116—120. Springer Lecture Notes
192 (1971).

[6] Mather, J.N.: Stability of Coo—mappingsI: The division theorem, Ann. Math. 87
(1968), 89—104.

[7] Nirenberg, L.: A proof of the Malgrange preparation theorem, Proceedings of
Liverpool Singularities—Symposium 1. 97—105. Springer Lecture Notes .

[8] Poenaru, V.: Analyse différentielle, Springer Lecture Notes 371 (1974).

Mathematisches Institut der Universitit Wien, Strudlhofgasse 4, A-1090 Wien,
Austria.

Added in proof: The Division Theorem has been used in R.J. Magnus, Universal
unfoldings in Banach spaces: reduction and stability. Math. Proc. Cambridge Phil. Soc.
86 (1979), 41—55.

Druck von Adolf Holzhausens Nfg., Universititsbuchdrucker, Wien




