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Some words on smooth convenient calculus

Traditional differential calculus works well for finite dimensional
vector spaces and for Banach spaces.

Beyond Banach spaces, the main difficulty is that composition of
linear mappings stops to be jointly continuous at the level of
Banach spaces, for any compatible topology.

For more general locally convex spaces we sketch here the
convenient approach as explained in [Frölicher-Kriegl 1988] and
[Kriegl-Michor 1997].



The c∞-topology

Let E be a locally convex vector space. A curve c : R→ E is
called smooth or C∞ if all derivatives exist and are continuous. Let
C∞(R,E ) be the space of smooth functions. It can be shown that
the set C∞(R,E ) does not depend on the locally convex topology
of E , only on its associated bornology (system of bounded sets).
The final topologies with respect to the following sets of mappings
into E coincide:

1. C∞(R,E ).

2. The set of all Lipschitz curves (so that

{ c(t)−c(s)
t−s : t 6= s, |t|, |s| ≤ C} is bounded in E , for each C ).

3. The set of injections EB → E where B runs through all
bounded absolutely convex subsets in E , and where EB is the
linear span of B equipped with the Minkowski functional
‖x‖B := inf{λ > 0 : x ∈ λB}.

4. The set of all Mackey-convergent sequences xn → x (there
exists a sequence 0 < λn ↗∞ with λn(xn − x) bounded).



The c∞-topology. II

This topology is called the c∞-topology on E and we write c∞E
for the resulting topological space.

In general (on the space D of test functions for example) it is finer
than the given locally convex topology, it is not a vector space
topology, since scalar multiplication is no longer jointly continuous.

The finest among all locally convex topologies on E which are
coarser than c∞E is the bornologification of the given locally
convex topology. If E is a Fréchet space, then c∞E = E .



Convenient vector spaces

A locally convex vector space E is said to be a convenient vector
space if one of the following holds (called c∞-completeness):

1. For any c ∈ C∞(R,E ) the (Riemann-) integral
∫ 1

0 c(t)dt
exists in E .

2. Any Lipschitz curve in E is locally Riemann integrable.

3. A curve c : R→ E is C∞ if and only if λ ◦ c is C∞ for all
λ ∈ E ∗, where E ∗ is the dual of all cont. lin. funct. on E .

I Equiv., for all λ ∈ E ′, the dual of all bounded lin. functionals.
I Equiv., for all λ ∈ V, where V is a subset of E ′ which

recognizes bounded subsets in E .

4. Any Mackey-Cauchy-sequence (i. e. tnm(xn − xm)→ 0 for
some tnm →∞ in R) converges in E . This is visibly a mild
completeness requirement.



Convenient vector spaces. II

5. If B is bounded closed absolutely convex, then EB is a Banach
space.

6. If f : R→ E is scalarwise Lipk , then f is Lipk , for k > 1.

7. If f : R→ E is scalarwise C∞ then f is differentiable at 0.

8. If f : R→ E is scalarwise C∞ then f is C∞.

Here a mapping f : R→ E is called Lipk if all derivatives up to
order k exist and are Lipschitz, locally on R. That f is scalarwise
C∞ means λ ◦ f is C∞ for all continuous (equiv., bounded) linear
functionals on E .



Smooth mappings

Let E , and F be convenient vector spaces, and let U ⊂ E be
c∞-open. A mapping f : U → F is called smooth or C∞, if
f ◦ c ∈ C∞(R,F ) for all c ∈ C∞(R,U).

If E is a Fréchet space, then this notion coincides with all other
reasonable notions of C∞-mappings. Beyond Fréchet mappings, as
a rule, there are more smooth mappings in the convenient setting
than in other settings, e.g., C∞c .



Main properties of smooth calculus

1. For maps on Fréchet spaces this coincides with all other
reasonable definitions. On R2 this is non-trivial [Boman,1967].

2. Multilinear mappings are smooth iff they are bounded.

3. If E ⊇ U
f−−→ F is smooth then the derivative

df : U × E → F is smooth, and also df : U → L(E ,F ) is
smooth where L(E ,F ) denotes the space of all bounded linear
mappings with the topology of uniform convergence on
bounded subsets.

4. The chain rule holds.

5. The space C∞(U,F ) is again a convenient vector space where
the structure is given by the obvious injection

C∞(U,F )
C∞(c,`)−−−−−−→

∏
c∈C∞(R,U),`∈F∗

C∞(R,R), f 7→ (` ◦ f ◦ c)c,`,

where C∞(R,R) carries the topology of compact convergence
in each derivative separately.



Main properties of smooth calculus, II

6. The exponential law holds: For c∞-open V ⊂ F ,

C∞(U,C∞(V ,G )) ∼= C∞(U × V ,G )

is a linear diffeomorphism of convenient vector spaces.
Note that this is the main assumption of variational calculus.
Here it is a theorem.

7. A linear mapping f : E → C∞(V ,G ) is smooth (by (2)
equivalent to bounded) if and only if

E
f−−→ C∞(V ,G )

evv−−−→ G is smooth for each v ∈ V .

(Smooth uniform boundedness theorem,
see [KM97], theorem 5.26).



Main properties of smooth calculus, III

8. The following canonical mappings are smooth.

ev : C∞(E ,F )× E → F , ev(f , x) = f (x)

ins : E → C∞(F ,E × F ), ins(x)(y) = (x , y)

( )∧ : C∞(E ,C∞(F ,G ))→ C∞(E × F ,G )

( )∨ : C∞(E × F ,G )→ C∞(E ,C∞(F ,G ))

comp : C∞(F ,G )× C∞(E ,F )→ C∞(E ,G )

C∞( , ) : C∞(F ,F1)× C∞(E1,E )→
→ C∞(C∞(E ,F ),C∞(E1,F1))

(f , g) 7→ (h 7→ f ◦ h ◦ g)∏
:
∏

C∞(Ei ,Fi )→ C∞(
∏

Ei ,
∏

Fi )



This ends our review of the standard results of convenient calculus.

Convenient calculus (having properties 6 and 7) exists also for:

I Real analytic mappings [Kriegl,M,1990]

I Holomorphic mappings [Kriegl,Nel,1985] (notion of
[Fantappié, 1930-33])

I Many classes of Denjoy Carleman ultradifferentible functions,
both of Beurling type and of Roumieu-type
[Kriegl,M,Rainer, 2009, 2011, 2013]



Manifolds of mappings

Let M be a compact (for simplicity’s sake) fin. dim. manifold and
N a manifold. We use an auxiliary Riemann metric ḡ on N. Then

0N_�
��

zero section

{{
N� _
��

diagonal

%%
TN V N? _

open
oo (πN ,expḡ )

∼=
// V N×N � �

open
// N × N

C∞(M,N), the space of smooth mappings M → N, has the
following manifold structure. Chart, centered at f ∈ C∞(M,N), is:

C∞(M,N) ⊃ Uf = {g : (f , g)(M) ⊂ V N×N} uf−−−→ Ũf ⊂ Γ(f ∗TN)

uf (g) = (πN , expḡ )−1 ◦ (f , g), uf (g)(x) = (expḡf (x))−1(g(x))

(uf )−1(s) = expḡf ◦ s, (uf )−1(s)(x) = expḡf (x)(s(x))



Manifolds of mappings II

Lemma: C∞(R, Γ(M; f ∗TN)) = Γ(R×M; pr2
∗ f ∗TN)

By Cartesian Closedness (I am lying a little).

Lemma: Chart changes are smooth (C∞)
Ũf1 3 s 7→ (πN , expḡ ) ◦ s 7→ (πN , expḡ )−1 ◦ (f2, expḡ

f1
◦ s)

since they map smooth curves to smooth curves.

Lemma: C∞(R,C∞(M,N)) ∼= C∞(R×M,N).
By Cartesian closedness.

Lemma: Composition C∞(P,M)× C∞(M,N)→ C∞(P,N),
(f , g) 7→ g ◦ f , is smooth, since it maps smooth curves to smooth
curves

Corollary (of the chart structure):

TC∞(M,N) = C∞(M,TN)
C∞(M,πN)−−−−−−−−→ C∞(M,N).



Regular Lie groups

We consider a smooth Lie group G with Lie algebra g = TeG
modelled on convenient vector spaces. The notion of a regular Lie
group is originally due to Omori et al. for Fréchet Lie groups, was
weakened and made more transparent by Milnor, and then carried
over to convenient Lie groups; see [KM97], 38.4.
A Lie group G is called regular if the following holds:

I For each smooth curve X ∈ C∞(R, g) there exists a curve
g ∈ C∞(R,G ) whose right logarithmic derivative is X , i.e.,{

g(0) = e

∂tg(t) = Te(µg(t))X (t) = X (t).g(t)

The curve g is uniquely determined by its initial value g(0), if
it exists.

I Put evolrG
(X ) = g(1) where g is the unique solution required

above. Then evolrG : C∞(R, g)→ G is required to be C∞

also. We have EvolXt := g(t) = evolG (tX ).



Diffeomorphism group of compact M

Theorem: For each compact manifold M, the diffeomorphism
group is a regular Lie group.

Proof: Diff(M)
open−−−−→ C∞(M,M). Composition is smooth by

restriction. Inversion is smooth: If t 7→ f (t, ) is a smooth curve
in Diff(M), then f (t, )−1 satisfies the implicit equation
f (t, f (t, )−1(x)) = x , so by the finite dimensional implicit
function theorem, (t, x) 7→ f (t, )−1(x) is smooth. So inversion
maps smooth curves to smooth curves, and is smooth.
Let X (t, x) be a time dependent vector field on M (in
C∞(R,X(M))). Then Fl∂t×Xs (t, x) = (t + s,EvolX (t, x)) satisfies
the ODE ∂t Evol(t, x) = X (t,Evol(t, x)). If
X (s, t, x) ∈ C∞(R2,X(M)) is a smooth curve of smooth curves in
X(M), then obviously the solution of the ODE depends smoothly
also on the further variable s, thus evol maps smooth curves of
time dependant vector fields to smooth curves of diffeomorphism.
QED.



The principal bundle of embeddings

For finite dimensional manifolds M, N with M compact,
Emb(M,N), the space of embeddings of M into N, is open in
C∞(M,N), so it is a smooth manifold. Diff(M) acts freely and
smoothly from the right on Emb(M,N).

Theorem: Emb(M,N)→ Emb(M,N)/Diff(M) is a principal fiber
bundle with structure group Diff(M).

Proof: Auxiliary Riem. metric ḡ on N. Given f ∈ Emb(M,N),
view f (M) as submanifold of N. TN|f (M) = Nor(f (M))⊕ Tf (M).

Nor(f (M)) :
expḡ

−−−−→∼= Wf (M)

pf (M)−−−−→ f (M) tubular nbhd of f (M).

If g : M → N is C 1-near to f , then
ϕ(g) := f −1 ◦ pf (M) ◦ g ∈ Diff(M) and
g ◦ ϕ(g)−1 ∈ Γ(f ∗Wf (M)) ⊂ Γ(f ∗Nor(f (M))).
This is the required local splitting. QED



The orbifold bundle of immersions

Imm(M,N), the space of immersions M → N, is open in
C∞(M,N), and is thus a smooth manifold. The regular Lie group
Diff(M) acts smoothly from the right, but no longer freely.

Theorem: [Cervera,Mascaro,M,1991] For an immersion
f : M → N, the isotropy group
Diff(M)f = {ϕ ∈ Diff(M) : f ◦ φ = f } is always a finite group,

acting freely on M; so M
p−−→ M/Diff(M)f is a convering of

manifold and f factors to f = f̄ ◦ p.

Thus Imm(M,N)→ Imm(M,N)/Diff (M) is a projection onto an
honest infinite dimensional orbifold.



A Zoo of diffeomorphism groups on Rn

We will prove that the following groups of diffeomorphisms on Rn

are regular Lie groups: [M,Mumford,2013], partly [B.Walter,2012]

I DiffB(Rn), the group of all diffeomorphisms which differ from
the identity by a function which is bounded together with all
derivatives separately.

I DiffH∞(Rn), the group of all diffeomorphisms which differ
from the identity by a function in the intersection H∞ of all
Sobolev spaces Hk for k ∈ N≥0.

I DiffS(Rn), the group of all diffeomorphisms which fall rapidly
to the identity.

Since we are giving a kind of uniform proof, we also mention the
group Diffc(Rn) of all diffeomorphisms which differ from the
identity only on a compact subset.
In particular, DiffH∞(Rn) is essential if one wants to prove that the
geodesic equation of a right Riemannian invariant metric is
well-posed with the use of Sobolov space techniques.



Theorem FK

We need more on convenient calculus.

[FK88], theorem 4.1.19.

Theorem

Let c : R→ E be a curve in a convenient vector space E . Let
V ⊂ E ′ be a subset of bounded linear functionals such that the
bornology of E has a basis of σ(E ,V)-closed sets. Then the
following are equivalent:

1. c is smooth

2. There exist locally bounded curves ck : R→ E such that ` ◦ c
is smooth R→ R with (` ◦ c)(k) = ` ◦ ck , for each ` ∈ V.

If E is reflexive, then for any point separating subset V ⊂ E ′ the
bornology of E has a basis of σ(E ,V)-closed subsets, by [FK88],
4.1.23.



Faá di Bruno formula

Let g ∈ C∞(Rn,Rk) and let f ∈ C∞(Rk ,Rl). Then the p-th
deivative of f ◦ g looks as follows where symp denotes
symmetrization of a p-linear mapping:

dp(f ◦ g)(x)

p!
=

= symp

( p∑
j=1

∑
α∈Nj

>0
α1+···+αj=p

d j f (g(x))

j!

(dα1g(x)

α1!
, . . . ,

dαj g(x)

αj !

))

The one dimensional version is due to [Faá di Bruno 1855], the
only beatified mathematician.



Groups of smooth diffeomorphisms in the zoo

If we consider the group of all orientation preserving
diffeomorphisms Diff(Rn) of Rn, it is not an open subset of
C∞(Rn,Rn) with the compact C∞-topology. So it is not a smooth
manifold in the usual sense, but we may consider it as a Lie group
in the cartesian closed category of Frölicher spaces, see [KM97],
section 23, with the structure induced by the injection
f 7→ (f , f −1) ∈ C∞(Rn,Rn)× C∞(Rn,R).

We shall now describe regular Lie groups in Diff(Rn) which are
given by diffeomorphisms of the form f = IdR +g where g is in
some specific convenient vector spaces of bounded functions in
C∞(Rn,Rn). Now we discuss these spaces on Rn, we describe the
smooth curves in them, and we describe the corresponding groups.



The group DiffB(Rn) in the zoo

The space B(Rn) (called DL∞(Rn) by [L.Schwartz 1966]) consists
of all smooth functions which have all derivatives (separately)
bounded. It is a Fréchet space. By [Vogt 1983], the space B(Rn)
is linearly isomorphic to `∞⊗̂ s for any completed tensor-product
between the projective one and the injective one, where s is the
nuclear Fréchet space of rapidly decreasing real sequences. Thus
B(Rn) is not reflexive, not nuclear, not smoothly paracompact.
The space C∞(R,B(Rn)) of smooth curves in B(Rn) consists of
all functions c ∈ C∞(Rn+1,R) satisfying the following property:

• For all k ∈ N≥0, α ∈ Nn
≥0 and each t ∈ R the expression

∂kt ∂
α
x c(t, x) is uniformly bounded in x ∈ Rn, locally in t.

To see this use thm FK for the set {evx : x ∈ R} of point

evaluations in B(Rn). Here ∂αx = ∂|α|

∂xα and ck(t) = ∂kt f (t, ).
Diff+

B (Rn) =
{

f = Id +g : g ∈ B(Rn)n, det(In + dg) ≥ ε > 0
}

denotes the corresponding group, see below.



The group DiffH∞(Rn) in the zoo

The space H∞(Rn) =
⋂

k≥1 Hk(Rn) is the intersection of all
Sobolev spaces which is a reflexive Fréchet space. It is called
DL2(Rn) in [L.Schwartz 1966]. By [Vogt 1983], the space H∞(Rn)
is linearly isomorphic to `2⊗̂ s. Thus it is not nuclear, not
Schwartz, not Montel, but still smoothly paracompact.
The space C∞(R,H∞(Rn)) of smooth curves in H∞(Rn) consists
of all functions c ∈ C∞(Rn+1,R) satisfying the following property:

• For all k ∈ N≥0, α ∈ Nn
≥0 the expression ‖∂kt ∂αx f (t, )‖L2(Rn)

is locally bounded near each t ∈ R.

The proof is literally the same as for B(Rn), noting that the point
evaluations are continuous on each Sobolev space Hk with k > n

2 .
Diff+

H∞(R) =
{

f = Id +g : g ∈ H∞(R), det(In + dg) > 0
}

denotes
the correponding group.



The group DiffS(Rn) in the zoo

The algebra S(Rn) of rapidly decreasing functions is a reflexive
nuclear Fréchet space.
The space C∞(R,S(Rn)) of smooth curves in S(Rn) consists of
all functions c ∈ C∞(Rn+1,R) satisfying the following property:

• For all k ,m ∈ N≥0 and α ∈ Nn
≥0, the expression

(1 + |x |2)m∂kt ∂
α
x c(t, x) is uniformly bounded in x ∈ Rn,

locally uniformly bounded in t ∈ R.

Diff+
S (Rn) =

{
f = Id +g : g ∈ S(Rn)n, det(In + dg) > 0

}
is the

correponding group.



The group Diffc(Rn) in the zoo

The algebra C∞c (Rn) of all smooth functions with compact
support is a nuclear (LF)-space.
The space C∞(R,C∞c (Rn)) of smooth curves in C∞c (Rn) consists
of all functions f ∈ C∞(Rn+1,R) satisfying the following property:

• For each compact interval [a, b] in R there exists a compact
subset K ⊂ Rn such that f (t, x) = 0 for
(t, x) ∈ [a, b]× (Rn \ K ).

Diffc(Rn) =
{

f = Id +g : g ∈ C∞c (Rn)n, det(In + dg) > 0
}

is the
correponding group.



Ideal properties of function spaces in the zoo

The function spaces are boundedly mapped into each other as
follows:

C∞c (Rn) // S(Rn) // H∞(Rn) // B(Rn)

and each space is a bounded locally convex algebra and a bounded
B(Rn)-module. Thus each space is an ideal in each larger space.



Main theorem in the Zoo

Theorem

The sets of diffeomorphisms Diffc(Rn), DiffS(Rn), DiffH∞(Rn),
and DiffB(Rn) are all smooth regular Lie groups. We have the
following smooth injective group homomorphisms

Diffc(Rn) // DiffS(Rn) // DiffH∞(Rn) // DiffB(Rn) .

Each group is a normal subgroup in any other in which it is
contained, in particular in DiffB(Rn).

Corollary

DiffB(Rn) acts on Γc , ΓS and ΓH∞ of any tensorbundle over Rn by
pullback. The infinitesimal action of the Lie algebra XB(Rn) on
these spaces by the Lie derivative thus maps each of these spaces
into itself. A fortiori, DiffH∞(Rn) acts on ΓS of any tensor bundle
by pullback.



Proof of the main zoo theorem

Let A denote any of B, H∞, S, or c, and let A(Rn) denote the
corresponding function space. Let f (x) = x + g(x) for g ∈ A(Rn)n

with det(In + dg) > 0 and for x ∈ Rn.

Each such f is a diffeomorphism. By the inverse function theorem
f is a locally a diffeomorphism everywhere. Thus the image of f is
open in Rn. We claim that it is also closed. So let xi ∈ Rn with
f (xi ) = xi + g(xi )→ y0 in Rn. Then f (xi ) is a bounded sequence.
Since g ∈ A(Rn) ⊂ B(Rn), the xi also form a bounded sequence,
thus contain a convergent subsequence. Without loss let xi → x0

in Rn. Then f (xi )→ f (x0) = y0. Thus f is surjective. This also
shows that f is a proper mapping (i.e., compact sets have compact
inverse images under f ). A proper surjective submersion is the
projection of a smooth fiber bundle. In our case here f has discrete
fibers, so f is a covering mapping and a diffeomorphism since Rn is
simply connected.



DiffA(Rn)0 is closed under composition.

((Id +f ) ◦ (Id +g))(x) = x + g(x) + f (x + g(x))

We have to check that x 7→ f (x + g(x)) is in A(Rn) if
f , g ∈ A(Rn)n. For A = B this follows by the Faà di Bruno
formula. For A = S or S1 we need furthermore:

(∂αx f )(x + g(x)) = O
(

1
(1+|x+g(x)|2)k

)
= O

(
1

(1+|x |2)k

)
which holds

since 1+|x |2
1+|x+g(x)|2 is globally bounded.

For A = H∞ we also need that∫
Rn

|(∂αx f )(x + g(x))|2 dx = (3)∫
Rn

|(∂αf )(y)|2 dy
| det(In+dg)((Id +g)−1(y))| ≤ C (g)

∫
Rn

|(∂αf )(y)|2dy ;

this holds since the denominator is globally bounded away from 0
since g and dg vanish at ∞ by the lemma of Riemann-Lebesque.

The case A(Rn) = C∞c (Rn) or C∞c,1(Rn) is easy and well known.



Multiplication is smooth on DiffA(Rn).

Suppose that the curves t 7→ Id +f (t, ) and t 7→ Id +g(t, ) are
in C∞(R,DiffA(Rn)) which means that the functions
f , g ∈ C∞(Rn+1,Rn) satisfy condition A.

We have to check that f (t, x + g(t, x)) also satisfies condition A.

For this we reread the proof that composition preserves DiffA(Rn)
and pay attention to the further parameter t.



The inverse (Id +g)−1 is again an element in DiffA(Rn)

For g ∈ A(Rn)n we write (Id +g)−1 = Id +f .
We have to check that f ∈ A(Rn)n.

(Id +f ) ◦ (Id +g) = Id =⇒ x + g(x) + f (x + g(x)) = x

=⇒ x 7→ f (x + g(x)) = −g(x) is in A(Rn)n.

First the case A = B. We know already that Id +g is a
diffeomorphism. By definition, we have det(In + dg(x)) ≥ ε > 0
for some ε. This implies that

‖(In + dg(x))−1‖L(Rn,Rn) is globally bounded,

using that ‖A−1‖ ≤ ‖A‖n−1

| det(A)| for any linear A : Rn → Rn. Moreover,

(In+df (x+g(x)))(In+dg(x)) = In =⇒ det(In+df (x+g(x))) =

= det(In + dg(x))−1 ≥ ‖In + dg(x)‖−n ≥ η > 0 for all x .



For higher derivatives we write the Faa di Bruno formula as:

dp(f ◦ (Id +g))(x)

p!
= symp

( p∑
j=1

∑
α∈Nj

>0
α1+···+αj=p

d j f (x + g(x))

j!

(dα1(Id +g)(x)

α1!
, . . . ,

dαj (Id +g)(x)

αj !

))
=

dpf (x + g(x))

p!

(
Id +dg(x), . . . , Id +dg(x)

)
(top extra)

+ symp−1

( p−1∑
j=1

∑
α∈Nj

>0
α1+···+αj=p
(hα1 ,...,hαj )

d j f (x + g(x))

j!

(dα1hα1(x)

α1!
, . . . ,

dαj hαj (x)

αj !

))

where hαi (x) is g(x) for αi > 1 (there is always such an i), and
where hαi (x) = x or g(x) if αi = 1.



Now we argue as follows:

The left hand side is globally bounded. We already know that
Id +dg(x) : Rn → Rn is invertible with ‖(In + dg(x))−1‖L(Rn,Rn)

globally bounded.

Thus we can conclude by induction on p that dpf (x + g(x)) is
bounded uniformly in x , thus also uniformy in y = x + g(x) ∈ R.

For general A we note that the left hand side is in A. Since we
already know that f ∈ B, and since A is a B-module, the last term
is in A. Thus also the first term is in A, and any summand there
containing just one dg(x) is in A, so the unique summand
dpf (x , g(x)) is also in A. Thus inversion maps DiffA(R) into itself.



Inversion is smooth on DiffA(Rn).

We retrace the proof that inversion preserves DiffA assuming that
g(t, x) satisfies condition A.

We see again that f (t, x + g(t, x)) = −g(t, x) satisfies condition
A as a function of t, x , and we claim that f then does the same.

We reread the proof paying attention to the parameter t and see
that condition A is satisfied.



DiffA(Rn) is a regular Lie group

So let t 7→ X (t, ) be a smooth curve in the Lie algebra
XA(Rn) = A(Rn)n, i.e., X satisfies condition A.

The evolution of this time dependent vector field is the function
given by the ODE

Evol(X )(t, x) = x + f (t, x),{
∂t(x + f (t, x)) = ft(t, x) = X (t, x + f (t, x)),

f (0, x) = 0.
(7)

We have to show
first that f (t, ) ∈ A(Rn)n for each t ∈ R,
second that it is smooth in t with values in A(Rn)n, and
third that X 7→ f is also smooth.



For 0 ≤ t ≤ C we consider

|f (t, x)| ≤
∫ t

0
|ft(s, x)|ds =

∫ t

0
|X (s, x + f (s, x))| ds. (8)

Since A ⊆ B, the vector field X (t, y) is uniformly bounded in
y ∈ Rn, locally in t. So the same is true for f (t, x) by (7).



Next consider

∂tdx f (t, x) = dx(X (t, xf (t, x))) (9)

= (dxX )(t, x + f (t, x)) + (dxX )(t, x + f (t, x)).dx f (t, x)

‖dx f (t, x)‖ ≤
∫ t

0
‖(dxX )(s, x + f (s, x))‖ds

+

∫ t

0
‖(dxX )(s, x + f (s, x))‖.‖dx f (s, x)‖ds

=: α(t, x) +

∫ t

0
β(s, x).‖dx f (s, x)‖ds

By the Bellman-Grönwall inequality,

‖dx f (t, x)‖ ≤ α(t, x) +

∫ t

0
α(s, x).β(s, x).e

∫ t
s β(σ,x) dσ ds,

which is globally bounded in x , locally in t.



For higher derivatives in x (where p > 1) we use Faá di Bruno as

∂td
p
x f (t, x) = dp

x (X (t, x + f (t, x))) = symp

( p∑
j=1

∑
α∈Nj

>0
α1+···+αj=p

(d j
xX )(t, x + f (t, x))

j!

(dα1
x (x + f (t, x))

α1!
, . . . ,

d
αj
x (x + f (t, x))

αj !

))
= (dxX )(t, x + f (t, x))

(
dp
x f (t, x)

)
+ (bottom extra)

+ symp

( p∑
j=2

∑
α∈Nj

>0
α1+···+αj=p

(d j
xX )(t, x + f (t, x))

j!

(dα1
x (x + f (t, x))

α1!
, . . . ,

d
αj
x (x + f (t, x))

αj !

))



We can assume recursively that d j
x f (t, x) is globally bounded in x ,

locally in t, for j < p. Then we have reproduced the situation of
(9) (with values in the space of symmetric p-linear mappings
(Rn)p → Rn) and we can repeat the argument above involving the
Bellman-Grönwall inequality to conclude that dp

x f (t, x) is globally
bounded in x , locally in t.

To conclude the same for ∂mt dp
x f (t, x) we just repeat the last

arguments for ∂mt f (t, x). So we have now proved that
f ∈ C∞(R,XB(Rn)).

To prove that C∞(R,XB(Rn)) 3 X 7→ Evol(X )(1, ) ∈ DiffB(Rn)
is smooth, we consider a smooth curve X in C∞(R,XB(Rn)); thus
X (t1, t2, x) is smooth on R2 × Rn, globally bounded in x in each
derivative separately, locally in t = (t1, t2) in each derivative. Or,
we assume that t is 2-dimensional in the argument above. But
then it suffices to show that (t1, t2) 7→ X (t1, t2, ) ∈ XB(Rn) is
smooth along smooth curves in R2, and we are again in the
situation we have just treated.

Thus DiffB(Rn) is a regular Lie group.



If A = S, we already know that f (s, x) is globally bounded in x ,
locally in t. Thus may insert
X (s, x + f (s, x)) = O( 1

(1+|x+f (s,x)|2)k
) = O( 1

(1+|x |2)k
) into (8) and

can conclude that f (t, x) = O( 1
(1+|x |2)k

) globally in x , locally in t,

for each k .

Using this argument, we can repeat the proof for the case A = B
from above.

Thus DiffS(Rn) is a regular Lie group.



If A = H∞ we first consider the differential of (8),

‖dx f (s, x)‖ =
∥∥∥∫ t

0
dx(X (s, ))(x + f (s, x)).(In + df (s, )(x)) ds

∥∥∥
≤
∫ t

0

∥∥dx(X (s, ))(x + f (s, x))
∥∥.C , ds (10)

since dx f (s, x) is globally bounded in x , locally in s, by the case
A = B. The same holds for f (s, x). Moreover, X (s, ) vanishes
near infinity by the lemma of Riemann-Lebesque, so that the same
holds for f (s, ) by (10).



Now we consider∫
Rn

‖(dp
x f )(t, x)‖2 dx =

∫
Rn

∥∥∥∫ t

0
dp
x

(
X (s, Id +f (s, ))

)
(x) ds

∥∥∥2
dx .

We apply Faá di Bruno in the form (top extra) to the integrand,
remember that we already know that each dαi (Id +f (s, ))(x) is
globally bounded, locally in s, thus the last term is

≤
∫
Rn

(∫ t

0

p∑
j=1

‖(d j
xX )(s, x + f (s, x))‖.Cj ds

)2
dx

=

∫
Rn

(∫ t

0

p∑
j=1

‖(d j
xX )(s, y)‖.Cj ds

)2
dy

| det(In+df (s, ))((In+f (s, ))−1(y)|

which is finite since X (s, ) ∈ H∞ and since the determinand in
the denominator is bounded away from zero – we just checked that
dx f (s, ) vanishes at infinity. We repeat this for ∂mt dp

x f (t, x).
This shows that Evol(X )(t, ) ∈ DiffH∞(Rn) for each t.

Choosing t two-dimensional (as in the case A = B) we can
conclude that DiffH∞(Rn) is a regular Lie group.



DiffS(Rn) is a normal subgroup of DiffB(Rn).

So let g ∈ B(Rn)n with det(In + dg(x)) ≥ ε > 0 for all x , and
s ∈ S(Rn)n with det(In + ds(x)) > 0 for all x . We consider

(Id + g)−1(x) = x + f (x) for f ∈ B(Rn)n

⇐⇒ f (x + g(x)) = −g(x)

((Id + g)−1 ◦ (Id +s) ◦ (Id +g)
)
(x) = ((Id +f ) ◦ (Id +s) ◦ (Id +g)

)
(x) =

= x + g(x) + s(x + g(x)) + f
(
x + g(x) + s(x + g(x))

)
= x + s(x + g(x))− f (x + g(x)) + f

(
x + g(x) + s(x + g(x))

)
.

Since g(x) is globally bounded we get
s(x + g(x)) = O((1 + |x + g(x)|−k) = O((1 + |x |)−k) for each k .
For dp

x (s ◦ (Id +g))(x) this follows from Faá di Bruno in the form
of (top extra).



Moreover we have

f
(
x + g(x) + s(x + g(x))

)
− f (x + g(x)) =

=

∫ 1

0
df
(
x + g(x) + ts(x + g(x))

)
(s(x + g(x))) dt

which is in S(Rn)n as a function of x since df is in B and
s(x + g(x)) is in S.



DiffH∞(Rn) is a normal subgroup of DiffB(Rn).

We redo the last proof under the assumption that s ∈ H∞(Rn)n.

By the argument in (3) we see that s(x + g(x)) is in H∞ as a
function of x .

The rest is as above.

This finishes the proof of the main theorem.



Thank you!


