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ALL NATURAL CONCOMITANTS OF VECTOR VALUED DIFFERENTIAL FORMS

Ivan Kold¥, Peter W. Michor

We deduce that in general all natural bilinear concomi tants
of the type of the Fralicher-m,jenhuis bracket form a 1l0-dimensio-
nal real vector space. - All manifolds and maps are assumed to be
infinitely differemtiahle.

1, Let _Q.p(M,TM) denote the space of differential forms of
order p on a manifold M with valuea in the tangent bundle TM, which
are called the vector valued p-forms on M, [4). Obviously, fL°(,TH)
coincides with the set X (M) of all vector fields on M. We consider,
for each n-dimensional manifold M, & bilinear map B,: {LP(x,TM)X
Q3u, m0) — QF+(u, ™M) setisfying £*By(P,Q) = B {fgp Q) for each
local diffeomorphism f: N-—» M. Such a family B = (BM) is called a
natural concomitant of vector valued differential forms.

2. We will use the following notation, [9]. Let (2I(M) be the
space of differential g-forms on M and CL(M) = D QI(M) be the
exterior algebra of M. Every Pe_ﬂ.p(m,TM) determines a graded de~
rivation i(P) of degree p-%1 in () (M) characterized by 1(P)e) =
WoP it e Q1 (M) and 1{P)f = O for all functions f€ (L°(N). The
explicit formula for i(P) is

i(P)w(xl""’xp-l-q—l) m Z (signG).

WXP(Xgseees Gp) xG(p+1)""’XG(p+q-1))

with ¢y e %00, XyseeesXp 1€ X (M) and summation with respect to
all permutations G of p+g-1 letters, [9] This formula makes sense
also for a vector valued q-form Q& (Q%(M,TM) and defines a vector
valued (p+q—1)-form i(P)Qé _O.p+q-1(M ™).
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Let O(P) = i(Plod - (-l)p—idoi(P) be the graded commutator
of i(P) with the exterior differential d. For a vector field
Xe N°(M, M), @(X) coincides with the Lie derivative with respect
to X. According to [4], for every Pe QP(M,TM) and Qe Q. %(u, ™M)
there exists a unique element [P,Q]e (PY%(M, ™) setisfying
O ([P,q]) = B(P) OQ) = (~1)P1Q(Q)g B(P). This is celled the

Fr'élicher-Nijenhuis bracket of P and Q. It can be characterized by
[p®, ¢O7] = PAY@[X,Y] + PABDIYRY - O pAy®X

+CDPAPALIXIWRY + 1(Y) @A dy®X)
for all e LLP(u), we 2(m), X,¥ € ), [9]. The coordinate ex-
pression of [P,Q] is

Pra%@d.,8dg 5. ] = ¢! ok
[ot ®61 B ®ag_l Xl“"&rp-a‘] 3'p+l"'xp+q

- (-1)PYgd pt B : Q!
z.l’.'«.qb'] Xq_'_lo-o«‘q‘*.p - p Xl'.‘Xp_ldaxp Xp+l"'xp+q
(2) - j %9
+ (-1)P%q} d, P 1a8@ D .
$1°0 a-19 ¥q For1"*8o+q B9

(o ¢ X .
oL
where @ = dx l/\.../\dx P ana bi = a/bxl in local coordinates

X = (xl,...,xn) on M. This follows from (1.9) of [9] by inserting
the basic vector fields bi into the global formula.

The wedge product of a differential g-form and a vector valu-
ed p-form is a bilinear map (2%(M)X _()_p(M,TM)-?ILp+q(M,TM) chara~
cterized by WA (Q@X) = (WA )@ X for all we (Q1W), ¢pe QFan,
Xe X (M). Purther, let C:_QP(M,TM)-—-’:'_QP-"L(M) be the contraction
operator defined by C(W®X) = i(X)w for allwe QF), Xe XM,
In particular, for Pe (1°(M,TM) we have C(P) = O. Clearly C{i(P)Q)
is & multiple of C(i(Q)P), Pe€ _O_p(M,TM), Q€ ﬂq(M,TM). Finally,
write I = Idge Q).

3. Theorem. For dim M) p+q+1, all natural concomitants of
vector valued differential forms QP (M, ™)x Q%(m,TM)—>
_(lp"'q(M,TM) form a vector space linearly generated by the follo-
wing 10 operators

[r,Ql,dC (P)A Q,4C(Q AP,

(3)  dC(PIAC(UAI,AC(QAAC(PIAI,AC(1(PIAATI,
i(P)AC(QIA I,1(Q)AC(PIA I,di(PIC(QIAL,di{(QIC(PIATI
The proof of this theorem will occupy the rest of the paper.
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We remark that for p< 2 or g 2 some expressions in (3) va-
nish identically. In particular, for p = g = O we have only one non-
trivial generator [P,Q]. One sees easily that the Frolicher-Nijenhuis
bracket of two vector valued O-forms, i.e. of two vector fields,
coincides with the classical bracket. In this case we rededuce &
result by S. ven Strien, [14], and D, Krupka with V. MikoldSova,

[7], that all natural concomitants of two vector fields are the
scalar multiples of the classical bracket. An infinitesimal version
of this result was deduced by M. de Wilde and P. Lecomte, [2].

4. From [4] or [ 9] we see that all expressions in the theorem
are indeed natural. For the converse suppose that B = (BM) is a
natural concomitant as in l. Since BM is a local operator, it is
a (finite order) differential operator by the bilinear Peetre
theorem, [l], see also [13]. In [9] it was checked that B is &
homogeneous bilinear differential operator of total order 1.
5. Let PEM be the second order frame bundle of M (i.e. the
space of all invertible 2-jets of R™ into M with source 0), which
ig a principal fibre bundle with structure group G of all inver-
tible 2-jets of R® into R® with source and target O. According to
a general theory, sece e.g. [6], the first order natural operators
from (QP(m,TM)x Q%(M, ™) into QP*I(M, ™M) correspond to the
Gz-equivariant maps from the standard fibre S of the first jet pro-
longatlon of the first bundle into the standard fibre R @ /\p+an*
of the second bundle. Clearly, S is the product of four spaces
RE@ APR™¥, RO@ APRP*Q r™*, R"@®@ A%WR™*, rR2@ AWRP*QR™ and the
actlion of Gﬁ on S is given by the usual transformation law of
tensor fields and their first order partial derivatives. In order
to be completely clear we specify this in detail: the transforma-

tion law of a tensor field of type _p) is

=i ? Bii‘a;% ax
(4) Pj ‘..j = Pm ...m o j ..
ey T me T RN T 5T

and the transformation law of its first partial derivatives is
_; m
£ X Jx 1 Bx P ax?

Myeeemm v

pr ax£ 3%31 bx P Bx

7i
(5) 31...3 Jk F
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(5) + ¥ %% 31m1 £ P 2x
Mpeee®ol N £3 n 5291 7 N2Ip Nok
P\ 0x¥ dx" % JFP %
a2 alt
dxb J%°1J%* %2

PERS
aii mel 2xmp )
4+ eee + 4 mmm———

3xY ¥zt dxlPask
Since B is bilinear and of total order 1, its associated map
B, S-—?RHG)/\p+an* is a sum B = B, + B,, where B, and B, are bili-
near maps

(6) By: R'@ APR™*@R™X r"® AR™_—» r"® AP R"*

(7) By: Ri@ APR™*x '@ AIR™*QR™ —> r@ AP* 4R

We remark that Bo corresponds to the canonical coordinate expressi-
on of the natural operator B on R™.

6. Consider the canonical inclusion GL(n,R)c;,Gg transforming
every matrix into the 2-jet at 0 of the corresponding linear tran-
sformation of R, By (4) and (5), the linear meps associated with
the bilinear maps Bl and B2, which will.be denoted by the same
symbol, are GL(n,R)-equivariant, so that we can apply the classi~
cal theory of invariant tensors, [3]. Consider first the following
diagram

* »* B1
RU@ NPRM*QR™Q@R'® AR® » RO@ APHApn¥*
(8) 1a@Alt @ id@ALt I I‘ id@Altp+q’][
p q p+
Rn ® ® Rn*® Rn*® Rn® ® Rn* RD@ A an*

where Alt denotes the alternator of the indicated degree. Since
the vertical maps are also GL(n,R)-equivariaent, it suffices to
determine 8ll GL(n,R)~equivariant maps in the bottom row and to
regtrict them and to take the alternator of the result. By the
theory of invariant tensors, [3], all GL(n,R)-equivariant maps

2 n o Pt +1 n e 49 nx

RR'Q é R" —» R @R are given by all ...us of permuta-
tions of the indices, all contractions and tensorizing with the
identity. Since we apply this to alternating forms and use the
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alternator on the result, permutations do not play a role.

7. In what follows we discuss the case p22, q22 only and we
leave the other cases to the reader. (A direct discussion shows
that in the remaining cases the list (9) below should be reduced
by those terms that do not make sense, but our next procedure leads
to (3) as well.) Constructing Bl’ we maygéontract the vector field
part of P into a non-derivation entry of P or into the derivation
entry of P or into §, and we may contract the vector field part of
Q into Q or into a non-derivation entry of P or into the derivation
entry of P, and then tensorize with I = ian. This gives 9-1=8 po-

ssibilities. If we perform only one contraction, we get 3+3=6
further possibilities, so that we have a l4-parameter family, which
corresponds to the lower case letters in the list (9) below. Con-
structing Bz, we obtain analogously another l4-parameter family
denoted by upper case letters in the 1list (9) below. Hence by
GL(n,R)-equivariancy we deduce the following expression for BO: S5—
R®*® APTIR™* (we do not indicate alternation in the subscripts and
we write &, ‘3 for any kind of free form-index on the right hand
side)

’8 = aPED" np 7+ bPO( anpSg + CPg,ngmpgi + dP;xl;not,kQI(lsg‘ji’/
+ ePI;%m ﬂ,Sz + mex e maO L * st“ ans .ji, + : n mpgla
(9) + iP:ﬁD(’kQé + ,mQ(3+ 320 (5+ 2l R um,kQ’é-n- nE 9n
R L. BPMQQ n6£ + GPo Qg’kSi + DP;nQﬁmﬁ,kgi
+ EP QmB' 6ji+FP m&ké + GP Qn(&m6£+mnmpm6£
.

i.n n
i an x* Falg,n t KPnch(j.,k + LB Qp x + ¥E Qm(s,k + NBy Q(g m

8. The map B is also equ;varlant with respect to the kernel
of the canonical pro,}ection G —> GL{(n,R) of 2-jets into A-jets,
which coincides with the abella,n group R @SZRn*, provided 32 de-

notes the second symmetric tensor power. By (4) and (5), the ac-
tion of an element (S:L yer"@s 2RBX on @ APR®* 1s just the
identity and its actlon on R°® APR™*@R"™ is




106 IVAN kKOLAR, PETER W. MICHOR

10) Pt . = P* . b csiooopt, L - ..
(10) Gpeeedp le...ap’k + Pal...apstk Ptieed, %0k

-l . st

Jl.'.JP‘lt ka

Hence the condition that (9) is equivariant under the action of
RY® S°R™™ nas the following form (the alternation in the subscripts
is not indicated explicitely)

t m m t m %
0 = P s S - P : S - P . 2 : - eee
a( mjz"'ap +k taz,..jp mk mt33-.,apsazk

m t n i t i
- . S Y] -
ngz...jp_lt jpk)Qn‘sS‘l’f + + n(le...gpStn

i t i

* : S - eses ™ P»
ta2.'.ap

11) .
( jln 31"‘Jp 1

P

st B
tgpn (,5

t n t

Qo . 8% - Q7. . S — eee
t LN k
Jpeeedg m

m n
* (af ; Sgx = ntiyesed ok

mq. ngz...Jq

i

- Q0 Y83 4+ ...+ wP™(QY
z 31"'3q Stm

ngotojq 1tSJ k

1 i t
- Q . . S . eses ™ Q 3 S )
tJ20.taq Jlm Jl.‘.jq"lt qu
We remark that every term containing an S with both free subscripts
vanishes after applying the alternator.

9. The right hand side of (1l) represents a trilinear map
" ® APR™M*y Rn® /\an*XRn® SQRn*aRnQ /\P"'an* depending on
the parameters &,...,N, which can be rewritten in the following
form

m ~ten q BRI R Yok RIS S <y -
[BPmuQﬂStn + (=1)9BP2 Qt& nk + bEF Qn& tm (-1) PbP, R ﬁgmk

+ (D% - D - (-1UEDIGIT S mk + (c-(-1)%
- (~1)p+q(p-—1)g)P$to‘QES§k + eP Q(.’» t + (H- e)P,c Qsmn

RIS ST+ (h-E)gfqgﬁggn + ((-1)%H - (-1)qf-F)Pantﬁ§;k

(12) > tn

+

+ (F + (-1)% - (-1)P*%pn)2] o:las*gk - (-1P*(p-1)er], sy,
(-1)%(a-1BEgeG M]gg ¢ SRS, + (-DPOsPl,alst
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+ TR QS * (—1)quP;'QI£pS:1k - (1% - (-1)qu+M)P;"Q}'cps;k

(12) + (K+(~1)P*%n - (»1)qm)1=lim@tsi’k - i(-i)qP:Q;ﬁ st
g

m tei _ _4yq.pb afigd m.t i mAtad
+ I‘PmuQ(:,Stk (-1) umuQ(z,stk + M“Qmpstk + (n+N)P“QpSmt

The equivariancy of Bo with respect to RnQQSERn*'is equivalent to
the fact that (12) is the zero map.

10. For dim M > p+q+l the indices has at least p+q+2 differe-
nt values, which implies easily that all individual terms in (12)
are linearly independent in
Hom(RP@ APRP*@R'® ARM*QRE@ SR, RP@APHIR™), Hence (12)
is the zero map if and only if all the coefficients vanish. This
leads to the following equations

pbeB=¢mwEmhaH=juJ=f=L=m=M=0,
(13) ¢ = (g-1)e + (1%, ¢ = (-1)% + (-1)FP*%(p-1)g

F o= (—1)q'1f, k = ;qn, K = (-1)p+q-1pn, N = -n
while a, A, 4, D, £, g, G, n, 1, I are independent parameters.

#

11. Thus, for dim MY p+q+l we have deduced lO-parameter fa~
mily (13) and one verifies easily that (9) with (13) represents
the coordinate expression of the linear combinations of the ele~
ments of {3). This completes the proof of our Theorem.

Obviously, for dim ML p+q it holds QP*4Yuy, ™M)= 0, so that
we can construct the zero operator only, The study of the two re-
maining cases dim M = p+q and dim M = p+q+i consists in detailed
discussion of the conditions for (12) to be the zero map, which
is not included into the present paper.
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