Publ. Math. Debrecen
47/3-4 (1995), 349-375

DIFFERENTIAL GEOMETRY OF CARTAN CONNECTIONS

DMITRI V. ALEKSEEVSKY
PETER W. MICHOR

Erwin Schrodinger International Institute
of Mathematical Physics, Wien, Austria

TABLE OF CONTENTS

1. Introduction - . |
2. Cartan connections and generahzed Cartan connectlons o P
3. The relation between principal Cartan connections and pr1nc1pal connectlons 7
4. Flat Cartan connections . . . .12
5. Flat Cartan connections assomated Wlth a ﬁat G—structure .. . 16
6. The canonical Cartan connection for a G-structure of first or second order 20

1. INTRODUCTION

In this article a general theory of Cartan connections is developed and some
applications are indicated. The starting idea is to consider a Cartan connection
as a deformation of a local Lie group structure on the manifold, i.e. a 1-form A
with values in a Lie algebra h which is non degenerate and satisfies the Maurer-
Cartan equation. Such a Maurer-Cartan form A may be considered as a flat Cartan
connection. Many notions and results of the geometry of group manifolds are still
valid in this more general setting.

More precisely, for a Lie subalgebra g of h we define a Cartan connection of type
h/g on a manifold P of dimension n = dimb as a h-valued 1-form k : TP — b
which defines an isomorphism &, : T, P — h for any € P and such that

[Cx,Cv] = (x.,v)

holds for X € h and Y € g, where the linear mapping ¢ : h — X(P) from § into
the Lie algebra X(P) of vector fields on P is given by (x(z) = k;1(X). If g =h
then ¢ defines a free transitive action of the Lie algebra h on the manifold P in
the sense of [5] and x is the Maurer-Cartan form of the associated structure of
the local Lie group structure on P. In the general case, when g # b, we only
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have a free action (|g of the Lie algebra g on P. So we may think of the Cartan
connection x as a deformed Maurer-Cartan form, where the deformation is breaking
the symmetry from b to g. If the action of g on P can be integrated to a free action
of a corresponding Lie group G on P with smooth orbit space M = P/G, the notion
of Cartan connection reduces to the well known notion of a Cartan connection on
the principal bundle p: P — M.

In 2.3 and 2.4 we describe two situations when a Cartan connection arises nat-
urally. First under a reduction of a principal bundle p : Q@ — M with a principal
connection to a principal subbundle p : P — M. Second when a G-structure with
a connection is given: more precisely, it the Lie algebra admits a reductive decom-
position h = g @ m we may identify a Cartan connection of type h/g on a principal
G-bundle p : P — M with a G-structure on M together with a principal connection
inp: P— M.

Dropping the condition that the 1-form x is non-degenerate we come to the
notion of generalized Cartan connection. It is closely related with the the notion of
a principal connection form on a g-manifold, defined in [5], see 2.6. In the end of
section 2 we define for an arbitrary generalized Cartan connection k such notions
as the curvature 2-form

K =dr + [k, k)",

the Bianchi identity
dK + [, K]" =0,

the covariant exterior derivative

d : P (P;W)E — QPEY MG V)S, d,(0) = dU + p"\(r) T,

hor

where Q) (M;W)? is the space of horizontal g-equivariant p-forms with values in
the g-module defined by a representation p : h — gl(W).
In 2.9 we associate with a generalized Cartan connection x of type h/g the

Chern-Weil homomorphism
v S(h*)h - Qhor(-P)g

of the algebra of h-invariant polynomials on h into the algebra of g-invariant closed
horizontal differential forms on P and prove that the characteristic cohomology
class [y(f)] does not depend on the particular choice of the generalized Cartan
connection.

In section 3 we study relations between principal Cartan connections of a prin-
cipal G-bundle p : P — M and principal connections on the H-bundle p : P[H| =
P xqg H — M, where H D G is a Lie group associated to ). We also establish a
canonical linear isomorphism

Qhor(I:); W)G - Qhor(P[H]§W)H

between the respective spaces of equivariant horizontal forms with values in a repre-
sentation space W of H. As a corollary we obtain that the characteristic classes as-
sociated with Cartan connections in section 2 are the classical characteristic classes
of the principal bundle P[H| — M.
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Section 4 deals with a flat Cartan connection of type h/h on a manifold P.
We give a simple conceptual proof of the result that any flat generalized Cartan
connection on a simply connected manifold P, i.e. an h-valued 1-form s on P which
satifies the (left) Maurer-Cartan equation, is the left logalithmic derivative of a
mapping ¢ : P — H into a Lie group H corresponding to b; so ‘v = o~ l.dy’.
Moreover the mapping ¢ is uniquely determined up to a left translation.

A generalized Cartan-connection k : TP — B induces a homomorphism

k' A(H*) — Q(P)
ffo(h@n- @nK)

of the complex of exterior forms on the Lie algebra h into the complex of differential
forms P and (following [10]) defines a a characteristic class of a flat generalized
Cartan connection as the image of of cohomology classes of the Lie algebra § under
the induced homomorphism of cohomologies. This construction may also sometimes
be applied for the infinite dimensional case.

In section 5 we describe a flat Cartan connection associated with a flat G-
structure p : P — M. It defines a Cartan connection on the total space P>
of the infinite prolongation p>° : P°° — M, which consists of all infinite jets of
holonomic sections of p.

In the last section 6 we review shortly the theory of prolongation of G-structures
in the sense of [22]. Under some conditions we define a canonical Cartan connection
of type (V @ g°°)/g on the total space of the full prolongation of a G-structure of
first or second order.

2. CARTAN CONNECTIONS AND GENERALIZED CARTAN CONNECTIONS

2.1. Cartan connections. Let h be a finite dimensional Lie algebra and let g
be a subalgebra of h. Let P be a smooth manifold with dim P = dimb. By an
h-valued absolute parallelism on P we mean a 1-form k € Q'(P;h) with values
in h which is non-degenerate in the sense that s, : T, P — b is invertible for all
2 € P. Thus its inverse induces a linear mapping ¢ : h — X(P) which is given by
(x(z) = (ke)71(X). Vector fields of the form (y are called parallel. In general, ¢
is not a Lie algebra homomorphism.

Definition. In this setting a Cartan connection of type h/g on the manifold P is
an h-valued absolute parallelism s : TP — h such that

(1) [Cx,(:y] = C[X,Y] for X € b and Y € g.
So the inverse mapping ¢ : h — X(P) preserves Lie brackets if one of the arguments

is in g. In particular, the restriction of { to g is a Lie algebra homomorphism, and
in particular P is a free g-manifold.

2.2. Principal Cartan connections on a principal G-bundle. Letp: P - M
be a principal bundle with structure group G whose Lie algebra is g. We shall
denote by r : P x G — P the principal right action and by ¢ : g — X(P) the
fundamental vector field mapping, a Lie algebra homomorphism, which is given by
(x(z) = Te(ry).X. Tts ‘inverse’ is then defined on the vertical bundle VP, it is
given by kg : VP — g, ka(&:) = Te(r2) " 1(€:); we call it the vertical parallelism.
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Let us now assume that g is a subalgebra of a Lie algebra h with dim h = dim P.
A h/g-Cartan connection k : TP — h on P is called a principal Cartan connection
of the principal bundle p : P — M, if the following two conditions are satisfied:

(1) K|VP = kg, i.e. k is an extension of the natural vertical parallelism.
(2) K is G-equivariant, i.e. ko T(r9) = Ad(g~!) ok for all g € G. If G is
connected this follows from 2.1,(1).

This is the usual concept of Cartan connection as used e.g. in [13], p. 127.

Remark. Let k € QY(P;h) be a h/g-Cartan connection on a manifold P. Assume
that all parallel vector fields ((g) are complete. Then they define a locally free
action of a connected Lie group G with Lie algebra g. If this action is free and if
the orbit space M := P/G is a smooth manifold (this is the case if the action is
also proper), then p : P — M is a principal G-bundle and « is a principal Cartan
connection on it.

2.3. Principal Cartan connections and a reduction of a principal bundle
with a connection. Let H be a Lie group with Lie algebra b, let p: Q — M be a
principal H-bundle, and let w : TQ — h be a principal connection form on Q. Let
us denote by H = kerw the horizontal distribution of the connection w. Then we
have

(1) TqQ = VqQ@qu

where VQ = ker T'(p) C TQ is the vertical subbundle. We assume now that G is
a Lie subgroup of H and that the principal bundle Q — M admits a reduction of
the structure group to a principal G-bundle p = p|P : P — M. So the embedding
P — @ is a principal bundle homomorphism over the group homomorphism G — H:

P—Q
o]
M P— M

Note that for the vertical bundles we have T, P N\ V,Q = V,, P, but the intersection
T.P N'H, may be arbitrary. We have the following characterization of the two
extremal cases when this last intersection is maximal or minimal.

Proposition. (A) In the situation above the following conditions are equivalent:

(1) For any u € P the horizontal subspace H, = kerw,, is contained in T, P,
and thus T,P =V,P ®H,.

(2) The connection w on Q is induced from a principal connection on P — M
on the associated bundle Q = P xg H, where G acts on H by conjugation.

(3) The holonomy group of the connection w is contained in G.

(B) The restriction w|P = incl*w of w on P is a Cartan connection of the principal
bundle p : P — M if and only if T,P N"H, = 0 for each v € P, and if dim M =
dimb/g. O



DIFFERENTIAL GEOMETRY OF CARTAN CONNECTIONS 5

2.4. Cartan connections as G-structures with connections. We estab-
lish here a bijective correspondence between principal Cartan connections and G-
structures with a connection.

Let G C GL(V), V =R", be a linear Lie group. We recall that a G-structure on
an n-dimensional manifold M is a principal G-bundle p : P — M together with a
displacement form 6 : TP — V, i.e. a V-valued 1-form which is G-equivariant and
strictly horizontal in the sense that kerf = V P.

We assume now that G is a reductive Lie subgroup of a Lie group H such that

h=Vaog [gV]ICV

is the reductive decomposition of the Lie algebra of H, and that the adjoint rep-
resentation of G in V is faithful. Then we may identify G with a subgroup of
GL(V).

Proposition. In this situation let k : TP — §h =V & g be a Cartan connection
on the principal G-bundle p : P — M, and let = pry, o k and w = pry o Kk be its
components in'V and g, respectively.

Then 6 is a displacement form and w is a connection form onp: P — M, so
that (p: P — M, 0) is a G-structure with a connection form w.

Conversely, if (p : P — M, 0) is a G-structure with a connection w, then k = 04w
is a principal Cartan connection for the principal G-bundle p: P — M. O

2.5. Generalized Cartan connections. For a principal G-bundle 7 : P — M
as in 2.2, if K € QY(P;h)¢ is a G-equivariant extension of kg : VP — g, we call it
a generalized principal b/g-Cartan connection.

More general, let P be a smooth manifold, let h be a Lie algebra with dimh =
dim P. We then consider a free action of a Lie subalgebra g of h on P, i.e. an
injective Lie algebra homomorphism ¢ : g — X(P). A generalized bt/g-Cartan
connection k on the g-manifold P is then a g-equivariant h-valued one form

k€ QYP;H)® = {p € Q" (P;h) : Lok = ad(X) ok for all X € g}

which reproduces the generators of the g-fundamental vector fields on P: for all
X € g we have s(Cx(z)) = X.

2.6. Generalized Cartan connections and principal connection forms. Let
P be a smooth manifold with a free action of a Lie algebra g. In [5] we define the
notion of a principal connection on P as follows: A principal connection form on
P is a g-valued g-equivariant 1-form w € Q(P; g)? which reproduces the generators
of the fundamental vector fields on P, so w((x) = X for X € g.

As a generalization of proposition 2.3 we establish now relations between gener-
alized Cartan connections and principal connection forms.

Proposition. Let g be a reductive subalgebra of a Lie algebra b with reductive
decomposition
h=Veag [gV]cV

Let k : TP — B be a generalized Cartan connection on a g-manifold P with a free
action of the Lie algebra g.
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Then the g-component w = pry o K is a principal connection form on the g-
manifold P. In particular, k defines a g-invariant horizontal distribution H :=
k~1(V) C TP which is a complementary subbundle of the ‘vertical’ distribution
Cq(P) C P spanned by the g-action, and which is g-invariant:

[Ca: T(H)] € T(H),
where I'(H) C X(P) is the space of section of the bundle H.

Remark. It is a natural idea to consider the V-component § = pry o x of k as
some analogon of the notion of displacement form. Clearly 6 is g-equivariant and
horizontal: ker# D (4(P). But it will be strictly horizontal (ker 8 = (y(P)) if and
only if k is a Cartan connection. In general we only have ker § = (;(P) & K, where
K = ker(k|H) is a g-invariant distribution, possibly of non-constant rank.

2.7. Curvature and Bianchi identity. For a generalized Cartan connection
k€ Q1(P;h)® we define the curvature K by K = dr + [k, k]", where we used the
graded Lie bracket on Q(P;h) given in [5], 4.1 . From the graded Jacobi identity
in Q(P;h) we get then easily the Bianchi identity

dK + [k, K]" = 0.

Then K is horizontal, i.e. kills all {(x for X € g, and is g-equivariant, K €
Q2 _(P;h)8. If k is a generalized principal Cartan connection on a principal G-
bundle, then K is even G-equivariant, K € Q2_(P;h)®.

hor
If k is a Cartan connection then an easy computation shows that

CHE(CK, 7)) = [C&: ¥ lxpy — CF([X, Y]p).
2.8. Covariant exterior derivative. For a generalized h/g-Cartan connection

k € QY(P;h)? and any representation p : h — GL(W) we define the covariant
exterior derivative

de : QP (P;W)E — QPFL (P, V)8
d. VU = d¥ + p" (k).
For a principal Cartan connection on a principal G-bundle we even have

de (P (P;W)E) C QPEL (P W)©C.

hor

2.9. Chern-Weil forms. If f € L¥() := (®" b*) is a k-linear function on b and
if 1p; € QPi(P;h) we can construct the following differential forms
YL ®p - On Py € QTTPH(PIH R - @),
fwlyu,’ll)k = fo (¢1 Rp -+ Dp wk) c QP1+"'+Pk(P).

The exterior derivative of the latter one is clearly given by
d(fo (1 ®n - ®@nthr)) = fod(hr ®p -+ ®pthk) =
=fo (Zf:1(_1)pl+m+pi71¢1 Qn - QA di; @p -+ Qp 7/%) .
Note that the form f¥1¥k is g-invariant and horizontal if all ¢; € QF' (P;5)¢ and

f € L¥(h)® is invariant under the adjoint action of g on h. It is then the pullback
of a form on M. For a principal Cartan connection one may replace g by G.
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2.10. Lemma. Let £ be a generalized Yy/g-Cartan connection on P. Let f €
LE(H)Y be b-invariant under the adjoint action then the differential form fX :=
K s closed in Q2F (M)S.

Proof. The same computation as in the proof of [5], 7.4 with w and Q replaced by
kand K. O

2.11. Proposition. Let kg and k1 be two generalized h/g-Cartan connections
on P with curvature forms Ko, K; € Q2(P;h)®, and let f € L¥(h)". Then the
cohomology classes of the two closed forms fXo and f51 in H?*(Q5  (P)®) agree.

If P — M is a principal G-bundle and if k1 and ko are principal generalized
Cartan connections on it, then the cohomology classes of the two closed forms f¥o
an f51 agree in H**(M).

Proof. Literally the same proof as for [5], 7.5 applies, with w and 2 replaced by k
and K. O

3. THE RELATION BETWEEN PRINCIPAL CARTAN
CONNECTIONS AND PRINCIPAL CONNECTIONS

In this section we follow the notation and concepts of [14], chapter III, which we
also explain here.

3.1. Extension of the structure group. Given a principal bundle 7 : P — M
with structure group G and G C H we consider the left action of G on H (by
left translation) and the associated bundle 7 : P[H] = P Xxg H — M. Recall
from [14], 10.7 the G-bundle projection ¢ : P x H — P[H] = P xg H. Since
q(u.g,h) = q(u, gh) we get Tq(Tr(Xy, Zy),Yn) = Tq(Xy, TAg.Y, + Tpp.Zg). This
is then a principal H-bundle with principal H-action 7 : P[H] x H — P[H] given
by 7(q(u, h),h') = q(u, hh'). Since G C H is G-equivariant we get a homomorphism
of principal bundles over G C H

3.2. Lemma. In the situation of 3.1 the generalized Cartan connections in the
space QY (P;h)¢ correspond canonically and bijectively to the H-principal connec-
tions in QY (P[H]; h)H.

Proof. For Y € b the fundamental vector field (5 Ml on PH is given by

D (g(u, 1)) = T(F)(Tq(0u, 00), YY) = Tranyq(Ous TARY).

For a generalized Cartan connection x € Q'(P;h)¢ we define for X, € T, P and
Yebh:

(¢’w) : TP[H] — b
(1) (qu) (T(u,h)Q(Xuv TeAh-Y)) =Y+ Ad(hil)’iu(Xu)
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We claim that (¢°x) € Q' (P[H]; h) is well defined and is a principal connection.
It is well defined: for g € G we have

(@K (T @(Tr9 X, TAg1 T A.Y)) = Y + Ad((g7 h) ™ ko (T19.X,,)
=Y +Ad(h") Ad(g) Ad(g™ ) ru(Xu)
= (qbn)(T(u,h)Q(XuvTe)\h-Y))

Moreover Ty, p)q(Xu, Yr) = 0 if and only if (X, Ys) = (X (v), =Tps.X) for some
X € g, but then

(k) (CX (), =Tpn-X) = (¢’K)(CX (u), =T An. Ad(h™1)X)
= —Ad(h" "X + Ad(h ")k (K (0) =

We check that it is H-equivariant:

(@ 8) (T (F*). Ty 3- (Xt TeAn-Y)) = (@ 8) Ty @- (X, Tor ToAn.Y))
= (¢ K) (T iy 8- (X, T Tpp-TAg-1.Y))

(qb/’v)(T(uhk (X, TeApk- Ad(K7)Y))
— Ad(k™DY + Ad(k b Yk (X0)
Ad(k™) (@ F) (Tiu @K, TeAR-Y)).

Next we check that it reproduces the infinitesimal generators of fundamental vector
fields:

(@) (G (q(u, h)) = (€ 8) (T nya (04, TARY)) = Y

Now let w € QY(P[H];h)* be a principal connection form. Then the pull back
(¢°)"'w of w to the G-subbundle P C p[H] is in Q'(P;h)¢ and clearly reproduces
the infinitesimal generators of G-fundamental vector fields, so it is a generalized
Cartan connection. Explicitely we have ((¢°)~'w)(Xu) = w(T{u,e)q(Xu,0c)) and
with this formula it is easy to check that the two construction are inverse to each
other. O

3.3. Theorem. Let m: P — M be a principal bundle with structure group G, let
H be a Lie group containing G and let p : H — GL(W) be a finite dimensional
linear representation of H.

Then there is a canonical linear isomorphism

QP

hor

(P;W)E — QP

hor

(PIH; W)

which intertwines the covariant exterior derivatives of any generalized Cartan con-
nection k£ on P with values in b and of its canonically associated principal connec-
tion ¢’ on P[H]:

d q _q Od Qhor(P;W) Qﬁjrl( [H}’W)G
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If K € Q2,.(P;h)Y is the curvature of a generalized Cartan connection k in the

sense of 2.7 then " K € Q2 (P[H];h)* is the principal curvature of the principal
connection ¢’k on P[H].

Proof. For U € O (P;h)% we define ¢"¥ € QF_(P[H]; h)¥ by
(1) (@ V) g(um) (Ta(&s, TeAn Y1), Ta(€5, TAnY?), ) =

= Ad(hil)\:[lu( 11“ 27 )
This is well defined and horizontal, since a vector T'q(&,, TAp.Y") is vertical in P[H]
if and only if it is of the form Tq(¢% (u), ToAn(Z — Ad(h~1) X)) for some Z € b and
X € g, and the right hand side vanishes if one such vector appears in the left hand
side. Note that ¢”V is well defined only if W is horizontal. It is easily seen that ¢”¥
is H-equivariant.
If @ € QY (P[H];H) then the pull back of ® to the subbundle P gives a

hor

form (¢°)~'® € QF__(P;h)¢. We have the explicit formula ((¢°) 71 ®)(¢L,€2,...) =

®(Tq(£L,0.), Tq(€2,0,),...), and using this it is easy to show that the two con-
structions are inverse to each other:

(@) (@) @) gumy (Tq(E, TARY ™), .. ) = Ad(R (@) ®)ulén, &0 )
= Ad(h_l)q)(T(u,e)Q( 11u Oe)v .- ) = (I)(T(Fh)-T(u,e)Q(gqlu Oe)’ .- )
= (b(T(u,h)Q(gilu T)‘h-OE)v s ) = (I><T(u,h)q(§1lu T)‘h-Y)? s )7

since @ is horizontal, and
(&) H@)D)ul€ns &l ) = (@) W) g0y (Ta(En 0c)s - ) = WaulEys o).

Claim 1: dp,0¢’ = ¢’ od, : Q (P;W)¢ — QYT (P[H];W)© holds for a
generalized Cartan connection x on P. Here d,, is given by d»,,® = x*d® for any
form ® € Q(P[H],V) with values in a vector space V, where x is the horizontal
projection induced by ¢°s. In [4], 1.4 it is proved that for ® € Qo (P[H]; W)
the formula d,® = d® + [¢’K,®]" holds. On the other hand we have d,¥ =
dVU + p" (k)W for ¥ € Qo (P; W)E by definition 2.8.

To compute d(¢”¥) we need vector fields. So let & € X(P)¢ be G-equivariant
vector fields on P, and for Y; € b let Ly, denote the left invariant vector field on H,
Ly, (h) = TAp.Y;. Then the vector field §; x Ly, is G-equivariant and factors thus
to a vector field on the associated bundle as indicated in the following diagram:

. x Ly
§XLvi rpo oy

JTq

TP xpqg TH = T(P[H))

Px H

|

P[H] = Pxg H

giXLYi

So the vector fields &; x Ly, on P x H and fi/x\fyi on P[H] are g-related and thus
we have

2) (€ X Ly & X Ly,] = [€,65] X L,y
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Now we compute

Aa"®) (& X Lyyyo & % Ly, ) =

:i gley (q"\I/ (§O/><\_L/YO,-~~,/\¢a~-~a§pXLYp))
i=0

Z H_] q\I/ (I:fiXLYN&XLyi:|,foXLyO,...,/\i,...,/\j,...).

1<J

Since we have
B) (@) g (51 X Ly, &y % Lyp> _

= (") gumy(Ta(ér(w), TAnY1), - .., Ta(Ep(u), TeA-Yy))
= Ad(h ). Wy (&1 (u), .., &p(u)) € b

we get

(EO/X\fYo) (qbq’ <€1f><\fyl, ooy &p X Ly, )) (q(u, b)) =
= (Th(AdoInv).Te AR Yo). Wy (€ 7~-~,€p)+A( “H(&Y(&, ..., &)
[Y07Ad( ) (El?)gp)]—’—Ad( ( (517"'75}7))'

Inserting we get

Aq" W) (0 X Ly -+ & % Ly, ) (alu, 1) =

P

=— _Z(A)Z’%Ad(h*l)-%(so, sy
+Ad(h ™). (dP)u (&0, - - -5 &p).

Next we compute

(kg0 (60 X Lygs & X Ly, ) (alu, ) =

'M*@

s
Il
=)

(1) [(q K)g(u <§z X LY) (qb‘If)(q(%h)) (fg X Lyy,oooy iy )}

(—1'[Y; + Ad(h ™ ra (&), Ad (A W0 (os- 1 &iv - 6]y

|
-M“

s
I
=)

(—1)' Vi, Ad(h ™). (Coy - -, Eiy - Ep)]

I
M=

i=0
+ Ad(h_l).[m, U™ oy - - - Ep) (u).
On the other hand we have
(@ © de®) (gu) (go X Lyy, ... &y % Lyp) = Ad(h™).(de ) (€0, - - - 6p)
= Ad(h™").(d¥ + [k, ¥])u (b0, - -, &p),
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so the claim follows by comparing the last three expressions.
Claim 2: ¢’K = d(qb/@) + %[qbfi, qu]’\ for a generalized Cartan connection x on
P with curvature K = dk + L[k, k]".

We have K € Q2 (P;h)€ but & is not horizontal, so we must redo parts of the
above computations. We use the same vector fields as in the proof of Claim 1.
Since by 3.2,(1) we have

(4) (") g(uuh) (51/><\fyl) = (¢"R)qum (Ta(€1(w), TeAr Y1)
=Y+ Ad(h 1) .ku(&)

we get again the same formula as for ¥

§0/>-<\L/YD (qb"{)q(u,h) (51/>-<\L/Y1)
= —[Yo, Ad(h™")ru(&1)] + Ad(h™1) (€or(61)) ().

This leads to

d(qbﬂ) (50 X LYo?fl X LY1> =
= —[¥o, Ad(h™)ku(£1)] + [Y1, Ad(h™")ku(&)] — [Yo, V1]
+ Ad(h™ ) (dky (&0, &1)).

Again from (4) we get

L' ") (&0 % Iy 1 % Ly, ) (a(u, ) =
= 51Y0 + Ad(h™)ku (&), Y1 + Ad(h™ (&)
— 3%+ Ad(ARu(€0), Yo + Ad(h )k (&)
= [Yo, Ad(h™)ku(€0)] = V1, Ad(h ™) u(0)] + [¥o, Vi)
+ 3 Ad( ). [k, 1) (60, 60) (W)

from which now the result follows. 0O

3.4. Corollary. The characteristic class for an invariant f € LE(h)H constructed
in proposition 2.11 with the help of generalized Cartan connections on P is exactly
the characteristic class of the principal bundle P[H] associated to f. Since P[H]
admits a reduction of the structure group to G, this class is a characteristic class
of P, associated to f|g € L*(g)¢. If flg = 0 then the form f¥ of proposition 2.11
s exact.

Proof. This follows from well known properties of characteristic classes of principal
bundles. [
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4. FLAT CARTAN CONNECTIONS

4.1. Flat Cartan connections. Let P be a smooth manifold. A Cartan con-
nection £ : TP — b is said to be flat if its curvature K = dk + 3[r,K]" (see 2.7)
vanishes. In this case the subalgebra g C § does not play any role. The inverse
mapping ¢ : h — X(P), given by (x(z) = (k) 1(X) is then a homomorphism
of Lie algebras, and it defines a free transitive action of the Lie algebra § on the
manifold P in the sense of [5], 2.1. The inverse statement is also valid, see [5], 5.1.

A flat generalized Cartan connection is then a form x : TP — § which satisfies
the Maurer-Cartan equation dk + $[x,x]" (without the assumtion that it is non-
degenerate).

4.2. Let H be a connected Lie group with Lie algebra b, multiplication p : Hx H —
H, and for g € H let pg,p? : H — H denote the left and right translation,
u(g, k) = g.h = py(h) = u"(g). For a smooth mapping ¢ : P — H let us use the
left trivialization of TH and consider the left logarithmic derivative §'p € QY (P;h),
given by 8¢, :=T(pp(z)-1) © To : To P — Ty(pyH — b. Similarly we consider the
right logarithmic derivative 5"¢ € Q' (P;h) which is given by 6"y, := T(w"(w)_l) o
Ty : Ty P — TyyH — . The following result can be found in [17], [18], [19], or in
[11] (proved with moving frames); see also [5], 5.2. We include a simple conceptual
proof and we consider all variants.

Proposition. For a smooth mapping ¢ : P — H the left logarithmic derivative
'o € QY(P;b) satisfies the (right) Maurer-Cartan equation dé'o+1[6'p, 8'¢]" = 0.

If conversely a 1-form k € QY(P;b) satisfies dr + %[K,FL]/\ = 0 then for each
simply connected subset U C P there exists a smooth function ¢ : U — H with
8t = k|U, and ¢ is uniquely detemined up to a right translation in H.

For a smooth mapping ¢ : P — H the right logarithmic derivative "¢ € Q(P;h)
satisfies the (left) Maurer-Cartan equation dd"p — £[6"p, 67| = 0.

If a 1-form k € Q' (P;b) satisfies dc— [k, K] = 0 then for each simply connected
subset U C P there exists a smooth function ¢ : U — H with §"p = k|U, and ¢ is
uniquely determined up to a left translation in H.

Proof. Let us treat first the right logarithmic derivative since it leads to a principal
connection for a bundle with right principal action. We consider the trivial principal
bundle pr; : P x H — P with right principal action. Then the submanifolds
{(z,¢(x).g) : © € P} for g € H form a foliation of P x G whose tangent distribution
is transversal to the vertical bundle P x TH C T(P x H) and is invariant under
the principal right H-action. So it is the horizontal distribution of a principal
connection on P x H — H. For a tangent vector (X,,Y;) € T,P x T,H the
horizontal part is the right translate to the foot point (z,¢) of (X, Tep.X,), so
the decomposition in horizontal and vertical parts according to this distribution is

—1

—1
(Xa,Yy) = (vaT(.ug)T(HW(I) ) Top.Xo) + (02, Y, — T(.Ug)-T(l‘W(I) ) Top-Xa).

Since the fundamental vector fields for the right action on H are the left invariant
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vector fields, the corresponding connection form is given by

-1
w'(Xa,Yy) = T(pg—1).(Yg — T(Ng)-T(NW(w) ) Top.Xz),
w(rx g9) — T(/u’ _1) - Ad( 71) (Vsol’v
(1) W' =kl — (AdoInv).6"p,
where kb, : TH — b is the left Maurer-Cartan form on H (the left trivialization),
given by (kly)y = T'(uy—1). Note that x; is the principal connection form for the

(unique) principal connection p : H — point with right principal action, which is
flat so that the right (from right action) Maurer-Cartan equation holds in the form

(2) de' + [k KN = 0.

The principal connection w” is flat since we got it via the horizontal leaves, so
the principal curvature form vanishes:

(3) 0=dw" + ", w1
= drly, + 1 [KH7 kN — d(AdoInv) A 6"¢ — (AdoInv).dd" o
— [k, (AdoInv).6"¢]" + L[(AdoInv).6"¢, (Ad o Inv).5"¢]"
—(AdoInv).(dd" ¢ — 1[07¢, 67¢]"),

where we used (2) and since for X € g we have:

d(AdoInv)(T (ug)X) = 5; ’0Ad exp(—tX).g7') = —ad(X)Ad(g 1)
= —ad(k} (T (1g)X))(Ad o Inv)(g),
(4) d(AdoInv) = —(ad okly)(Ad o Inv).

So we have dé"p — 1[67p, 67" as asserted.
If conversely we are given a 1-form " € Q' (P;h) with dx" — [s", x"]" = 0 then
we consider the 1-form w” € Q(P x H;b), given by the analogon of (1),

(5) W' =kl — (AdoInv).k"

Then w” is a principal connection form on P x H, since it reproduces the generators
in h of the fundamental vector fields for the principal right action, i.e. the left
invariant vector fields, and w” is H-equivariant:

(1Y) = why o (Fd X T(9)) = Tlptgs p-) T(u?) — Ad(g™ h~)"
= Ad(g ) wi.

The computation in (3) for " instead of §"¢ shows that this connection is flat.
So the horizontal bundle is integrable, and pr; : P x H — P, restricted to each
horizontal leaf, is a covering. Thus it may be inverted over each simply connected
subset U C P, and the inverse (Id,y) : U — P x H is unique up to the choice
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of the branch of the covering, and the choice of the leaf, i.e. ¢ is unique up to a
right translation by an element of H. The beginning of this proof then shows that
" =k"|U.

For the left logarithmic derivative 6’ the proof is similar, and we discuss only the
essential deviations. First note that on the trivial principal bundle pr; : PxH — P
with left principal action of H the fundamental vector fields are the right invariant

vector fields on H, and that for a principal connection form w! the curvature form is

given by dw' —1[w!, w!]". Look at the proof of [14], 11.2 to see this. The connection

form is then given by
(1) wh = kY — Ad .Sy,
where the right Maurer-Cartan form (k%;), = T(ugfl) : TyH — b now satifies the
left Maurer-Cartan equation
2) dny — 3l w3 =0
Flatness of w! now leads to the computation
(3" 0=du' — %[wl,wl]/\

= drl — S[K7, k)N — dAd NS — Ad.ddly

+ [k, Ad 80" — $[Ad .6'p, Ad .6']"

= —Ad.(dd'¢ + 3[8'¢, 8'g]"),

where we used
dAA(T(n9)X) = £, Ad(exp(tX).g) = ad(X) Ad(g)
= ad(ryy (T(p?) X)) Ad(g),

(4 dAd = (adokly) Ad.
The rest of the proof is obvious. [

4.3. Characteristic classes for flat Cartan connections. A generalized Car-
tan connection k : TP — b on the manifold P induces a homomorphism

k' A(H*) — Q(P),
feff=fo(k®n - ®rK)

of the algebra of exterior forms on h into the algebra of differential forms on P.
Let us assume now that the Cartan connection & is flat. Then x* commutes with
the exterior differentials and is a homomorphism of differential complexes, since we
have by 2.9

k
d(f(k,. . k) =D (1) f (k.. dk, . R)

(=) f(k,..., —%[K,H]A, ci s K)

= (df)(k,...,x) k+1 times.
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Thus we have an associated homomorphism «* : H*(h, R) — H*(P). The nontrivial
elements of its image are called characteristic classes for the flat Cartan connection
k. In [6] a similar construction is applied even for infinite dimensional manifolds.

4.4. Let kK : TP — b be a flat generalized Cartan connection on the manifold
P, so dk + %[n, k]™ = 0 holds. Let H be a connected Lie group with Lie algebra
h. Suppose that there exists a smooth mapping ¢ : P — H with §'p = k. By
proposition 4.2 such a ¢ is unique up to a right translation in H, and it exists
if e.g. P is simply connected. Clearly ¢ is a local diffeomorphism if and only if
k is a Cartan connection (non degenerate). Such a mapping ¢ is called Cartan’s
developing, see also [5], 5.2. It gives a convenient way to express the characteristic
classes of 4.3, by the following easy results.

Lemma. Let k : TP — b be a flat generalized Cartan connection such that a
Cartan’s developing p : P — H exists. Then the following diagram commutes

where L is the extension to left invariant differential forms.
Proof. Plug in the definitions. O

4.5. Cartan connections with constant curvature. Let x : TP — b be a
Cartan connection of type h/g on a manifold P. Then its curvature belongs to the
space Q2(P;h) = h ® Q?(P). Using the absolute parallelism on P defined by  we
may associate with  the function

k:P —ho A%
E(w)(X,Y): = K({x(u),(y(u)) for u € P and X,Y € §.

We say that the Cartan connection x has constant curvature if this function k is
constant.

5. FLAT CARTAN CONNECTIONS ASSOCIATED WITH A FLAT G-STRUCTURE

5.1. G-structures. By a G-structure on a smooth finite dimensional manifold
M we mean a principal fiber bundle p : P — M together with a representation
p: G — GL(V) of the structure group in a real vector space V of dimension dim M
and a 1-form o (called the soldering form) on M with values in the associated
bundle P[V,p] = P x¢ V which is fiber wise an isomorphism and identifies T,, M
with P[V], for each z € M. Then o corresponds uniquely to a G-equivariant 1-
form 6 € Q}lm(P; V)& which is strongly horizontal in the sense that its kernel is
exactly the vertical bundle V P. The form 6 is called the displacement form of the
G-structure.

If the representation p : G — GL(V) is faithful so that G C GL(V) is a linear Lie
group, then a G-structure (P, p, M, G, V, 0) is a subbundle of the linear frame bundle
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GL(V;TM) of M. To see this recall the projection ¢ : P XV — P xg V = P[V]
onto the associated bundle and the mapping 7 = 7V : P x; P[V] — V which is
uniquely given by q(uz, 7(uy,v,)) = v, and which satisfies 7(u,, ¢(u,,v)) = v and
T(tg-g,v:) = p(g~ )T (ug,vs), see [14], 10.7. Then we have the smooth mapping
over the identity on M,

(1) P — GL(V; P[V]) = GL(V;TM),

Uy HT(um )71,

which is G-equivariant and thus an embedding.

Let p: P — M and p' : P — M’ be two G-structures with the same representa-
tion p : G — GL(V), with soldering forms o, ¢’, and with displacement forms 6, ¢’,
respectively. We are going to define the notion of an isomorphism of G-structures.

For G C GL(V) an isomorphism of G-structures is a diffeomorphism ¢ : M —
M’ such that the natural prolongation GL(V;Ty) : GL(V;TM) — GL(V;TM’)
to the frame bundles maps the subbundle P C GL(V;TM) to the subbundle P’ C
GL(V;TM").

In the general case an isomorphism of G-structures with the same representation
p: G — GL(V) is an isomorphism of principal G-bundles

p -, p

2) | |7

M — M
©
whose induced isomorphism ¢ x g Id, ) of of principal p(G)-bundles coincides on
Pxgp(G) C GL(V, TM) with the restriction of the natural prologation GL(V'; Tp)
of ¢ to the linear frame bundle, and which preserves the displacement forms: g*6’ =
oTp=0:TP—V.

A G-structure (P,p, M,G,V,0) is called flat if it is locally (in a neighborhood of
any point & € M) isomorphic to the standard flat G-structure pr; : V.x G — V
with displacement form dpry : T(V x G) — V. Then the soldering form is just the
identity o = Id : TV =V x V — V x V| the linear frame bundle is GL(V;TV) =
V x GL(V) and the associated p(G)-bundle is the subbundle V x p(G) C VxGL(V).

The standard examples of flat G-structures are foliations with structure group

GL(p) *
0 GL(n—p) /)’
and symplectic structures.

Suppose that G = p(G) C GL(V) and let us consider a local diffeomorphism
defined near 0 and respecting 0 in V' (we write ¢ : V,0 — V,0). It is a local
automorphism of the standard flat G-structure pry : V x G — V with displacement
form dpry : T(V x G) — V if and only if the following condition holds:

(3) dp(z): V= Visin G C GL(V) for all  in the domain of ¢,

because only then its natural prolongation GL(V;T¢) to the linear frame bundle
maps G-frames to G-frames.
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5.2. The infinite dimensional Lie group GL>*(V). Let V be a real vector
space of dimension n, and let J°(V,V) be the linear space of all infinite jets of
smooth mappings V' — V, equipped with the initial topology with respect to all
projections J>(V, V) — J¥(V, V), which is a nuclear Fréchet space topology.

We shall use the calculus of Frolicher and Kriegl in infinite dimensions, see [9],
[15], [16], where a smooth mapping is one which maps smooth curves to smooth
curves. On the spaces which we are going to use here the smooth mappings with
values in finite dimensional spaces are just those which locally factor over some
finite dimensional quotient like J*(V, V) and are smooth there.

Then we consider the closed linear subspace gloo(V) C J*(V,V) of infinite
jets of smooth mappings V' — V which map the origin to the origin. Note that
composition is defined on glo (V) and is smooth, but is linear only in one (the left)
component. Then we consider the open subset G L, (V) of all infinite jets of local
diffeomorphisms of V', defined near and respecting 0. This is a smooth Lie group
in the sense that composition and inversion are smooth. Its Lie algebra is gl (V)
which we may view as the full prolongation

(1) gloo(V) = gl(V) x gl' (V) x gl*(V) x gP(V) x ...,

where gl* (V) = S¥V*®V is the space of homogeneous polynomials V — V of order
k. One may view gl (V) also as the vector space {j5°X : X € X(V), X (0) = 0}
with the bracket
o" X, 40 Y] = —jg° [X, Y]
and with the smooth (unique) exponential mapping exp : gloo (V) — G L (V) given
by
exp(j§° X) = jg° (FITY),

where FIX is the flow of the vector field X on V. It is well known that exp :
0l (V) — GL (V) is not surjective onto any neighborhood of the identity, see
[23].

See [14], section 13, for a detailed discussion of the finite jet groups GLy(V); the
book [16] will contain a thorough discussion of G L (V).

5.3. The infinite prolongation of a linear Lie group G and its Lie alge-
bra. Let G C GL(V) be a closed linear Lie group. We denote by Goo C GLo(V)
the subgroup of all infinite jets j§°¢ of local automorphisms ¢ of the standard flat
G-structure pry : VxG — V, defined near 0 and respecting 0. Note that these ¢ are
exactly the local diffeomorphisms ¢ : V,0 — V, 0 such that dp(z) € G C GL(V) for
all x € V near 0, by the discussion in 5.1. Then G, is a group with multiplication
and inversion

Jo e do = jo (poi),
(Ge°e) = dg% (™),
respectively. We will not address the question here in which sense G, is a Lie
group. We continue just on a formal level.
The infinitesimal automorphisms respecting 0 of the standard flat G-structure

on V are then those local vector fields X defined near 0 and vanishing at 0 in V'
whose local flows FI;* consist of automorphisms of the G-structure.
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Lemma. The infinitesimal automorphisms are exactly the vector fields X defined
near 0 and vanishing near 0 such that dX(x) € g € L(V,V), where g is the Lie
algebra of G.

Proof. Namely, ¢(t) = d(FIX)(x) is a curve in G C GL(V) if and only if the
following expression lies in g:

d

= %(
= d(X o FI,Y)(z).d(FI;*)(x) !

= d(X(FIX)(z)). O

AR () AP ) () ™ = d( P (o) (P ()

d(t).c(t)™? o

We consider now the infinite jets j§°X of all these infinitesimal automorphisms
respecting 0. These jets form a sub vector space goo C gloo(V) which we may view
as the full prolongation

(1) goo =g x g xg¥x gt x...,
where gF = goo N S¥V* ® V is the space of homogeneous polynomials V — V of
order k in go,. Then g, is a Lie algebra with the bracket
0" X, 40" Y] = —jg°[X, Y]
and with the smooth (unique) exponential mapping exp : goo — G given by
exp(j§°X) = jg°(FIy),

where F1;* is the flow of the vector field X on V. We expect that in general
exp : oo — G is not surjective onto any neighborhood of the identity.

Now we consider the Lie algebra of all infinitesimal automorphisms of the stan-
dard flat G-structure pry : VxG — V, i.e. all local vector fields X defined near 0 in
V such that the local flows FltX are automorphisms. As above one sees that these
are the vector fields X with dX(z) € g C gl(V) for all z, without the restriction
that they should vanish at 0. Let ao, be the Lie algebra of all infinite jets j5°X of
such fields, again with bracket

lio" X, 40 Y] = =" [X, Y].

By decomposing into monomials we have again
(2) oo =V xgxg?xg®xgtx...=V®ge.
We have an adjoint representation Ad : Go, — Aut(as) which is given by

Ad(i5)io X = 55°(¢"X) = G5 (Te ™" 0 X 0 )
In a formal sense we have also the left Maurer-Cartan form on G. First let us
define the tangent bundle TG, as the set of all (j805007j30%|080t) where ¢; is a
smooth curve of local automorphisms of the standard flat G-structure, respecting

0, smooth in the sense that (¢,z) — ¢:(x) is smooth. Then we define the left
Maurer-Cartan form IilGoo by

(3) ke (365200, 36° Eloer) = j5° (Tg ' 0 Lloiy).
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5.4. Proposition. Let 8y = dpry : T(V x G) — V be the displacement form of
the standard flat G-structure. Then

Ko =00 @kl T(VXGo) =TV X TGoo — V& goo = o

is a flat Cartan connection on the manifold V x G, with values in the Lie algebra

Ooo-

Proof. Note first that the left Maurer-Cartan form x{;  given in 5.3.(3) is really
a trivialization of the tangent bundle TG, because of the lemma in 5.3, and we
show that it satisfies the Maurer-Cartan equation:

Let X (and later also Y) be a local vector field defined near 0 and vanishing
at 0, which is an infinitesimal automorphism of the standard flat G-structure, so
that j§°X is a typical element in go. Let j§°¢ € G be a typical element, so
@ :V,0— V,0is alocal automorphism. Then

Lijseex 1 Goo 2§50 = T(j5"p) 0 jg° X = jo (T'p o X)
is the left invariant vector field on G, generated by j5°X. We have
[Ljgexs Ligoy] = Lijgex o] = Loje1x.v);
and the Maurer-Cartan equation follows as usual:

(d“lcoo)(ng‘Jvaj?Y) =0-0- HZGOO (Lijeex,jeey)) = —lio X, jo Y] =
1 !

= —lvg (Ljex), kG (Liey)] = _i[KIGOQ’HGM]A(Lj&”X7Lj5’°Y)-

One may now easily carry over to k¢ this result. [

5.5. The infinite prolongation of a flat G-structure. Let again G C GL(V)
be a linear Lie group, and let (P,p, M,G,V,0) be a flat G-structure. We denote
by peo : P° — M the infinite prolongation of this G-structure which is defined as
follows:

The total space P> is the space of all infinite jets j5°¢ of local isomorphisms
@ : V,0 — M of the standard flat G-structure onto the given one. Then obviously
the group G acts freely from the right on P, and also transitive on the fiber.
We have the mapping

77 P xy P® = Goo
P (58500, 45°) = 5 (¢ o )

(see [14], 10.2) describing the principal G-bundle structure, which is locally iso-
morphic to the trivial bundle V' x G . The local isomorphisms ¢ : V,0 — M induce
on P a flat Cartan connection

K:TP® = a5 =V ®goo

which locally is just given as the push forward via j§°¢ of the canonical flat Cartan
connection kg on V X Go.
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6. THE CANONICAL CARTAN CONNECTION FOR
A G-STRUCTURE OF FIRST OR SECOND ORDER

6.1. Let G C GL(V) be a linear Lie group with Lie algebra g. We assume that
the G-module V ® A2V* admits a decomposition

(1) VoAV =§ga V) oo

where § : V@ V*® V* — V ® A2V* is the Spencer operator of alternation, and
where 0 is a G-submodule.

We now recall the definition of the torsion function of a G-structure and the
construction of its first prolongation in the sense of [22]. Let p : P — M be a
G-structure on a manifold M with a displacement form 6 : TP — V| see 5.1. The
1-jet jls of a local section s : M D U — P near x € M may be identified with its
image jls(T,M) = H, a horizontal linear subspace H C Tyz)P. So the first jet
bundle J' P — P may be identified with the space of all horizontal linear subspaces
in fibers of TP — P.

Then the restriction 8| H to such a horizontal space of the displacement form 6 is
a linear isomorphism |H : H — V and we may use it to define the torsion function

t: JHP) =V ®AV*
t(H) (v, w) == dO((0|H) ™ (v), (0]1H) ™ (w))

We consider P! :=¢~1(d). It is a sub fiber bundle of J!(P) and the abelian vector
group G :=g@ V*NV @ S2V* C Hom(V, g) acts on P! freely by g' : P* > H
g*(H) = {h + Cgpl(e(h))(p(H)) :h € H} where ¢ : g — X(P) is the fundamental
vector field mapping. The orbits of P! under this G'-action are fibers of the natural
projection p! : P! — P, hence p' : P — P becomes a principal G'-bundle.

Moreover, there exists a natural displacement form 8 on P'. In order to define
it we denote by @y : T,,P — V, P the projection onto the vertical bundle V, P
along the horizontal subspace H C T, P. Then we have a well defined g-valued
p'-horizontal 1-form w € Q' (P';9) given by ([ (0" (H)) = @ (Tu(p')-X). It
is part of the universal connection form on the bundle of all connections J!(P).
The 1-form

' =w+00T(p'): TP - gxV

with values in the semidirect product g x V is the desired displacement form. It is
equivariant with respect to the free action of the semidirect product G x G*, where
G! acts on g x V by (g%, (X,v)) — (X + ¢g'(v),v). So we have proved the main
parts of

6.2. Lemma. The fibration p1 : P* — M is a principal fiber bundle with structure
group G x G,

The fibration p* : P' — P is a principal bundle with structure group G' and a
G'-structure on P with the displacement form 0'. Moreover the form 6* : TP* —
g x V is G x G-equivariant.
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6.3. G-structures of type 1. We assume now that the first prolongation G' of
the group G is trivial. Any G-structure with such a structure group G is then called
a G-structure of type 1. In this case the projection p! : P! — P is a diffeomorphism
and the displacement form 0! = w + (p')*@ may be identified with a G-equivariant
1-form on P with values in V; := g x V. This form is a Cartan connection in the
principal bundle p : P — M of type (g x V)/g.

Proposition. Let G C GL(V) be a linear Lie group of type 1 satisfying condition
6.1.(1). Then for any G-structure (P,p, M,G,0) the displacement form 6% of the
first prolongation p' : P* — P defines a Cartan connection on P of type (gx V)/g.

6.4. G-structures of type 2. We say that G C GL(V) is a linear Lie group
of type 2, if the first prolongation G! C GL(V;) is not trivial, but the second
prolongation (G!)! is trivial. So we have

gV NV RSV 40, gosS*V'NnV eSSV =0.

We assume also that the condition 6.1.(1) is satisfied.

Let (P,p, M, G, ) be a G-structure and let p! : P — P be its first prolongation
with the displacement form 6' : TP! — V; = g g. We note that the G'-submodule
§(gt @ Vi) of Vi ® A%V} is not a direct summand. However, we may assume (at
least when G is reductive) that there exists a G-submodule 0! such that

(1) Vi@ A?VF =6(gt @ Vi) @l
This is the case if there exist G-submodules 01, 05, 03 such that
g ®@ AV, = R(g) 01,
R(g) =d(g' @ V*) @0y,
gV =g ©0,

where R(g) is the space of curvature tensors of type g, i.e. the space of closed (with
respect to the Spencer differential) g-valued 2-forms, and where 95 may be identified
with the second Spencer cohomology space.

We denote by t1 : JLP — V3 @ A2V the torsion function of the G'-structure
p': P' — P. The inverse image P? =t (') defines a submanifold of J*P'. The
natural projection p? : P2 — P! is a diffeomorphism since by assumption the second
prolongation G? of the group G is trivial. In other words, we have a canonical field
of horizontal subspaces in TP'. Note that it is not a principal connection since it is
not invariant under the group G'. Using this field of horizontal subspaces in 7 P!
we may extend the canonical vertical parallelism VP! — g x g' of the principal
G x G'-bundle p, : P! — M to a G-quivariant 1-form w; on P!. The g-component
of wy is the g-valued 1-form w from 6.1.

The form

02 = (p)*0+w TP -V xgxg' =as
is non degenerate, G-equivariant, and it prolongs the vertical parallelism VP! —
g g' of the principal G x G'-bundle p; : P* — M. Hence it is a Cartan connection
of type aoo /(g g'), where a,, = V x g x g is the full prolongation of the Lie algebra
g Cgl(V).

Summarizing we have
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6.5. Proposition. Let p : P — M be a G-structure of type 2 satisfying the
conditions 6.1.(1) and 6.4.(1).

p

Then on the total space P! of the first prolongation p' : P* — P of the bundle

: P — M there exists a canonically defined Cartan connection of type as0/g,

where as =V x g x g' is the full prolongation of the Lie algebra g of G.

10.

11.

12.
13.

14.

15.

16.
17.

18.

19.

20.

21.

22.
23.

24.

REFERENCES

. Alekseevsky, D. V., Conformal mappings of G-structures, Funct. Anal. Appl. 22 (1988), 311—

312.

. Alekseevsky, D. V.; Graev M. M., Twistors and Cartan connections, Preprint, (1993).
. Alekseevsky, D. V.; Marchiafava, S., Quaternionic structures on a manifold, Rend. Mat.

Accad. Lincei, Serie 9 4 (1993), 777.

. Alekseevsky, D. V.; Michor, P. W., Characteristic classes for G-structures, Diff. Geom. Appl..
. Alekseevsky, D. V.; Michor, Peter W., Differential Geometry of g-manifolds I. g-manifolds of

constant rank and their characteristic classes, Preprint ESI 7 (1993), 34.

. Bernstein, I. N.; Rozenfeld, B. 1., Homogeneous spaces of infinite dimensional Lie algebras

and characteristic classes of foliations, Uspechi Mat. Nauk 284 (1973), 101-138.

. Cartan, E., Les groupes des transformations continues, infinie, simple, Ann. Sci. Ecole Norm.

Sup. 26 (1909), 93-161.

. Cartan, E., Les espaces & connexion conforme, Ann. Soc. Polon. Math. 2 (1923), 171-221.
. Frolicher, Alfred; Kriegl, Andreas, Linear spaces and differentiation theory, Pure and Applied

Mathematics, J. Wiley, Chichester, 1988.

Gelfand, I. M.; Kazhdan, D. N., Some questions of differential geometry and the computation
of the cohomology of the Lie algebras of vector fields, Dokl. Akad. Nauk SSSR 200 (1971),
269-272; English, Sov. Math. Dokl. 12 (1971), 1367-1370.

Griffiths, P., On Cartan’s method of Lie groups and moving frames as applied to uniqueness
and existence questions in differential geometry, Duke Math. J. 41 (1974), 775-814.
Guillemin, V., The integrability problem for G-structures, Trans. AMS 116 (1965), 544-560.
Kobayashi, S., Transformation groups in differential geometry, Ergebnisse der Mathematik,
70, Springer-Verlag, Berlin, Heidelberg, New York, 1972.

Kolar, Ivan; Slovak, Jan; Michor, Peter W., Natural operators in differential geometry,
Springer-Verlag, Heidelberg, Berlin, New York, 1993.

Kriegl, A.; Michor, P. W., Aspects of the theory of infinite dimensional manifolds, Differential
Geometry and Applications 1 (1991), 159-176.

Kriegl, A.; Michor, P. W., Foundations of Global Analysis, A book in preparation.
Onishchik, A. L., On the classification of fiber spaces, Sov. Math. Doklady 2 (1961), 1561
1564.

Onishchik, A. L., Connections with zero curvature and the de Rham theorem, Sov. Math.
Doklady 5 (1964), 1654-1657.

Onishchik, A. L., Some concepts and applications of non-abelian cohomology theory, Trans.
Moscow Math. Soc. 17 (1967), 49-98.

Palais, R., On the existence of slices for actions of non-compact Lie groups, Ann. of Math.
(2) 73 (1961), 205-323.

Stefan, P., Accessible sets, orbits and, foliations with singularities, Proc. London Math. Soc.
29 (1974), 699-713.

Sternberg, S., Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964.
Sternberg, S., Infinite Lie groups and formal aspects of dynamical systems, J. Math. Mech.
10 (1961), 451-474.

Sussman, H. J., Orbits of families of vector fields and integrability of distributions, Trans.
AMS 180 (1973), 171-188.

D. V. ALEKSEEVSKY: GEN. ANTONOVA 2 KV 99, 117279 Moscow B-279, Russia

P. W. MIicHOR: INSTITUT FUR MATHEMATIK, UNIVERSITAT WIEN, STRUDLHOFGASSE 4,



DIFFERENTIAL GEOMETRY OF CARTAN CONNECTIONS 23

A-1090 WIEN, AUSTRIA; AND ERWIN SCHRODINGER INTERNATIONAL INSTITUTE OF MATHE-
MATICAL PHYSICS, PASTEURGASSE 6/7, A-1090 WIEN, AUSTRIA
E-mail address: michor@esi.ac.at



