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1. Smooth spaces

In this chapter we study basic properties of the category of smooth spaces and natural
topologies on smooth spaces.

1.1. Definition. A smooth space is a set X together with a set of curves Cx C X™® and a
set of functions Fx C RX such that
(1): For any ¢ € Cx and any f € Fx we have foc e C®(R,R).
(2): The curves and functions determine each other in the following sense: If ¢ € X® is
such that foc € C®(R,R) for any f € Fx then ¢ € Cx and if f € RX is such that
foce C®(R,R) for any ¢ € Cx then f € Fx.

A map f : X = Y between smooth spaces is called smooth iff it satisfies one of the
following equivalent conditions:
(1): focely forallc e Cx
(2): po f € Fx forall p € Fy
(3): pofoce C®(R,R)for all p € Fy and all ¢ € Cx

Let C° denote the category of smooth spaces and smooth maps.

1.2. Smooth structures generated by a family of curves or functions. Let X be
a set, C C X™ an arbitrary set of curves. Then we can define a smooth structure on X as
follows: Let Fx be the set of all f € R¥ such that foc € C®°(R,R) for all ¢ € C and let
Cx be the set of all ¢ € X® such that foc € C®°(R,R) for all f € Fx. Then one easily
verifies that (Cx,Fx) defines a smooth structure on X, called the structure generated by
the family C of curves. Moreover one easily verifies that a map f : X — Y into an arbitrary
smooth space Y is smooth for this structure if and only if foc € Cy for all ¢ € C.

Dually we define the smooth structure on X generated by a set of functions F C RX.
This structure has then the property that a map f : Y — X from an arbitrary smooth space
Y to X is smooth for this structure if and only if p o f € Fy for all ¢ € F.

1.3. Lemma. The category C™ has initial and final structures with respect to the forgetful
functor to the category of sets.

Proof. We give an explicit description of the structures. Let X be a set, go : X = X,
a family of maps into smooth spaces X,. One easily verifies that the smooth structure
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2 1. SMOOTH SPACES

generated by the set of functions {f ogs : f € Fx_} is initial. (It suffices to take f in a
subset of Fx_ which generates the smooth structure of X,.) In particular acurve ¢ : R — X
is smooth iff g, o ¢ i1s a smooth curve into X, for all a.

On the other hand if g, : X, — X is a family of smooth maps then one shows that the
structure generated by the set of curves {go0c: ¢ € Cx_} is final. (Again it suffices to take
¢ in a subset which generates the smooth structure.) In particular a function f: X — R is
smooth iff f o g, 1s smooth for all «. O

1.4. Corollary. The category of smooth spaces is complete and cocomplete, 1.e. all cate-
gorical limits and colimits can be formed.

Proof. Tt is a general result of category theory that limits (colimits) can be constructed by
forming the limit (colimit) of the underlying sets and then putting the initial (final) smooth
structure on them. 0O

1.5. Examples of smooth spaces. Let (E, E’) be a dual pair, i.e. F is a real vector
space and E’ is a point separating linear subspace of the algebraic dual of E. Then on E
we consider the smooth structure generated by E’. In particular on a locally convex space
we consider the smooth structure generated by all continuous linear functionals.

Then it turns out that on any Banach space the smooth curves in this sense are exactly the
usual smooth curves. Moreover it can be shown that the smooth functions between Banach
spaces in the sense of 1.1 are exactly the usual smooth functions (c.f. [F-K, 4.3.16]). From
this one easily deduces that for maps between finite dimensional smooth manifolds (or more
generally smooth Banach manifolds) with the smooth structure given by the usual smooth
curves and real valued functions definition 1.1 gives the usual notion of smoothness.

1.6. Smooth structures on sets of smooth maps. Let X and Y be smooth spaces,
C*(X,Y) the set of all smooth functions from X to Y. Let Cxy be the set of all curves
¢:R— C®(X,Y)such that ¢ : R x X — Y is smooth where ¢ is defined by é(, z) := ¢(t)(z)
and consider the smooth structure generated by this set of curves.

Then it turns out that a curve into C*°(X,Y) is smooth for this structure if and only if
it belongs to Cx,y. From this one deduces the following theorem:

1.7. Theorem. The category of smooth spaces and smooth maps is cartesian closed, i.e.
for any smooth spaces X, Y and 7 there is a natural isomorphism (which is even a diffeo-
morphism):

C®(X,C®(Y,2)) = C®(X x Y, Z)

Proof. [F-K, 1.1.7and 1.4.3] O

1.8. Corollary. Let X, Y, and Z be smooth spaces. Then the following canonical mappings
are smooth:

ev: C®(X,)Y)x X =Y, ev(f, z) := f(z)

ins: X 5 C®°(Y, X xY), ins(z)(y) = (z,y)

comp : C®(Y,7) x C®°(X,Y) > C=®(X,7), (9, f) = gof

Jo 1 C®(X,Y) 5 C®(X,7), f(g9) := fog where f:Y — Z is a smooth map

g* 1 C®(Z,Y) = C®(X,Y), g*(f) = fog where g : X — Z is a smooth map

Proof. ev and ins are associated to identity maps via cartesian closedness, the other three
maps can be built up from suitably chosen evaluation and insertion maps. O

1.9. Natural topologies on smooth spaces. On asmooth space X there are two obvious
natural topologies: First there is the final topology with respect to all smooth curves in X,
which we denote by 7¢ and second there is the initial topology with respect to all smooth
real valued functions on X, which will be denoted by 7#. For locally convex vector spaces
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the ¢ topology coincides with the Mackey closure topology ([F-K, 2.2]) and is also called
c®-topology. For Fréchet spaces this topology coincides with the given one ([F-K, 6.1.4]).

By definition the topology 7¢ is always finer than 7#. A smooth space on which the two
natural topologies coincide will be called balanced. We will use topological notions mainly
for balanced spaces.

A smooth space X is called Hausdorff iff the smooth real valued functions on X are point
separating, i.e. iff the 77 topology (and thus also the 7¢ topology) on X is Hausdorff.

A smooth space 1s called a base space iff it is balanced compact and Hausdorff.

1.10. Examples of balanced smooth spaces. It can be shown that a Banach space
is balanced if and only if there is a nonzero smooth real valued function on it which has
bounded support ([Bonic-Frampton, 1966]). Moreover any nuclear Fréchet space as well as
any function space C*° (M, FE) where M is a finite dimensional smooth manifold and F is a
nuclear Fréchet space is balanced ([Michor, 1983], [F-K, 4.4.44]).

For finite dimensional smooth manifolds balancedness follows immediately from the exis-
tence of smooth partitions of unity, which also shows that the 7+ topology coincides with
the usual one.

1.11. Lemma. Let X, Y be smooth spaces, U C X a 1c—open subset, f : X =Y a
function. Then the following conditions are equivalent:

(1): For any smooth curve ¢ : R = X with ¢(R) C U the curve f o c is smooth.

(2): For any smooth curve ¢ : R — X the curve foc:e H(U) =Y is smooth.

Proof. Obviously (2) implies (1).

By composing with smooth real valued functions on ¥ we may without loss of generality
assume that Y = R. Let ¢ : R — X be an arbitrary smooth curve and let {3 € R be such
that ¢(to) € U. As U is 7¢—open there is a closed interval, say V := [tqg — d, %o + ¢] such that
e(V) C U. Now let h € C*°(R,R) be a smooth function such that A(R) C V and h(t) = ¢
locally around ¢g. Then by (1) focoh is smooth and hence f o ¢ is smooth in #5. O

1.12. Lemma. Let X and Y be smooth spaces, f : X =Y a map.

(1): If f is smooth then it is continuous for the 1¢ topologies as well as for the Tx topologies.
(2): If (Ua)aea is a Tc—open covering of X such that for any « the restriction of f to U,
s smooth then f 1s smooth.

Proof. (1) follows immediately from the definitions.

(2): Composing with smooth real valued functions we may assume that ¥ = R. Now let
¢ : R — X be asmooth curve. By 1.11 for any a the function foc | ¢~} (Uy,) : ¢71(Uy) — Ris
smooth. By assumption (¢=!(U,))aea is an open covering of R and thus foc is smooth. O

1.13. Lemma. For any smooth space X the Tx topology of X is smoothly completely
regular, i.e. if A C X is tr—closed and x is a point of X \ A then there is a smooth function
f: X —=[0,1] with f(z) =1 and f(A) = 0. The function f can even be chosen such that its
support (the Tr—closure of the set of all points where f is nonzero) is contained in X \ A.
(On [0, 1] we consider the smooth structure induced by the embedding into R.)

Proof. As X\ Ais r—open there is a smooth function g : X — R such that z € g=1((0,1)) C
X \ A. Now let ¢ € C°(R,R) be a smooth function such that ¢ has support in (0,1) and
¢(g(z)) = 1. Then f := p o g is obviously smooth and has the desired property. O

1.14. Lemma. Let X be a smooth space, U C X.

(1): If U is 7c—open then the trace topology of the ¢ topology of X equals the 1¢ topology
onU.

(2): If U is Tr—open then the trace topology of the Tx topology of X equals the T topology
onU.
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Proof. (1): The inclusion U < X is by definition smooth and thus continuous, so the
trace topology is coarser than the 7 topology. To prove the converse let V C U be 7¢—
open. Clearly it suffices to show that V' is 7¢—open in X. So let ¢ : R — X be a smooth
curve and let ¢ € R be such that ¢(t) € V. As U is r¢—open in X there is a § > 0 such
that [t — 24, + 20] C ¢ }(U). Now let h € C*(R,R) be a smooth function such that
h(R) C [t—248,t+ 28] and h(s) = s for s € [t —d,t 4+ 6]. Then co h is a smooth curve into U
and co h(t) € V and thus there exists an open neighborhood of ¢ in R which is contained in
(coh)~1(V). By construction the intersection of this open neighborhood with (¢ — 4, + d)
is contained in ¢=*(V) and thus V is 7¢—open in X.

(2): Asin (1) one concludes that the trace topology is coarser. Conversely let V' be t7-open
in U and take z € V. By 1.13 we can find functions f € C*(X,R) and g € C*°(U,R) which
both have valuesin [0, 1] such that f(z) = g(z) = 1, the support of f is contained in U and g¢
is identically zero on U\ V. Then the function f-g is well defined on X since f is zero locally
around points in which g is not defined. Moreover it is smooth by 1.12(2) since it is clearly
smooth on the open subsets U and X \ supp(f). Clearly we have z € (f - g)~1(0,00) C V
and thus V is 7x7—open in X. 0O

1.15. Lemma. Let X andY be smooth spaces, p : X =Y a final morphism in the category
of smooth spaces, i.e. p is a smooth map and a map f:Y — 7 to an arbitrary smooth space
Z 1s smooth if and only if fop: X — Z 1s smooth. Then for any Tx-open subset U of Y
the restriction p : p~Y(U) — U is a final morphism.

Proof. Clearly the restriction is smooth so let f : U — Z be a map into a smooth space 7
such that fop:p~1(U) — Z is smooth. Composing with all smooth real valued functions
on Z we see that it suffices to consider the case Z = R. Take an arbitrary point z € U.
By 1.13 there is a smooth function g : Y — [0, 1] with support in U such that g(z) = 1.
Composing with a smooth function ¢ € C*° (R, [0, 1]) which satisfies ¢(¢) = 0 for ¢ < 0 and
@o(t) = 1 for t > 1/2 we see that without loss of generality we may assume that there is a
Tr—open neighborhood V of z in U such that g is identically one on V.

Now consider the function h : Y — R defined by A(y) = g(y) - f(y). Then h is well defined
as g(y) = 0 if f(y) is not defined. Moreover by 1.12(2) hop : X — R is smooth since it is
obviously smooth on the 7x-open sets p~!(U) and p~1 (Y \ supp(g)) and thus by assumption
h is smooth. But on V the two maps h and f coincide and thus the restriction of f to V is
smooth and so again by 1.12(2) f is smooth. O

1.16. Proposition. If X and Y are base spaces then X xY is a base space and the topology
on X XY induced by the smooth structure equals the product topology.

Proof. Let us first show that X x R is a balanced and that the topology induced by the
smooth structure equals the product topology. By definition the product topology is coarser
than the 7£ topology which is in turn coarser than the ¢ topology. Thus it suffices to show
that the product topology is finer than the 7 topology. So let U C X x R be a 7¢ open
subset and let (zg,%9) be a point in U. As for any smooth curve ¢ : R — R the map
t — (zo,c(t)) is a smooth curve into X x R the set of all # € R such that (zq,?) € U is open
in R and thus contains a compact neighborhood V' of 4.

Now let W C X be the set of all z such that {z} x V C U. We want to show that W is
open in X. If not then there is a smooth curve ¢ : R — X such that ¢~ (W) is not open in R.
Consider the smooth function ¢ : R? — X x R defined by (¢, s) — (c(t),s). As ¢ is smooth
and thus continuous for the 7¢ topology the set ¢ ~!(U) is open in R% (Recall that the
topology on R? induced by the smooth structure is the usual one.) Now for any ¢ € ¢~ (V)
the compact set ¢ x V is contained in ¢~ (U) and thus there is an open neighborhood W’
of t in R such that W’ x V C =1 (U). Then ¢(W’') C W and thus ¢ is an inner point of
¢~ }(W) which is a contradiction.
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Now from the fact that the topology of X x IR is the product topology one immediately
concludes that if U is an open subset of X x R and K C X is compact and there isat € R
such that K x {t} C U then there is an open neighborhood V of ¢ such that K x V C U.

So let us turn to the general case: For arbitrary base spaces X and Y one concludes
as above that it suffices to show that the product topology on X x Y 1is finer than the 7¢
topology. Let U C X x Y be 7¢ open and let (zg,y0) be a point in U. As above one shows
that the set V' of all z € X such that (z,y) € U is open in X. As X is balanced there
is a smooth function f € C*(X, [0, 1]) such that f(zg) = 1 and f=1((0,1]) C V’'. Then
V = f~1([1/2,1]) is a closed and thus compact neighborhood of zg in X. Now let W be the
set of all y € Y such that V x {y} C U. If W is not open in Y then we get a contradiction as
above by considering the smooth function ¢ : X xR — X x Y defined by ¢(z,1) := (z,¢(?)),
where ¢ is a smooth curve into Y such that ¢=1(W) is not open in R. O

1.17. Lemma. Any base space X is smoothly normal, i.e. if A and B are closed subsets
of X then there is a smooth function f € C®(X,R) such that f is identically one on A and
wdentically zero on B.

Proof. By 1.13 for any z € A there is a smooth function f, : X — [0, 1] such that fy(z) =1
which vanishes identically on B. The sets f;1((0,1]) form an open covering of A and since
A is closed and thus compact in the Hausdorff space X there are points x1,...,x, € X such
that the sets fx_ll((O, 1]) cover A. Then f := 3_"_, fs, is a smooth function X — R which
vanishes on B and 1s strictly positive on A. As f is smooth and thus continuous it attains
a minimum value @ > 0 on A. Now let ¢ € C*°(IR, [0, 1]) be a smooth function such that

©(0) =0 and ¢(t) = 1 for all t > a. Then ¢ o f has the desired property. O

1.18. Theorem. Let X, Y and 7 be base spaces, ¢ : 7 — X an arbitrary smooth map
and ¢ : 7 — Y an injective smooth map such that for any smooth real valued function
f e C®(X,R) there is a g € C®(Y,R) with g o = f o . Consider the push out:

7 Y v

‘| Jius

X 2% XU,y
Then X Uz Y s a base space and the topology induced by the smooth structure equals the
push out topology.

Proof. Let us first show that the 7z—topology on X Uz Y is Hausdorff: So let a and b
be distinct points of X Uz Y. By definition as a set X Uz Y equals the quotient of the
disjoint union of X and Y by the equivalence relation generated by ¢(z) ~ ¢(z) for all
z € Z. Thus X Uz Y is the disjoint union of ¢.9(X) and ¥.¢(Y \ ¥ (7)) and both maps
are injective on the indicated subsets. If both points lie in ¢, (X) then there is a smooth
function f € C°°(X,R) which separates the points (Y.¢)~!(a) and (1.¢)~1(b). Then
foy:Z — Ris smooth and thus by assumption there is a smooth map g € C*°(Y,R) such
that g o9 = f o ¢ and by the universal property of the pushout these two maps define a
smooth map X Uz Y — R which obviously separates a and b.

So let us assume that a lies in ¥.p(Y \ ¢(7)). As 1 is continuous the set ¢(7) is compact
and thus closed in Y. By 1.13 there is an f € C*(Y, [0, 1]) such that f((¢.¢)~1(a)) = 1
which vanishes on (7). If b is also in ¥.@(Y \ (7)) then f can be chosen such that it
vanishes on (¢.¢)~1(b), too. In both cases f and the zero function on X define a smooth
function on X Uz Y which separates a and b.

By definition the push out topology is finer than the ¢ topology which in turn is finer
than the 77 topology, so the identity is continuous from the push out topology to the 77—
topology and since the push out topology is compact and the T7z—topology is Hausdorff it
is a homeomorphism. 0O
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1.19. Cells. Put E" := { € R™ : ||z]| < 1} with the smooth structure induced by the
inclusion E™ < R™. By D" we denote the set of points of norm less then one and by S7~!
the set of points of norm one. Let us consider the smooth structures induced on D" and
S7~1 by the inclusions into E™. By definition a curve into one of these spaces is smooth
if and only if it is smooth as a curve into R™ and has values in the space. Thus in both
cases we get the ‘usual’ smooth curves and since the smooth curves determine the smooth
structure these two spaces have their usual smooth structures (S”~! as a smooth manifold
and D™ as an open subset of R").

1.20. Proposition. For any n the space E™ is balanced and the topology induced by the
smooth structure is the trace topology.

Proof. By definition the inclusion E” — R” is smooth and thus continuous for the topologies
induced by the smooth structure, so the trace topology is coarser than both of them. Thus
it suffices to show that the 7¢ topology is coarser than the trace topology. So let U C E™ be
7¢ open. Obviously U N D" is 7¢ open in D" and thus open in R” since D" is 7¢ open in R”
(c.f. 1.14). On the other hand U N S"~! is open in S”~!. So for x € U N S"~! there is an
€ > 0 such that the intersection of the ball with radius ¢ around z with S”~! lies in U. We
claim that £ can be chosen such that even the intersection of the ball with £ lies in U. If
not, then for each n € N we can choose a point a,, € F,, \ U such that ||z — a,|| < 1/n" for
any n. By the special curve lemma ([F-K, 2.3.4]) there is a smooth curve ¢ : R — R" such
that e(t) = z for ¢ <0, ¢(1/2") = a,, for all n and ¢(t) = ag for ¢ > 1 such that the image
of ¢ is the polygon through the points a,. Thus ¢(R) C E™ and so ¢ is a smooth curve into
E™. But this leads to a contradiction since ¢~!(U/) must be open and contain zero but does
not contain the points 1/2". O

1.21. Attaching cells. Let X be a smooth space, ¢ : S"~! = X a smooth map. Then
we define the smooth space £ U, X to be the pushout

incl

Sn—l y En

wl J'j

X —— E"Uy,X
and call it the space obtained by attaching an n—cell to X along . From the description of
colimits in 1.4 we see that the underlying set of ™ U, X is the quotient of the disjoint union
of X and E" by the equivalence relation generated by y ~ ¢(y), while the smooth structure
is the final one with respect to the canonical mapsi: X = EF"U, X and j : E” — E" U, X.
Thus a map f : E” U, X — Y into an arbitrary smooth space Y is smooth if and only if
foiand fojare smooth.

If X is a base space then so is E” U, X by 1.18 since clearly any real valued smooth

function on S” has a smooth extension to E”.

1.22. Definition. We define smooth cell complexes inductively:

A zero dimensional smooth cell complex 1s a finite discrete set, where discrete means that
the only smooth curves are the constant ones.

A n—dimensional smooth cell complex 1s a smooth space which is obtained by attaching
finitely many n—cells to an n — 1-dimensional smooth cell complex along smooth maps.

1.23. Theorem. (1): Any finite dimensional smooth cell complex is a base space.
(2): With its natural topology any finite dimensional smooth cell complez is a finite CW-
complex

Proof. This follows immediately by induction using 1.18 as finite discrete sets obviously
have these properties. O
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1.24 Pointed smooth spaces. Let C§° denote the category of pointed smooth spaces
and base point preserving smooth maps. We denote the space of all base point preserving
smooth maps between two pointed smooth spaces X and Y by C§°(X,Y). On this space
we put the initial smooth structure with respect to the inclusion into C*°(X,Y’). Moreover
the space C§°(X,Y) has a natural base point, namely the map which sends the whole space
X 1into yg.

One casily checks that the product in CF° is the same as the product in the category of
smooth spaces and the base point of a product is the point which has as ‘coordinates’ the
base points of the factors. The coproduct in this category, however, differs from the one in
C. We denote the coproduct of two pointed spaces (X, zg) and (Y, yg) in C5° by X VY.
One easily checks that this coproduct is given as the push out (in C*®): -

{zo}U{yo} —— XUY

! !

pt — 5 XVY

where X UY denotes the coproduct (disjoint union) of X and Y in C'°°. The space X VY
is also called the wedge of X and Y.

Let us now assume that X and Y are pointed base spaces. Then one easily shows that
X UY is a base space and thus from 1.18 one immediately concludes that X VY is a base
space.

1.25. The category of pointed smooth spaces is not cartesian closed in the sense of 1.7
since if f: X — C§(Y,7) is a base point preserving smooth map then the smooth map
f : X xY — Z which is associated to f via cartesian closedness of C° must satisfy
f(a:o, y) = zo for all y € Y and thus we cannot get all base point preserving maps in this
way. But it is possible to get an isomorphism of this type by replacing the product by
another functor denoted by A and called the smash product.

In order to construct X A'Y for pointed smooth spaces X and Y we proceed as follows:
The smooth maps z — (z, y9) and y — (2o, y) define a smooth map from XUY to X xY and
together with the map pt — (zg, yo) this defines an injective smooth mapi: XVY — X xY.
Now we define X AY to be the following push out in C*:

XVY — 5 X xY

! !

pt —— XAY

From 1.18 it follows immediately that if X and Y are pointed base spaces then X AY is a
pointed base space. Functoriality of the wedge product follows immediately from the fact
that the product 1s functorial.

1.26. Theorem. For any pointed smooth spaces X, Y and Z there s a natural isomor-
phism: C°(X,CP (Y, 7)) 2 CP(X AY, 7)

Proof. Let f: X — C§° (Y, Z) be a base point preserving smooth map. Then by definition
f is a smooth map into C°° (Y, 7) which has values in C{°(Y, 7). By cartesian closedness
the associated map f : X x Y — Z defined by f(a:,y) = f(z)(y) is smooth. Now as f is
base point preserving we have f(.ro, y) = zg and since f has values in the space of base point

preserving maps we have f(;l:, Yo) = zg. Thus foz' is the constant map zg and f induces a
smooth map X AY — 7.
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Conversely if ¢ : X AY — Z is a smooth base point preserving map then composing it
with the natural map X xY — X AY we get a smooth map ¢’ : X x Y — 7. By cartesian
closedness the associated map §' : X — C*®(Y,7) is smooth and from the fact that g’
sends X VY into zg one immediately concludes that §’ has values in the space of base point
preserving maps and 1s base point preserving. [

1.27. Definition. Let T = [0, 1] denote the unit interval in R with the initial smooth
structure. Let X and Y be smooth spaces, f,g : X — Y smooth functions. f and g are
called smoothly homotopic iff there is a smooth map H : X x I — Y such that Hoinsy = f
and H o ins; = g where for ¢t € I we define ins; : X = X x I as ins;(z) = (z,1).
Being smoothly homotopic is an equivalence relation since smooth homotopies can be pieced
together as follows: Let ¢ € C°(R,[0,1]) be an increasing function such that ¢(¢) = 0 for
all ¢ < 0, ¢(t) = 1/2 locally around 1/2 and ¢(t) = 1 for all ¢ > 1. Then if H; and H,
are smooth homotopies such that H; o ins; = Hy o insg we can define a smooth homotopy
between Hjoinsg and Heoinsy by H(z,t) = Hi(z,2¢(t)) for ¢t < 1/2 and Ha(z,2¢(t) — 1)
for t > 1/2.

By [X,Y] we denote the set of homotopy classes of smooth maps from X to Y. Obviously
[ , ]is a bifunctor from the category of smooth spaces to the category of sets which is
contravariant in the first and covariant in the second variable.

Now suppose that X and Y are pointed, i.e. in each space there is a distinguished base
point. Then we denote by [X, Y]o the set of homotopy classes of base point preserving maps.
(Here homotopic means homotopic through base point preserving maps.)

The spaces X and Y are called smoothly homotopy equivalent iff there are smooth maps
f: X —>Yand g:Y — X such that g o f is smoothly homotopy equivalent to Idx and
f o g is smoothly homotopic to Idy .

1.28. Proposition. For smooth spaces X and Y the following is equivalent:
(1): X and' Y are smoothly homotopy equivalent.

(2): There is a natural equivalence of the functors [X, ] and[Y, ].

(3): There is a natural equivalence of the functors [ ,X] and [ ,Y].

Proof. We only show that (1) and (2) are equivalent, the proof that (3) is equivalent to (1)
is similar.

Let X and Y be smoothly homotopy equivalent via maps f: X - Y and g : ¥ — X.
Then obviously the maps ¢g* : [X, Z] — [Y, Z] constitute a natural equivalence with inverses
ey, zl = X, 7).

On the other hand if ¢ is a natural transformation between the functors [X, ]and [Y, ]
such that each ¢z : [X, Z] — [Y, Z] is bijective then one easily shows that any map in the
class go;l ([Idy]) € [X,Y] is a homotopy equivalence with homotopy inverse any map in the
class px ([Idx]) € [Y, X]. O

Clearly the obvious analog of this proposition for the category of pointed smooth spaces
also holds (with the same proof).

2. Classifying spaces of smooth groups

2.1. Definition. A smooth group is a smooth space G together with two smooth maps
#:GxG— Gandv:G— G such that G is a group with multiplication g and inversion
v.

2.2. Examples. (1): Any finite dimensional Lie-group is a smooth group.
(2): Let X be an arbitrary smooth space, Diff(X) the subset of all maps f € C*°(X, X)
which have a smooth inverse. On Diff(X) put the initial smooth structure with respect to
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the maps 4, j : Diff(X) — C*°(X, X), where i is the inclusion and j(f) = f~!. We claim
that with this smooth structure Diff(X) is a smooth group. The inversion map v is obviously
smooth as iov = j and j o v = i. For the multiplication we have i o y = comp o (i x i)
where comp is the composition map on C*° (X, X) which is smooth by cartesian closedness
(1.8), and jopu = compo o (jx j), where ¢ is the map (f, g) — (g, f) which is obviously
smooth. Thus the multiplication is smooth, too.

(3): In chapter 4 we will see that for a large class of locally convex algebras the set of all
invertible elements with a smooth structure like the one in (2) forms a smooth group.

2.3. Smooth principal bundles. Let X be a smooth space, G a smooth group. A smooth
principal bundle with group G over X is a smooth map p : P — X from a smooth space
P to X such that there is a 77—open covering (U,) of X and there are diffeomorphisms
Vo : p7H(Uys) = Uy x G with pry o ¢p, = p, such that for any a, 8 with Uss := U, NUz £ 0
the diffeomorphism 1, 01/251 :Unp x G — Uyp x G is given as (z, g) — (2, Yap(x) - g), where
Yag : Uap = G is a smooth map.

A smooth principal bundle p: P — X is called trivial iff P is isomorphic to X x G.

If p: P — X is a smooth principal bundle with group GG over X we define a right action
of G on P by ¢o((¢¥7'(x,9) - ¢') = (z,9-¢'). Clearly this is well defined. Moreover it is
obviously smooth as a map p~'(Us) x G — P and since (p~'(Us) X G)aca is a 77 open
covering of P x (G the action is smooth by 1.12.

We call this action the principal action of G on P.

We can also define a map which is somehow an inverse to the principal action as follows:
Let P x x P be the fibered product (pullback). As a set this is given by P xx P = {(u,v) €
P x P :p(u) = p(v)} and the smooth structure is the initial one with respect to the two
canonical projections to P. Obviously we can define a map 7 : P xx P — G implicitly
by v = u - 7(u,v). From the pullback we get a canonical smooth map 7 : P xx P — X.
As a set 771(U,) equals p~}(Uy) xu, p~1(Us) and using the universal properties of the
pullbacks one easily sees that this equality also holds for the smooth structures. But on
p~1(Us) xu, p~1(Us) the map 7 is given by 7(u,v) = pu(v o pra o e (u), pra o o (v)), where
u# and v are the multiplication and inversion maps of (G, and thus is smooth. As the sets
7T_1(Ua) form a 7 open covering of P x x P the map 7 is smooth.

2.4. Lemma. Letp: P — X be a smooth map, G a smooth group. Suppose we have given:
(1): A smooth free right action p : Px G — P which is fiber respecting, i.e. p(p(u,g)) = p(u)
for all w and g.

(2): A smooth map 7 : Pxx P — G such that p(u, 7(u,v)) = v for all u,v with p(u) = p(v).
(3): A Tx-open covering U, of X and smooth maps o, : Uy — p~1(Uy) such that poo, =
Idy, .

Then p: P — X s a smooth principal bundle with group G.

Proof. Let iy : p~1(Uy) < P be the inclusion. The maps o, 0p and i, define a smooth map
Jo 1 p~H(Uys) = P xx P and we define ¢4 : p~1(Ua) = Ua X G by ¥ (u) 1= (p(u), 7(ja(u)))
which is obviously smooth. Moreover using the freeness of the action p one easily shows
that the smooth map (2, g) — p(ca(z), g) is inverse to 1, and thus ¢, is a diffeomorphism.
Now suppose that a and 3 are such that Uyg := Uy N Uz # . Then 1, o 1/)51 is given by
(z,9) = (z,7(0s(2),00(z)) - g) and thus has the required form. O

2.5. Definition. A smooth space X is called smoothly paracompact iff it is Hausdorff
and every Tr—open covering (Uy)aeca of X has a subordinate smooth partition of unity, i.e.
there is a family of smooth functions (f3 : X — [0, 1])gep such that:

(1): (supp(fs))pen is a locally finite covering of X.

(2): For any 8 € B there is an o € A such that supp(fs) C U,.

(3): For any z € X we have ZﬁeB fa(z) = 1.

As before supp(f) is the 7 closure of the set of all points where f is nonzero.
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It is well known that any finite dimensional smooth manifold satisfies this condition.
Moreover one easily sees that any Hausdorff smooth space which is compact for the 77—
topology 1s smoothly paracompact. In particular any base space is smoothly paracompact.
T do not know whether paracompactness (in the topological sense) of the r7—topology of a
Hausdorff smooth space implies that the space is smoothly paracompact.

2.6. Lemma (Pullbacks). Let p: P =Y be a smooth principal bundle with group G, X
a smooth space.
(1): For a smooth map f: X =Y consider the pullback (in the category of smooth spaces)

P 2y p

e

x vy

Then f*p: f*P — X s a smooth principal bundle with group G called the pullback of P.
(2): Let p' : P' = X be a smooth principal bundle with group G and let F : P' — P be a
smooth map which 1s equivariant with respect to the principal G actions. Then there is a
smooth map f : X — Y such that we have a commutative diagram:

p £ ,p

and P’ is isomorphic to f*P

Proof. (1): As a set f*P is given as {(z,z) € X x P : f( )

= p(z)}. Now let (Ua, o) be
an atlas for P. As f is 77 continuous the sets U, YUq)
f

form a 7x open covering
of X. Moreover by construction we have (f*p)~ ( ( o)) = (p* )7 (p~1(Uy,)). Define
Vo : ()N Un) = Un x G as o (u) = (f*p(u), pr201/;aop (u)). These maps are clearly
bijective and smooth. For the inverses we get p* fo (o)~ = ¢3! and f*po (o)~ = Id and
thus they are smooth since f* P has by definition the initial smooth structure with respect
to f*p and p* f. Finally one easily sees that 1a5(z,9) = (=, (Yas o f)(2) - 9).

(2): From the equivariancy of F' one immediately sees that for u,v € P’ with p/(u) = p'(v)
we have p(F(u)) = p(F(v)) and thus there is a map f making the diagram commutative.
Now let (U2, %) be an atlas for P’. Define o : Uy — p’_l(Ua) by oo () == (Vo) (2, €),
where e denotes the unit element of G. Obviously this defines a smooth section. On U/ we
have f = po F oo, and so f is smooth on U/, and hence f is smooth.

By the universal property of the pullback we get a unique smooth map ® : P/ — f*P
with f*po® = p’ and p*f o ® = F. From (1) one sees that p*f is equivariant for the
principal G actions and thus bijective on each fiber and as by assumption F' also has these
properties one easily concludes that ® has them, too. So @ is a bijective homomorphism of
principal bundles and it suffices to show that its inverse is smooth. By 1.12 it suffices to
show that @1 : (f*p)~1(U,) — p’_l(Ua) is smooth where U, is a 7 open subset of X such
that (U, 1) is a chart for P’ and (U,, %4 ) is a chart for f* P. Using equivariancy of ® one
easily shows that ¢/, o ® o 97! can be written as (z,g) — (, pa(2) - g) where g, : X = G
is a smooth function. Thus ¢, 0 ®~1 o (¢,)~1 is the map (z,g) — (z, (v o a(x)) - g) where
v is the inversion map of G and consequently ®~' is smooth. O

2.7. Next we want to show that the isomorphism class of the pullback of a smooth principle
bundle to a smoothly paracompact space depends only on the homotopy class of the map.
This needs some preparation:
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Lemma. Let T := [0,1] C R denote the unit interval. Suppose that f € C*(I,R) is a
smooth function and to € I is a point such that f(to) = 1. Then there is a smooth function
F:C*®(I,R)— R and a real number § > 0 such that F(f) =1 and for any g with F(g) > 0
we have g(t) > 0 for all t with |ty —t| < &. In particular this shows that the T topology on
C*®(1,R) is finer than the compact open topology.

Proof. In [Kriegl, 1990] it is proved that for a convex subset K of R™ with nonempty interior
a function f : K — R is smooth for the initial smooth structure if and only if f is smooth (in
the usual sense) in the interior of K and all derivatives on the interior extend to continuous
maps on K. Thus for any g € C*°(I,R) and any h € C*®(R,R) the integral fol(h og')(s)ds
is well defined. Moreover if ¢ is a smooth curve into C*®°(I,R),i.e. ¢ : R x I — R is smooth

d
ds

as above g fol(h o g')(s)ds is a smooth real valued function on C*(I,R). Now the proof
of [F-K, 4.7.1] can be applied:

Let us first assume that f = 1. Let hg € C®(R,R) be a function with hg(¢) > |¢| for
all ¢ and ho(0) = 1/3, and let h; : R? — R be a smooth function such that hq(1,2/3) = 1
and hi(t,s) # 0 impliest > 1/2 and s > 1/2. For any ¢ € C*®(I,R) and any s € T
we have [g(s) — g(0)| = | [; ¢'(t)dt] < fol ho(g'(t))dt. Now define ¢ : C*°(I,R) — R by
©(g) == h1(g(0), l—fol ho(g'(t))dt). Then ¢ is obviously smooth, ¢(f) = h1(1,1—he(0)) =1
and ¢(g) # 0 implies that g(0) > 1/2 and |g(s) — g(0)] < 1/2 for all s € T and thus g(s) > 0
for all s € I.

In the general case since f is smooth and thus continuous there is a § > 0 such that
[t —to| < 0 implies f(¢) > 1/2. Define h : I — I by h(t) := tg+ (2¢ — 1)d which is obviously
smooth and let & € C°(R,R) be such that h(t) = 0 for t < 0 and h(t) = 1 for t > 1/2.
By 1.8 the map h, o h* : C*®(I,R) = C*(I,R) given by g — hogoh is smooth and the
composition of the map constructed above with this one has the desired property. O

then using this argument it is clear that ¢ — fol h(£é(t,s))ds is smooth and thus for any A

2.8. Proposition. Let X be a smooth space, I the unit interval. Then the Tx topology on
X x I is the product of the T topology of X and the topology of I.

Proof. By definition the product topology is coarser. So let U C X x I be 7 open and let
(z,tg) be a point in U. By 1.13 there is a smooth function f : X x I — R with values in T
such that f((z,t0)) = 1 and f vanishes outside of U. By cartesian closedness the function
f: X = C®(I,R) is smooth and thus 77 continuous. Now f(z)(to) = 1 and thus by
2.7 there is a smooth function F : C®°(I,R) — R and a § > 0 such that F(f(z)) =1 and
F(g) # 0 implies that g(t) > 0 whenever [tg—t| < §. Theset W := F~1((0,00)) C C*(I,R)
is 77 open and thus V := (f)~'(W) is 77 open in X and V x (to — §,t0 + d) is a product
neighborhood of z which is contained in U. O

2.9. Lemma. Let X be a smooth space, a < b<c<d€eR andlet iy : By := X x [a,¢) —
X x[a,d] =: B and iy : By := X x (b,d] — X x[a, d] be the inclusions. Letp: P — X x[a,d]
be a smooth principal bundle. If i1 P and i5P are trivial then P is trivial.

Proof. Let uy : By x G — #7P and us : By x G — 5P be isomorphisms and let v; :=
ui [ (X x (b,¢)) x G for i = 1,2. Then 122_11)1 (X x (bye)) x G — (X x (b,c)) x G is an
isomorphism of principal bundles and thus it is of the form (z,t, g) — (z,t, ¢(z,%) - g) where
¢ X x (b,e) > G is a smooth map. Now let h € C°(R,R) be a map such that A(t) = ¢
for all ¢ < 22¢ and A(t) = 22 for all ¢ > "£2¢ and define w : By x G — By x G by
w(z,t,g) = (z,t,¢(x,h(t)) - g). Then w is an isomorphism of trivial principal bundles, and
the isomorphisms u; and us o w coincide on the open set X x (b, Qb;c). Thus they define a
map P — B x G which is smooth by 1.12 as it is obviously smooth over the open subsets
X X |a, 21’3i) and X X (b,d]. A similar construction works for the inverse of this map so it

is indeed an isomorphism of principal bundles. O
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2.10. Lemma. Let X be a smooth space, p: P — X x I a smooth principal bundle. Then
there is a cover (Uy) of X such that P is trivial over Uy x I for any «.
(

Proof. For any (z,t) € X x I there is by 2.8 a neighborhood U(z,t) of z in X and a
neighborhood V' (z,t) of ¢ in I such that P is trivial over U(z,t) x V(z,t). By compactness
of I there are tq,...,¢, € I such that (V(2,t;))i=1,.. n covers I. Put U(z) =N, U(z,1;).
Then the cover (U(z))yex has the desired property by 2.9. O

2.11. Theorem. Let X be smoothly paracompact, p : P =Y a smooth principal bundle
over an arbitrary smooth space Y. Suppose that H:X xR—>Y isasmooth map such that
H(x,t) = H(x,1) for allt > 1. Define H := H|xx and f := H|xx{o0}- Then there is an
1somorphism ® : f*P x I — H*P of principal bundles such that ®
nclusion.

Proof. Define H := lfI|XX[072] and identify H*P and f* P with the appropriate subbundles
of H* P. By 2.10 there is an open cover (U,) of X with a subordinate partition of unity (fa)
such that the bundle H*P is trivial over the sets U, x [0,2]. Thus there are isomorphisms
of principal bundles h,, : (U, x [0,2]) x G — (H*p)~' (U, x [0,2]). Now for any o we define
Yo X XTI xT—Xx[0,2] by po(z,t,s):= (2,t+ sfo(z)), which is clearly smooth. Next
we define &, : H*P x I — H*P as follows: ®, is the inclusion outside of H*p_l(Ua x 1)
and ®y(ho(z,t,9),s) := ha(z,t+ sfa(2),g). Then &, is smooth since the support of f, is
contained in U, and by construction it is a isomorphism of principal bundles covering ¢,,.

Now let ® : f*P x I — H* P be the composition of all maps @, in some fixed succession
given by a well ordering of the index set. This composition makes sense since (f,) is a
partition of unity. Moreover since the covering U, is locally finite any point in f*P x I has
a neighborhood on which ® equals the composition of finitely many smooth homomorphisms
of principal bundles and thus @ itself is a smooth homomorphism of principal bundles. By
construction @ covers the identity and thus is an isomorphism (c.f. 2.6) and by construction

)

7+ Pxfo} 18 the natural

7+ Px{o} is the inclusion. O

2.12. Corollary. Let X be smoothly paracompact, p : P — Y a smooth principal bundle
over an arbitrary smooth space Y. Suppose that fo, f1 : X — Y are smoothly homotopic
smooth maps. Then the smooth principal bundles f; P and f; P are isomorphic.

Proof. If fo and f; are smoothly homotopic then there clearly is a homotopy H between
them which satisfies the requirements of 2.11, and as above we can identify f; P with a
subbundle of H*P. By 2.11 there is an isomorphism fj P x I — H*P and its restricton to
fo¢P x {1} is an isomorphism between fiP and ffP. O

2.13. Our next aim is to show that the construction of universal bundles of [Milnor, 1963]
can be adapted to the smooth setting. Let us consider the set of all sequences (¢, g;) where
t; € [0,1] and g; € G such that only finitely many #; are nonzero and ), t; = 1. On this
set we define an equivalence relation by (¢;,g;) ~ (¢, g;) if and only if ¢; = ¢ for all ¢ and
gi = g} for those i for which ¢; is nonzero. Let EG denote the set of equivalence classes.

Let ¢ : R = EG be a curve. Then ¢(t) = (¢i(t),é(t)) where the ¢; are curves into [0, 1]
and the ¢; are curves into GG. We say that ¢ € C if and only if for any ¢ the curve ¢; is a
smooth curve into [0, 1] and the restriction & [ ¢; *((0,1]) : ¢; 1((0,1]) = G is smooth.

Now we put on EG the smooth structure generated by C, so by definition a real valued
function on E'G is smooth if and only if the composite with any ¢ € € is smooth and a curve
into £'G is smooth if and only if the composite with each real valued smooth function is
smooth.

2.14. Lemma. A curve into EG s smooth if and only if it belongs to C.

Proof. By definition each element of C is smooth so let us assume that ¢ : R — FG,
e(t) = (ci(t),é(t)) is a curve such that for any smooth real valued function f on EG the
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composite f o ¢ is smooth. Define fx : EG — R by fi(t;,9i) := tx. Then for all £ € N the
function fi is well defined and smooth. Thus for any k the curve ¢; has to be smooth.

Now let ¢ € C*(RR,[0,1]) be a smooth function which is zero locally around zero and
equal to 1 for all ¢ > 1. Let ¢y € R be such that cg(tg) > 0. Then there is an N € N and
a neighborhood U of #5 in R such that cg(¢) > 1/N for all t € U. Now let h € C*°(G,R)
be an arbitrary smooth function on G. Consider the function fpxn : EG — R defined
by (ti,9:) — ¢(Ntg)h(gx). Then this is a well defined smooth function as ¢ is zero locally
around zero. But fy . yoc | U =hoé, [ U as forallt € U we have p(Neg(t)) = 1 and
thus é [ U : U — G is smooth. So for any t € clzl((O, 1]) we get a neighborhood of ¢ on
which & is smooth and thus by 1.12 & : ¢ *((0,1]) = G is smooth O

2.15. We define a right action of G on EG by (t;,9:)-¢ := (¢, 9i-g). This action is obviously
well defined, smooth and free. Now let BG be the space of orbits of this action with the
final smooth structure with respect to the canonical projection p : EG — EG/G =: BG.
BG 1s called the classifying space of the smooth group G.

2.16. Proposition. If G is Hausdorff then so are EG and BG.

Proof. Recall that a smooth space is called Hausdorff iff the real valued smooth functions
on it are point separating.

Let us first consider EG: Suppose we have 2,y € EG, 2 £y, ¢ = (t;,9:), y = (¢, 97). If
for some k we have ty # t}, then we can separate the two points via the smooth function
(tiy9i) — tg. So let us assume that ¢; = t; for all i. As z # y there is a k such that
ty > 0 and gr # g;,. Now choose a function f € C*°(G,R) such that f(gx) # f(g;,) and let
¢ € C*(]0,1],]0,1]) be a smooth function which is zero locally around zero but such that
@(tr) > 0. Define ¥ : EG — R by ¥((t;,9:)) := ¢(tx) f(gr). Then 1 is easily seen to be well
defined and smooth and clearly ¢ (z) # ¥(y).

So let us turn to BG. We write [(#;, g;)] for the orbit through the equivalence class of
the sequence (¢;,9;). As G acts only on the g’s and not on the t’s, the maps (¢;,¢;) —
factor through BG and are by definition smooth there, so we can separate points which
differ in one ¢ coordinate. Thus let us assume we have z = [(¢;,9:)], ¥ = [(¢:,9})] with
z # y. Then there must be k, £ € N such that ¢; and #, are nonzero and gk_lgf€ + g[lgz
or equivalently grg; ' # g;gz_l Now choose f € C®(G,R) which separates these two
elements and ¢ € C*([0, 1], [0, 1]) which is zero locally around zero and nonzero at #; and
te. Define ¢ : BG — R by ¥[(t;,4:)] := go(tk)go(tg)f(gkgz_l). This map is easily seen to be
well defined and smooth and clearly it separates x and y.

2.17. Theorem. p: EG — BG 1is a smooth principal bundle with group G.

Proof. In the proof of 2.16 we saw that the functions fi : [(;,9:)] — tx are smooth real
valued functions on BG. Put Uy = fk_l((O, 1]). Then (U;)ien is a point finite 77 open
covering of BG. Now define 5 : p~1(Ux) — Ux x G by ¥ ((ti, 9i)) := (p(ti,9:), 95). Then
1 1s obviously well defined and smooth. To show that it is a diffecomorphism we construct
a smooth section of the bundle EFG over Uy.

Define o : Uy — p~'(Ux) by ox[(ti,¢:)] := (ti,gigr ). Tf (ti,g}) is in the orbit of
(ti, 9i) then there is a ¢ € G such that g/ = g;¢ for all 7, and thus ggg;_l = gl-gl,;1 for
all 7 and og 1s well defined. To show that oy is smooth it suffices by 1.15 to show that
ogop:p t(Ug) — p~1(Uk) is smooth. But this is obvious since by definition of the smooth
structure of EG the map (¢;, g;) — gk is smooth on p~1(Uy) and ok op is just the composition
of the principal action with the inversion on G and this map.

Now one easily sees that the inverse to ¥y is given by ([(¢:, 9i)],9) — ox([(4, 9:)]) - g which
is obviously smooth. Thus each 1y is a diffeomorphism.
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Next we have (1 o ¢;1)([(ti,gi)],g) = ([(ti,gi)],gzgk_lg) on Ug N Ug. The function
[(t;,gi)] — gegr ' is easily seen to be well defined as a map Uy N U; — G, and using
1.15 one immediately sees that it is smooth. O

2.18. Lemma. Let X be a smoothly paracompact smooth space, p : P — X a smooth
principal bundle. Then there is a countable locally finite covering (U;);en of X such that P
15 triveal over each U;.

Proof. As X is smoothly paracompact there is a partition of unity (fa)aea on X such that
P is trivial over any of the sets U, := f71((0,1]). For any € X let S(z) C A be the finite
set of all & such that z € U,. For each finite subset S C A let W(S) C X be the 77 open
subset of all € X for which fo(z) > fs(z) for any o € S and any 3 ¢ S.

If S,S" C A are distinct and have the same number of elements then by construction
W(S)NW(S") = 0. Now for any n € N let W,, be the union of all sets W (S(z)) such that
S(z) has exactly n elements. By construction o € S(z) implies W(S(z)) C Uy so P is
trivial over any of the sets W (S(z)) and as we saw above W, is a disjoint union of such sets
so P is trivial over W, for any n. Any z € X obviously lies in W(S(2)) and thus (Wy)nen
is a covering of X. Finally as {f,} is a partition of unity z € X has a neighborhood which
intersects only finitely many, say N, of the sets supp(f,). Then clearly this neighborhood
cannot intersect W,, for n > N and thus the covering {W,,} is locally finite. O

2.19. Lemma. Let X be a smoothly paracompact smooth space, # : P — X a smooth
principal bundle. Then there is a smooth map f : X — BG such that f* EG s isomorphic
to P.

Proof. By 2.18 we may assume that we have a locally finite atlas (U;, ¥;);en for P, and
as X is smoothly paracompact there is a smooth partition of unity {f,}sca subordinate
to the covering {U;}. Now let ¢ : A — N be a map such that for any @ € A we have
supp(fo) C Uy(ay and define f; : X — [0,1] by fi(z) := an(a):i fa(z) for i € N. Then
one easily shows that {f;} is a partition of unity subordinate to the covering {U;}. Define
F : P —> EG by F(z) := (fi(p(2)),pr2 o ¥i(z)). This is well defined, as for those z for
which ;(z) is not defined f(p(z)) must be zero, and it is obviously smooth. Moreover by
definition of the principal action F'is G—equivariant, and thus it gives rise to a well defined
map f : X — BG such that for = po F. Now consider the restriction of f to Uy. There f
can be written as z — poFoi/)k_l(a:, e) where e denotes the unit element of G, so f is smooth
on Uy for each k and thus by 1.12 f is smooth. The lemma now follows from 2.6(2). O

2.20. Lemma. The space EG is smoothly contractible, so any two smooth maps from an
arbitrary smooth space X into EG are smoothly homotopic.

Proof. First we define a homotopy A : EG x [0,1] = EG as follows (c.f. [Ramadas, 1982]):
Let ¢ € C*(R,[0,1]) be a smooth function such that ¢(¢) = 0 for all ¢ < &, where ¢ is some
small positive number, and ¢(t) = 1 for all ¢ > 1. For n € N define ¢, () := ¢(n((n + 1)t —
1)). Write A(z,t) := As(z). Then we define Ag := Id and for 1/(n+1) <t < 1/n:

At((tlagl)) = (tO,QO, .. ~atn—2agn—2;tn—1(1 - Son(t))agn—la
tno1@n(t); gn—1,ta (1 — @n(t)), gn, taon(t), gn, - - -

Obviously A:((¢;,9:)) is in EG for any t. To show that A is smooth let ¢ : R — EG x [0, 1]
be a smooth curve. Then ¢(s) can be written as ((c;i(s), &(s)), ¢(s)), where each ¢; and ¢é is
a smooth curve into [0, 1] and the restriction of any & to 6;1((0, 1]) is a smooth curve into

G. Write Az ((ci(s),ci(s))) = (vi(s),7i(s))
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Now let k& € N be fixed and consider the curve 5. Let Ug4a C R be the set of those s for
which ¢(s) < ﬁ(l + If?), 80 pr+1(¢(s)) = 0 for all s € Uk42. Then we have v (s) = cx(s)
for all s € Ug42, so v is smooth on Ugys. Next for 1 <n < k—+1 put U, C R the set of all
s such that n%—l < é(s) < %(1 + ~=5). Then on each U, the curve 4; is obviously smooth
while on U, N Up41 it is either identically zero or equal to some ¢;. As (Up)n=1, k42 is an
open covering of R the curve ~; is smooth.

Similar arguments show that the curves 4 : R — G are smooth, and thus the map A is

smooth. For t = 1 we have:

Al((thgl)) — (0,6,t0,g0,0,6,t1,g1,. . 'aoaeatk:gkﬁoﬁea .. )

So we define a homotopy H : EG x [0,1] = EG by H; = Agy ) for t < 1/2 and

He((ti,9:) = (2¢(t) — 1, e, (2 = 2¢(t))t0, g0, 0, €, . ..
,0,e,(2—29(¢))tk, 95,0,¢,...),

where ¥ € C®(RR,[0, 1]) is a smooth increasing map such that ¢ = 0 locally around zero,
¥ = 1/2 locally around 1/2 and 3 = 1 locally around one. Then H is obviously a smooth
homotopy from the identity to a constant map. O

2.21. Let us investigate the homotopy A constructed in the proof of 2.20 more closely. Let
EG°% denote the set of all (¢;,¢;) € EG such that ¢; = 0 for i even and EG®**" the set
of those with #; = 0 for i odd. With BG°? and BG®'*" we denote the images under p of
EG°% and EG®'®" | respectively. In the proof we saw that A;(EG) = EG°? and similarly
one sees that Ay/y(EG) = EG®’®". Consider the map px Id : EG x I — BG x I. Then this
is obviously a smooth principal bundle and from the definition of A one immediately sees
that it is a homomorphism of principal bundles EG x I — EG. Thus it covers a smooth
map H : BG x I — BG such that Hy = Id, Hy;5(BG) C BG***" and H,(BG) C BG*.

2.22. Lemma. Let G be a smooth group, f,g : Y — BG smooth mappings and assume that
w: fPEG — g*EG 1s an isomorphism of principal bundles. Then there is a homomorphism
® . f*EG x I — EG of principal bundles such that ®|;.pgxioy = p*f and @|fepaxqi) =
pFogp.

Proof. By 2.21 f is smoothly homotopic to a map f. which satisfies f.(Y) C BG*’*" and
g is smoothly homotopic to a map g, such that g,(Y) C BG°. We chose homotopies H., :
Y % [0,2/3] - BG and H, : Y x [1/3,1] = BG such that H.(y,0) = f(y), He(y,t) = fe(v)
fort > 1/3 —¢, Ho(y,t) = go(y) for t < 2/3+ ¢ and H,(y,1) = g(y), where ¢ is some
small positive number. By 2.11 there are isomorphisms @, : f*EG x [0,2/3] - H;EG and
D, : g*EG x [1/3,1] = H}EG such that the restrictions of @, to f* EG x {0} and of &, to
g*EG x {1} are the natural inclusions.

Next consider the mapping p* Hoo®, : f* EGx[0,2/3] - EG. Fort > 1/3—¢ this map has
values in EG®V®" and thus we can write it as (z,t) — (to(2,t), go(z,1),0,1d, t2(2,t), g2(2,1),0,4d, . . .).
On the other hand for ¢ < 2/3 +¢ the map p*H,0®,0 (¢ x id) : f*EG x [1/3,1] = EG has
values in EG°4 and we write it as (z,t) = (0,id,t1(z,t), g1(2,1),0,id, t3(2,1), ga(2,1), .. .).

Now let v € C*°(R,]) be a smooth increasing map such that y(¢) = 0 for ¢+ < £ and
¥(t) = 1fort > 1—¢ and define ® : f*EG x I — FEG by ®(z,t) = (p*H. o ®.)(z,1) for
t<1/3, ®(z,t) = (p*H, 0 B, 0 (¢ x id))(z,t) for t > 2/3 and by

(z,8) = (1 = 5(3t = 1))to(z,t), g0(2, 1), v(3t = )t1(2,t), 91(2,1),...)

for 1/3 <t < 2/3. Then one immediately checks that ® is a smooth homomorphism of
principal bundles and has the required properties. O
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2.23. Theorem. For a smoothly paracompact space X let [X, BG] denote the set of homo-
topy classes of smooth maps from X to BG and let Pg(X) denote the set of isomorphism
classes of principal bundles with group G over X. Then the map [X, BG] = Pg(X) induced
by f— f*EG 1s a byection.

Proof. The map is well defined by 2.12 and surjective by 2.19. Morover if f,g : X — BG
are smooth maps such that f*EG = ¢* EG then taking any isomorphism ¢ we get by 2.22
a homomorphism & : f*EG x I — EG of principal bundles which restricts to p*f on
f*EG x {0} and to p*g o ¢ on f*EG x {1}. This homomorphism covers a smooth map
X x I — BG and since p* f covers f, p*g covers g and ¢ covers the identity this map is a
smooth homotopy between f and g. O

2.24. Definition. Let X and F' be smooth spaces. A smooth map 7 : F — X from a
smooth space F to X is called a smooth fiber bundle with fiber F iff there is a 7r—open
covering {U, } of X and there are diffeomorphisms ¢, : 771(Uy) — Uy x F with priop, = p.

If Uy, and Ug are two sets such that Uyg := U, NUg # () then we can consider the smooth
map @4 © gogl :Uap X F = Uap x F. By definition it is of the form (z, f) — (z, ¥(=, f)),
where ¢ : Uyg x F' — F' is a smooth map. The bundle F is said to have structure group G
(where G is a smooth group) iff there is a smooth left action A : G x F — F of G on F and
there are smooth functions .5 : Usg — G such that (¢, o gogl)(m,f) = (2, Meas(x), f))
for all a, 8. In this terminology a smooth principal bundle with group G is a smooth fiber
bundle with fiber G and structure group G and the left multiplication as the action.

Let us now show that any smooth fiber bundle with fiber F' has structure group Diff(F):
Let ¢op + X — C*(F,F) be the smooth map which is associated to the smooth map
¥ : X x F — F from above via cartesian closedness. Obviously then ¢g,(z) = (¢ap(z)) ™!
for any x € U,p and thus each ¢,g has values in Diff(F) and is even smooth as a map to
this space with the smooth structure from 2.2.

Ifp: F— X and p’ : E/ — X are smooth fiber bundles over X with fiber F' and structure
group G for the same action A then an isomorphism between the bundles is a diffeomorphism
g+ E — E'such that p’ o g = p and if (Uy,q) and (U], ¢}) are charts of E and E’ such
that Uj, := Uy NU} # B then the map ¢} ogo il : Uin x F — Ujs x F has the form
(2, f) = (2, A(g5a(2), f)) where gio : Ui — G is a smooth map.

2.25. Associated bundles. Let G be a smooth group, p : P — X a smooth principal
bundle over a smooth space X and F an arbitrary smooth space. Let A : G x F = F
be a smooth left action of G on F. By cartesian closedness this is equivalent to the fact
that A : G — Diff(F) C C®(F, F) is a homomorphism of smooth groups, where Diff(F)
carries the smooth structure introduced in 2.2. Let us denote by p : P x G — P the
principal action of G on P. Now consider the map r : (P x F) x G — P x F given
by r(z, f,9) := (p(2,9),X(g7 ", f)). Then obviously r is a smooth right action of GG on the
smooth space Px F'. By PxF or P[F] we denote the space of orbits of this action equipped
with the final smooth structure with respect to the canonical map q : P x F' — P x¢g F.
The space P[F] is called the bundle associated to P with fiber F.

2.26. Theorem. In the setting of 2.25 we have:

(1): q: P x F — P[F] is a smooth principal bundle with group G and principal action r.
(2): P[F] is a smooth fiber bundle over X with fiber F' and structure group G.

(3): If p' : P' = X is a principal bundle isomorphic to P then the fiber bundles P[F)] and
P'[F] are isomorphic.

Proof. The map P x F — X, (2, f) — p(z) is obviously smooth and invariant under the
action r and thus gives rise to a well defined map 7« : P[F] — X which is smooth by
definition of the smooth structure of P[F].

(1): The smooth action r of G on P x F' is clearly fiber respecting and it is free since the
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principal action on P is free. The composition of the first projection P x F — P with the
canonical maps (P x F') xpip) (P x F) = P x F induces by the universal property of the
pullback P xx P a smooth map g : (P x F) xpip) (P x F) = P xx P, and we define
7:(PxF) xpp) (PxF) = Gby 7=r1pog, where 7p : P xx P — ( is the smooth map
constructed in 2.3 for the bundle P. Now let (z1, f1) and (z2, f2) be in one fiber of ¢. Then
by construction we have p(z1, 7((21, f1), (22, f2))) = 22 and since the two points are in the
same orbit we must have \(7((z1, f1), (22, f2)) ™!, f1) = f2 by freeness of the action p. Thus
7 has the right property and to finish the proof of (1) by 2.4 we only have to construct local
sections of ¢.

So let (Uy,ws) be an atlas for the bundle P and define ¢/, : U, — p~1(Uy) by o/, (2) :=

o
w;1(z,¢e), where e denotes the unit element of G. Then the maps o/, are local smooth
sections of the bundle P. By construction we have ¢~ (7= (U,)) = p~*(U,) x F.

Now consider the map p~!(Uy) x F — p~1(U,) x F given by
(2, f) = (o0 (p(2)), AP (0, (p(2)), 2), f))-

This 1s obviously smooth and it is easily seen to be invariant for the action r and thus gives
rise to a well defined map o, : 771(Uy) — p~1(U,) x F which is smooth by 1.15. Moreover
one immediately sees that the map above sends (z, f) to an element in the orbit of (z, f)
and thus o, is indeed a smooth section of q.

(2): We want to show that 7= : P[F] — X is a smooth fiber bundle with fiber F' and
structure group (. Consider the map p~'(U,) x F — U, x F defined by (z,f) ~
(p(2), AP (oL, (p(2)), 2), f)). This is obviously smooth and it is easily seen to be invari-
ant under the action r, and thus it gives rise to a well defined map ¢, : ﬁ_l(Ua) — Uy x F
which is smooth by 1.15 and satisfies pry o ¢, = m. Moreover a short computation shows
that the smooth map U, x F — n~1(U,) defined by (z, f) — ¢(c’,(z), f) is inverse to ¢,.

If Uy # 0 then a short computation shows that we have

(pa 005 )(x, ) = (2, Mrp (04 (2), 05(x)), f)

and thus the bundle P[F] has indeed structure group G.

(3): Let & : P’ — P be an isomorphism. Then qo (® x Id) : P’ x F — P[F]is smooth and
G invariant and thus induces a smooth map ® : P/[F] — P[F]. The same works for ®~!
and one easily sees that it gives an inverse to ®. [

2.27. Theorem. Ifm: E — X s a smooth fiber bundle with fiber F' and structure group G
over a smooth space X then there is a (up to isomorphism) unique smooth principal bundle
p: P — X with group G such that E is isomorphic to P[F]. The isomorphism class of P
depends only on the isomorphism class of F.

Proof. Let (U, o) be an atlas for E which satisfies the conditions of 2.24. Thus we
have the smooth transition functions ¢ag : Usp — G, which satisfy (¢q o gogl)(m,f) =

(2, AM(wap(z), f)) Let P be the disjoint union (coproduct) of the smooth spaces U, x G. The
first projections Uy x G — U,, define a smooth map j : P — X. Then define an equivalence
relation on P by declaring (z,9) € Ua x G to be equivalent to (z',¢g’) € Ug x G if and only if
¢ =2z" and g = pap()-¢’. (That this is indeed an equivalence relation can be proved easily
by showing that the maps ¢, 4 satisfy the usual cocycle conditions.) By P we denote the
quotient of P with respect to this equivalence relation and the final smooth structure with
respect to the canonical map 4 : P — P. Then obviously j factors to a map p : P — X
which is smooth by definition of the smooth structure. We claim that p : P — X is a
smooth principal bundle with group G.

Consider the subset p~!(U,) C P. Then this is exactly the set of those equivalence classes
which have a representative in U, x GG and such a representative is necessarily unique since
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Yaa(z) = e for all 2. Let ¥y : p~1(Us) — Uy x G be the map which assigns to each
equivalence class its unique representative in U, x G. To show that this map is smooth it
suffices by 1.15 to show that its composition with 4 is smooth as a map vy~ (p~}(Uy,)) —
Us x G and again by 1.15 for this it suffices that for any 8 the composition with ig is

smooth as a map on i;l(’y_l(p_l(Ua))) where ig : Us x G — P is the canonical map. But

igl('y_l(p_l(Ua))) = Uqyp xG C Up xG and there the map is given by (z, g) — (2, vap()-g)
which is obviously smooth. Moreover obviously 1! is the canonical map U, x G — P> P
which is smooth, so each t, is a diffeomorphism. This also shows that for U,z # 0 one gets
(o o 1/)51)(m,g) = (¢, pap(z) - g) and thus p : P — X is a smooth principal bundle.

Now let us show that P[F] = E. First we claim that the smooth map v x Id : P x
F — P x F is a final morphism. So let f : P x FF — Z be a map into an arbitrary
smooth space such that f o (y x Id) is smooth. Then by cartesian closedness the map
(fo(yxId)Y = for: P C*(F, 7) is smooth. Since v is final the map f is smooth and
thus again by cartesian closedness f is smooth.

Another consequence of cartesian closedness is that the functor - x F" has a right adjoint,
hence commutes with colimits, and thus P x F is the coproduct of the smooth spaces
Uy x G x F.

We define maps hy : Uy x G X F — E by ho(2,9, f) := ¢31(2,A(g, f)). Then these maps
induce a smooth map P x F — E and a short computation shows that this map factors
over v x Id and thus defines a smooth map h : P x F — E. By construction this map is
invariant for the G action on P x F and thus defines a smooth map h : P[F] — E which is
immediately seen to be an isomorphism of fiber bundles with structure group G.

So it remains to show that the construction is independent of the choice of the atlas
(U, ¢a). First let us a assume that we have a trivialization (V;, ;) where the cover (V;)
is a refinement of the cover (U,) and the functions ¢; are appropriate restrictions of the
functions ¢,. Then one easily sees that the construction leads to an isomorphic principal
bundle. To prove the rest let us assume that p’ : P’ — X is a smooth principal bundle
with group G such that P'[F] = FE as a bundle with structure group G and let p : P — X
be the principal bundle constructed from E as above. By the argument above we may
assume that we have a cover (U,) of X such that both principal bundles (and thus both
associated bundles) are trivial over any of the sets U,. Let o : p~1(Us) — Uy x G and
Pl p'_l(Ua) — Uq x G be the corresponding atlases for the principal bundles and let
waﬁ,l/);ﬁ : Uap — G be the corresponding transition functions. From the proof of 2.26
we see that the transition functions of an associated bundle are the same as the transition
functions of the corresponding principal bundle and using this fact one easily shows that
from the isomorphism of the associated bundles we get smooth functions w, : U, — G such
that wa(2) Yas(z) = wgﬁ(r) ‘wg(z) for any € Uss. Now we define maps ®, : U xG — P’
by ®,(z,9) := (¥,)"'(2z,wa(z) - g). Then these maps define a smooth map d:P > P
and a short computation shows that this factors to a map ® : P — P’ which is immediately
seen to be a smooth homomorphism of principal bundles which covers the identity. Using
2.6(2) it is clear that ® is an isomorphism of principal bundles. O

2.28. Corollary. For a smoothly paracompact space X let BoF(X) be the set of all iso-
morphism classes of smooth fiber bundles with fiber F' and structure group G over X. Then
the map [X, BG| = Bg F(X) induced by f — (f* EG)[F] is bijective. In particular if BF(X)
denotes the set of all isomorphism classes of smooth fiber bundles over X with fiber F' and
without structure group (i.e. with structure group Diff(F')) then there is a bijection between

the sets BF(X) and [X, B Diff(F)].

Proof. This is clear by 2.23, 2.26 and 2.27. O
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3. Smooth fibrations and cofibrations

Fibrations and cofibrations are an important concept of homotopy theory since they lead
to long exact sequences of sets or groups of homotopy classes. It turns out that the obvious
analogs of the classical definitions of fibration and cofibration do not lead to a reasonable
theory. This can be seen as follows:

3.1. Counter example. It is well known that if X is a topological space and Y is a
closed deformation retract of X then the inclusion Y < X is a cofibration. In fact these are
rather trivial examples, so at least this should also hold in the smooth category. Now if one
takes the analog of the classical definition of cofibration in the smooth category then one
immediately proves (as in topology) that if X is a space with a subspace Y, the inclusion of
which is a cofibration then X x {0} UY x I is a retract of X x I, where I denotes the unit
interval. We claim that this already fails in the case X = I and Y = {0}: Suppose that
I'x{0}U{0} x I is a smooth retract of 7 x I. Obviously I x I and thus also I x {0} U{0} x I
has the initial smooth structure with respect to the inclusion into R? so we have a smooth
map f : [ x I — R? which has values in I x {0} U{0} x I. From [Kriegl, 1990] one concludes
that this map has a smooth extension (also denoted by f):R? — RZ Since f restricts to
the identity on T x {0} U {0} x I, we clearly have df(0) = Idg=. But now consider the
smooth curve ¢ : R — R? defined by ¢(t) = (¢,¢). Then foec : R — R?is a smooth
function and by the chain rule we have d(f o ¢)(0) = (1,1) but for 0 < ¢ < 1 we have
(foc)(t) € I x{0}U{0} x I which is a contradiction.

Thus for the analog of the classical definition of cofibration not even {0} < I would be a
smooth cofibration. But we also see that the problem can be circumvented if one weakens the
notion of cofibration in a way such that one does not get a retraction Ix 7 — I'x {0}U{0} x I
but a map which is deformed a bit from the identity on at least one copy of I. Moreover
it turns out that several other canonical examples of fibrations and cofibrations lead to the
same problem and the same solution. So we are led to the following definition (in 3.27 we
will see that in fact our definition is quite near to the classical one).

3.2. Definition. (1): Let X and Y be smooth spaces. A smooth map i : ¥ — X is
called a smooth cofibration iff it has the following homotopy extension property: If Z is an
arbitrary smooth space and H : Y x I — Z and f : X — Z are smooth maps such that
foi:= Hlyyqo} then there is a smooth map H: X x I — Z such that H o (i x Id) =
and E’|XX{0} i1s smoothly homotopic to f relative to Y, i.e. there is a smooth homotopy
h: X x I — Z such that h(z,0) = f[(m,O), h(z,1) = f(z) and h(i(y),?) = f(i(y)) for all
reX,yeY andtel.

(2): For a smooth cofibration i : ¥ — X we define the cofiber of the cofibration to be
the quotient space X/i(Y) with the final smooth structure with respect to the canonical
projection X — X/i(Y). The space X/i(Y) can obviously be interpreted as the push out
of the map 7 and the unique smooth map Y — pt, where pt denotes the smooth space
consisting of a single point.

3.3. Proposition. Ifi: Y — X is a smooth cofibration then i is an initial morphism in
the category of smooth spaces. If in addition Y 1is Hausdorff then 1 s injective, so in this
case Y can be viewed as a subspace of X.

Proof. Let us first show that for any smooth function f : Y — R there is a smooth function
f X — R such that f o1 = f. Consider the smooth map H : Y x I — R defined by
H(y,t) ;=1 f(y). The constant map 0 : X — R is an extension of H |y} and thus there
is a smooth map H : X x I — R such that H o (i x Id) = H. Then clearly f := H|XX{1}
has the desired property.
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To show that i is initial it suffices to show that if ¢ : R — Y is a curve such that
toc: R — X is smooth then ¢ is smooth, i.e. for any smooth function f : Y — R the
map f oc is smooth. But this is clear as the function f : X — R is smooth and the curve
toc:R — X is smooth and thus foioc:focis smooth.

Finally if Y is Hausdorff and a,b € Y are distinct points then there is a smooth function
f:Y — Rsuch that f(a) # f(b) and thus f(z(a)) + f(z(b)) and hence i(a) # i(b). O

3.4. Lemma. (1): Ifi:Y — X and j : X — U are smooth cofibrations then joi:Y = U
s a smooth cofibration.

(2): If i : Y — X is a smooth cofibration and U is an arbitrary smooth space then i x Idy :
Y xU — X x U 1s a smooth cofibration.

Proof. Let 7 be an arbitrary smooth space, H : Y x I — 7 and f : U — Z smooth
maps such that fojoi= Hly,o}. Since i is a smooth cofibration we get a smooth map
H : X x I — Z such that H o (i x Id) = H and H|xy{o} is smoothly homotopic to f o j
relative to Y. Thus there is a smooth map h : X x I — Z such that 71|X><{0} = fojand
hlxx{1} = Hlxxqoy and ho (i x Id) = fojoiopr;.

Applying the cofibration property of j to h and f we get a smooth homotopy H' : U x I —
7 such that H'o (j x Id) = h and H'|trx {0y is smoothly homotopic to f relative to X. Now
for f := H'lyxq1y : U — Z we have foj= H|X><{0} and since j is a cofibration we get a
smooth map H : U x I — Z such that ﬁo(j x Id) = H and thus ﬁo((joz') x Id) = H.
So it remains to show that ﬁ|U><{0} 1s smoothly homotopic to f relative to Y.

By the cofibration property lfI|UX{0} is homotopic to f = H'|yr g1y relative to X. By

construction H' is a homotopy relative to Y and thus H'|yy 413 is homotopic to H' |y f0}
relative to Y. But by construction of H' the map H'|r {0} is homotopic to f relative to X
and putting all these homotopies together we get the result.
(2): Let H:Y xUx1I— Zand f: X xU — Z be smooth maps such that fo (i x Idy) =
Hlyxuxqo}- By cartesian closedness the associated maps H:Y xI — C®U,Z%) and
f: X — C®(U, %) are smooth and obviously f o (i x Id;) = H|Y><{0}~ Applying the
cofibration property to these two maps and using cartesian closedness again one easily
shows the result. O

3.5. Lemma. Leti:Y — X be a smooth cofibration and let

y — 4 X

"

v %

be a push out. Then g.t:V — U is a smooth cofibration.
Moreover if X, Y and V are base spaces then U 1s a base space. In particular this implies
that for a smooth cofibration between base spaces the cofiber is a base space.

Proof. Let 7 be a smooth space, H : V x I — Z and f: U — 7 smooth maps such that
Jog«i= H|yxo}. Then we have foi,goi= fogsiog=(Ho(gxId))|yxso}. Applying
the cofibration property of i to H o (g x Id) and foi.g we get a smooth map H : X x I = 7

such that Ho (i x Id) = H o (g x Id) and H|x {0} is smoothly homotopic to foi.g relative
toY.

By cartesian closedness the functor . x I has a right adjoint and thus commutes with
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colimits so the diagram

yx T 2 x o7

gxIde J,i*gXId

Vil 2

is a push out. By the universal property of this push out the maps H : X x I — Z and
H :V x I = Z induce a unique smooth map H:U x I — Z such that H o (1xg x Id) =

and H o (9«3 x Id) = H. So it remains to show that H|U><{0} is smoothly homotopic to f
relative to Y.

Since i is a cofibration we get a smooth homotopy h : X x I — Z such that B|X><{O} =
ﬁ|XX{0}, 7L|XX{1} = foi,gand ho(ix Id) = foi.goiopr; = fog.iogopr,. By the universal
property of the push out the maps h : X xI — Z and fog.iopri : V xI — Z induce a unique
smooth map h : U x I — Z such that ho(i.g x Id) = h and ho(g.ix Id) = fog.iopri,so hisa
homotopy relative to V. Moreover by construction of h we have hluxqoyoisg = H|X><{0} and
hlu 0} © gei = f 0 gui = Hlv 0} and thus hlyy o} = Hlux oy, and Alyx 1y 0ing = f o isg
and hlyy g1} © g«i = f o g«i and thus hly. 1y = f.

Let us now assume that X, Y and V are base spaces. Then ¢ is injective by 3.3. Moreover

from the proof of 3.3 we see that any real valued smooth function on Y has a smooth
extension to X and thus U is a base space by 1.18. O

3.6. Proposition. The inclusion i : S"~1 < E™ is a smooth cofibration.

Proof. Consider E™ as being embedded into R™ as usual and assume we have given smooth
maps H : S" ! x I — Z and f : E™ — 7 into some smooth space 7 such that f|g.—1 =
H|gn-1x10}. Let ¢ € C°(R,I) be an increasing map such that ¢(t) = 0 for t < ¢ and
@(t) = 1fort > 1—¢&, where € is some small positive number and let | || be the usual norm
on R™. Then || || is a smooth real valued function on R™\ {0} and obviously z — w(””ﬁ”)

defines a smooth real valued function on R™. Now define H : E™ x I — Z by:

H(x,1) :={f(m'w|2lzﬁ ) =] < 1/2
H(gpt-e@llel =1) =]l > 1/2

Since H(”x”, 0) = f(ﬁ) for all # # 0 the map H is smooth since it is obviously smooth on
the open disk of radius (1 +¢)/2 and on the ring formed by all 2 with (1 —¢)/2 <[|z|| < 1.
By definition we have H(z,t) = H(xz,t) for all z € S"~!. Moreover we have H(z,0) =

f(mﬂ%lﬁm) forall X € E™. Now define h : E"xI — Z by h(z,t) := f(z-(t+(1— t)iﬁlxjﬂm))

This is well defined as (¢ + (1 — t)ﬂﬁgﬁm) < ﬁ and is obviously smooth. Clearly h(z,0) =
lff(;r, 0) and h(z,1) = f(z) and for z € S"~! we have h(z,t) = f(z) for all t. O

3.7. Corollary. If A is any smooth space and X is a smooth space which is obtained from
A by attaching finitely many cells, then the inclusion of A into X s a smooth cofibration.
In particular this applies if X 1s a smooth cell complex and A is a subcomplez.

Proof. Induction on the number of cells using 3.6, 3.5 and 3.4(1). O

3.8. Mapping cylinders. Let X and Y be arbitrary smooth spaces, g : X — Y a smooth
map. We define the mapping cylinder M, of g to be the push out:

Xx{0} L5 v

! !

XxI — M,
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The inclusion of X x {1} into X x [ induces a smooth map i : X — M,.
As a special case we define the cone over X, C'X to be the mapping cylinder of the unique
smooth map X — pt, where pt denotes the smooth space consisting of a single point.

3.9. Proposition. Let M, be the mapping cylinder of a smooth map g : X —Y. Then we
have:

(1): The map i : X — M, is a smooth cofibration.

(2): The natural map j :Y — M, is a homotopy equivalence.

(3): If X and Y are base spaces then M, is a base space.

Proof. (1): Let Z be a smooth space, H : X x I — Z and f: My — Z smooth maps such
that f oi = H|xx{o}. By cartesian closedness the following diagram is a push out:

Xx {0y x T 2% v

| o

XxIxT 24y o7
Now let ¢ € C°(R,I) be an increasing map such that ¢(t) = 0 for t < e and ¢(t) = 1 for
t > 1 — g, where £ is some small positive number, and define H : X x [ x I = 7 by

[k <1y
)= H(z,to(2s — 1)) s>1/2°

This map is smooth since by assumption f(k(z,1)) = f(i(z)) = H(z,0) for all z and thus
it is obviously smooth on the open subsets X x [0, (14+¢)/2) x I and X x ((1 —¢)/2,1] x I.
Moreover we have H(z,0,t) = f(k(z,0)) = f(j(g(x))). Thus by the universal property of
the push out the maps H and fojopr; : Y x I — Z induce a smooth map H: Mgx1I—Z
such that H o (k x Id) = H and Ho (j x Id) = f ojopry. In particular this implies that
[;T(i(a:),t) = IZT(]{:(J;, 1),t) = H(x,1,t) = H(z,t). So it remains to show that lfI|MgX{0} is
smoothly homotopic to f relative to X.

Consider the smooth map h : X x I x [ — Z defined by h(z,s,t) := f(k(z, (1 —t)s +
tp(2s))). This map satisfies h(z,0,t) = f(k(z,0)) = f(j(g(x))) and thus together with the
map fojopr, : Y x I — Z the map h induces a smooth map A : My x I — Z such
that ho (k x Id) = h and ho (j x Id) = f ojopri. Now we have (hlar, <1y 0 k) (2, 5) =
f(k(x,0(25))) = H(x,s,0) and hlpr,xq13 ©j = foj and thus hlar, (13 = Hlar,x {0} and
hla,xqoy ok = fok and h|y,xq0y 0J = foj, s0 hlar, 0y = f. Finally h(i(z),t) =
h(k(z,1),t) = h(z,1,t) = f(k(z,1)) = f(i(z)) and thus h is a homotopy relative to X and
the proof of (1) is complete.

(2): The maps gopr; : X x I =Y and Idy : Y — Y induce by the universal property
of the push out a smooth map h : M; — Y such that hok = gopr; and ho j = Idy.
So we only have to show that jo h : M; — M, is homotopic to the identity. Define
H' : X xIxI— Myby H'(z,t,s) = k(z,ts). Then H'(z,0,s) = k(z,0) = j(g(z)) and thus
together with jopr, : Y x I — M, the map H' induces a smooth map H : M, x I — M,
such that H o (k x Id) = H' and H o (j x Id) = jopri. Now we have (H |, {0} 0 k)(2,1) =
k(x,0) = j(g(x)) and H|pr,xq0y ©J = j and thus H|as,xq0y =joh and H|py,xq1y 0k =k
and H|ng{1} oj =14, s0 Hlng{l} = IdMg.

(3): By 1.16 X x I is a base space and since {0} — I is easily seen to be a smooth cofibration
sois X x {0} = X x I by 3.4(2). Thus the result follows from 3.5. O
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3.10. Corollary. Let X and Y be arbitrary smooth spaces, f : X — Y a smooth map.
Then there is a cofibration i : X — Y’ and a homotopy equivalence h : Y’ — Y such that
f = h o1.

Proof. Put Y’ = My, i and h as in 3.9. Then obviously hoi=f. O

3.11. Mapping cones. Let g : X — Y be a smooth map. We define the mapping cone
or homotopy cofiber C, of g to be the cofiber of the cofibration i : X — M.

Proposition. Let C, be the mapping cone of a smooth map g : X — Y. Then Cy is
diffeomorphic to the smooth space CX U, Y which is the push out:

X 24 v

! !

CX —— CXU, Y

Moreover the natural map Y — Cy s a smooth cofibration.

Proof. We keep the notation of the proof of 3.9. Recall that C'X is defined as the mapping
cylinder of the unique smooth map X — pt. Thus there is a natural smooth map « :
X x I — CX. Together with the canonical map ¥ = CX U, Y the composition of the map
CX — CXU,Y with the map (z,¢) — a(z, 1 —t) induces a smoothmap ¢ : My - CXU,Y.
By construction this map sends i(X) to a single point and thus it factors to a smooth map
i My/i(X)=:Cy 5 CXU,Y.

On the other hand the composition of the natural map M; — C, with the map X x I —
M, given by (z,t) — k(z,1—1t) induces a smooth map CX — C;, and one easily checks that
together with the natural map ¥ — C; this map induces a smooth map ¢ : CX Uy Y — (|
and a diagram chase shows that 1 is inverse to .

By 3.9(1) the map X — CX is a smooth cofibration, so by 3.5 the map¥Y - CX U, Y
is a smooth cofibration. By construction the map ¥ — Cj is the composition of ¢ and the
natural map ¥ = CX U, Y and since diffeomorphisms are clearly smooth cofibrations the
second claim follows from 3.4(1). O

3.12. Corollary. If g : X = Y s a smooth map between base spaces then the homotopy
cofiber Cy of g is a base space.

Proof. Since X — C'X is a smooth cofibration the space C'X U, Y is a base space by 3.5.
Thus the result follows from 3.11. O

3.13. Proposition. Leti:Y — X be a smooth cofibration and assume that Y is smoothly
contractible. Then the natural projection p : X — X /i(Y') is a smooth homotopy equivalence.

Proof. Let H:Y x I =Y be a smooth map such that H(y,0) = y and H(y, 1) = yo for
some yo € Y. Then the identity on X satisfies /dx o4 =i 0 (H|yy0}), so there is a smooth

map H : X x I — X such that H o (ix Id) =io H and ﬁ|X><{0} is smoothly homotopic to
Idx relative to Y. Thus ﬁ|XX{1} maps i(Y") to the point i(yg), so it induces a smooth map
J: X/i(Y) - X. By construction we have jop = ﬁ|XX{1} which is smoothly homotopic
to lfI|XX{0} and thus to the identity on X.

As H|x x40} is smoothly homotopic to the identity relative to Y, there is a homotopy A
between jop and the identity on X which maps i(Y) x I toi(Y),so poh: X xI — X/i(Y)
is a homotopy between po jop and p which map i(Y) x I to a single point and thus it
induces a smooth homotopy & : X/i(Y) x I = X/i(Y) which by construction connects p o j
and the identity. Thus j is a homotopy inverse to p. O
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3.14. Corollary. Ifi: X — Y s a smooth cofibration then the cofiber and the homotopy
cofiber of i are smoothly homotopy equivalent.

Proof. By 3.11 we may consider the homotopy cofiber to be the space CX U; Y. Now since
7 is a smooth cofibration we conclude from 3.5 that the natural map a : CX - CX U; Y
is a smooth cofibration. As C'X is clearly smoothly contractible the homotopy cofiber of ¢
is smoothly homotopy equivalent to (CX U; Y)/a(CX), so we only have to show that this
space is smoothly homotopy equivalent to Y/i(X).

Consider the diagram

X ——s X —s pt

L L !
Y — CX U Y —— (CX U;Y)/a(CX)

By definiton the left hand square as well as the right hand square i1s a push out and thus
also the outer square is a push out. But this is just the push out which defines the space
Y/i(X) so this space is even diffeomorphic to (CX U; Y)/a(CX). O

3.15. The constructions of cylinders and cones done so far are not well adapted to pointed
spaces and base point preserving maps. In fact consider the definiton of the mapping
cylinder in 3.8 and assume that (X, zg) and (Y, yo) are pointed spaces. Then there would
be two canonical choices for the base point of My, namely j(yo) and i(2) and clearly these
two points never coincide. Thus only one of the two canonical maps 7 and j can be base
point preserving. So we have to modify the constructions for pointed spaces. Recall that for
pointed spaces we have the wedge and smash product (c.f. 1.24 and 1.25). Finally note that
there is an obvious functor X + Xt from the category of smooth spaces to the category
of pointed smooth spaces which maps the space X to the disjoint union of X and a single
point zt, which is then considered as the base point.

3.16. Definition. Let (X, z0) and (Y, y0) be pointed smooth spaces, g : X — Y a base
point preserving smooth map. We define the reduced mapping cylinder Mé of g to be the

push out:
I — M,

Lo

pt —— M}

where the map I — M, is the composition of the natural map X x I — M, with the map
t + (20,t). Then the mapsi: X — My and j : Y — M, induce maps i : X — M, and
j Y — M, and we have i(zo) = j(yo), so we define this point to be the base point of M.
Now assume that (7, zp) is a pointed smooth space and we have given maps H : X x I — 7
and f : My — Z such that H(zo,1) = zo and foi = H|xyqo}. Going through the
proof of 3.9(1) we see that we get a smooth map H: My — 7 such that Hoi= H and
such that fNI|M;X{0} is smoothly homotopic to f relative to X. Thus ¢ : X — M; is a
smooth cofibration in the category C5°. Moreover the proof of 3.9(2) shows that the map
j:Y — M; is a smooth homotopﬁquivalence of pointed smooth spaces and thus the
analogue of corollary 3.10 in the category C§® also holds.

As before we define the reduced cone C'X of a pointed smooth space X to be the reduced
mapping cylinder of the unique smooth map X — pt.

Finally we define the reduced mapping cone C; of the map g to be the cofiber of the
cofibration 7 : X — Mell' As in the proof of 3.11 one shows that C; is diffeomorphic to the
space C'X U, Y.
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3.17. Definition. Let X and Y be smooth spaces. A smooth map p: X — Y is called a
smooth fibration iff it satisfies the following homotopy lifting property: If Z is an arbitrary
smooth space and H : ZxI —Y and f : Z — X are smooth maps such that pof = H| 0},
then there is a smooth map H : Z x I — X such that po H = H and such that ﬁ|ZX{0} is
homotopic to f via a fiber preserving homotopy, i.e. there is a smooth map h: 7 x [ — X
such that h|z 10y = H|zxq0}, hlzxq1y=Ffand poh=po fopr.

3.18. Proposition. Let X and Y be smooth spaces and assume that Y is smoothly path
connected, i.e. for every pair of points in'Y there is a smooth curve passing through the two
points, and let p: X =Y be a smooth fibration. Then p is surjective and a final morphism
in the category of smooth spaces.

Proof. Let yg be a point in Y which is contained in the image of X and let zy be such
that p(zo) = yo. First we show that any smooth curve ¢ : R = Y with ¢(0) = yo has
a lift to X, i.e. there is a smooth curve ¢ : R — X such that po¢ = ¢: Consider the
smooth map H : R x I = Y defined by H(¢,s) := ¢(ts). The constant curve o R—> X
i1s a lift of H|RX{0}, so there is a smooth map H : R x I — X such that po # = H and
obviously ¢ := H|JR><{1} has the required property. Since Y is smoothly path connected this
immediately implies the surjectivity of p, and this in turn clearly implies that any smooth
curve in Y has a lift to X.

To show that p is final it suffices to show that any function f : ¥ — R is smooth provided
that f o p is smooth. For this we have to show that the composition of f with any smooth
curve in Y is smooth. But this immediately follows from the existence of smooth liftings of
smooth curves. O

3.19. Lemma. (1): Ifp: X — Y and ¢ : Y — U are smooth fibrations then so is
gop: X —>U.

(2): If p: X = Y is a smooth fibration and U is an arbitrary smooth space then p, :
C®(U,X) = C*®(U,Y) is a smooth fibration.

Proof. (1): Let Z be an arbitrary smooth space and let H : Z x I - U and f: Z — X be
smooth maps such that gopo f = H|z{0}. As ¢ is a smooth fibration we get a smooth map
H :7ZxI—Y such that go H = H and ﬁ|Z><{0} is homotopic to po f via a fiber preserving
homotopy. Let h: Z x I — Y be such a homotopy, so 7L|ZX{0} =po f, B|Z><{1} = H|Z><{0}
and goh = gopo fopry. Applying the fibration property of p to h and f we get a smooth
map H' : Z x I — X such that po H' = h and H’ |Z><{0} is homotopic to f via a fiber
preserving homotopy. Now for f := H' |zx{1} Wwe have po f = h|Z><{1} = H|Z><{0} and by
the fibration property of p we thus get a smooth map H:Z xI— X such that po H = H
and thus qopo H = H. So it remains to show that H|Z><{0} is homotopic to f via a
homotopy which respects the fibers of ¢q o p.

By construction FI|ZX{0} is homotopic to f = H'|z {1} via a homotopy which preserves

the fibers of p. As gopo H' = qo h the homotopy H' preserves the fibers of ¢ o p and finally
by construction H'|z 0} is homotopic to f via a homotopy which preserves the fibers of p.
Putting these homotopies together we get the result.
(2): Let Z be an arbitrary smooth space and assume we have given maps H : 7 x I —
C>(U,Y)and f:7Z — C*®(U, X) such that p, o f = H|z0}. By cartesian closedness the
associated mappings H:ZxUxI—Y and f 1 Z x U — X are smooth and clearly we
have p o f = H|Z><{0}~ Applying the fibration property of p to these two maps and using
cartesian closedness again one easily proves the result. O
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3.20. Lemma. Letp: X — Y be a smooth fibration and let

U%X

ml

v 25 v
be a pullback. Then ¢*p:U — V is a smooth fibration.

Proof. Let Z be a smooth space, H : Z x I = V and f: Z — U be smooth maps such that
g'po f = H|Z><{0} Then we have pop*gof =gog*pof = (90H)|zx{0}, s0 we get a
smooth map H : Z x I — X such that po H = g o H and thus by the universal property of
the pullback a smooth map H:Z x 1 — U such that g*po H = H and p*go H = H. So we
only have to show that H|Z><{0} is homotopic to f via a homotopy which preserves the fibers
of g*p. By construction H|Z><{0} is homotopic to p*g o f via a homotopy which preserves
the fibers of p. So there is a homotopy h : Z x I — X such that h|Z><{0} = H|Z><{0} and
h|Z><{1} =p*gofand poh=pop*gofopr, =gog*po fopr,. Thus together with the
map g*po fopr, : Z x I — V the map h induces by the universal property of the pullback
a smooth map h : Z x I — U such that p*¢oh = h and g*poh = g*po f opri. Thus h
is a homotopy which preserves the fibers of ¢*p and one easily shows that it 1s a homotopy
between f and ﬁI|ZX{0}. d

3.21. Mapping cocylinders and mapping cocones. Let X and Y be smooth spaces,
g+ X = Y and arbitrary smooth map. We define the mapping cocylinder MY of g to be
the pullback:

M9 —— C=(1,Y)

|
x 2 v
The composition of the evaluation at 1 and the canonical map M9 — C*(1,Y) defines a
smooth map p: M9 - Y.
As a special case we define for a pointed smooth space (X, zq) the path space PX over
X to be the mapping cocylinder of the inclusion of zj into X.

For a base point preserving map g : X — Y between pointed smooth spaces we define the
mapping cocone or homotopy fiber C9 of g to be the pullback:

9 —— PY

! Js

X 2 v

3.22. Proposition. Let M9 be the mapping cocylinder of a smooth map g : X —'Y . Then
we have:

(1): The map p: M9 =Y is a smooth fibration.

(2): The natural map q : M9 — X is a smooth homotopy equivalence.

Proof. (1): Let Z be an arbitrary smooth space, H: Z x I =Y and f : 7 — M9 smooth
maps such that po f = H|z0}. Composing the natural map M9 — C*°(I,Y) with f and
taking the map associated via cartesian closedness we get a smooth map f 4 x I =Y
such that f(z,1) = H(z,0). Now let ¢ € C*® (R, I) be an increasing map such that ¢(t) = 0
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fort < e and p(t) = 1 fort > 1 — ¢, where ¢ is some small positive number, and define
H:ZxIxI—=Y by

Aot s) = f(z,0(25)) s <1/2
U Hztp(25 = 1) s> 1/2

This map is smooth since f(z, 1) = H(z,0) and thus it is obviously smooth on the open
subsets Z x I x [0,(14¢)/2) and Z x I x ((1—¢)/2,1]. Thus also the associated map H" :
7Z x T = C>®(I,Y) given by (HV(z,t))(s) = H(z,t,s) is smooth and we have H" (z,1)(0) =
f(z, 0) and thus evgo HY = goqo f, where ¢ : M9 — X denotes the natural map. By the
universal property of the pullback we get a smooth map H:Z xI— M? induced by HY
and go f. Now (po [;T)(z,t) = HY(z,t,1) = H(z,t) and thus we only have to show that
ﬁ|Z><{0} is smoothly homotopic to f via a fiber preserving homotopy.

Consider the smooth map h : Z x I x I — Y defined by h(z,t,s) := f(z, (1—t)s+tp(2s)).

By catesian clesedness the associated map hY : Z x I — C*®(1,Y) is smooth and we have
(RV (2,))(0) = f(z,O) = ¢(q¢(f(2))) and thus together with go fopr; : 7 x I — X the
map hY induces a smooth homotopy h : Z x I — M9. In particular this implies that
goh =gqo fopry, sothe homotopy h respects the fibers of ¢, and one easily checks that it
is indeed a homotopy between f{|Z><{0} and f.
(2): Together with the map X — C°(I,Y) which assigns to z € X the constant map
t — g(z) the identity on X induces a smooth map h : X — MY such that g o h = Idx.
So it remains to show that hoq : M9 — MY is homotopic to the identity. Define H :
M9 x T — C®(I,Y) by (H(u,t))(s) := (k(u))(ts), where k : M9 — C*(I,Y) is the natural
map. Then evg o H = evg ok = g o ¢ and thus togehter with g o pry : M9 x I — X the map
H induces a smooth homotopy H : M9 x I — M9, and one immediately checks that this is
a homotopy between h o ¢ and the identity. O

3.23. Corollary. Let X and Y be smooth spaces, f : X — Y a smooth map. Then there
is a homotopy equivalence h : X — X' and a fibration p : X' — 'Y such that f = poh.

Proof. Put X’ = Mf p and h as in the proof of 3.22. Then clearly poh = f. O

3.24. Corollary. Let X andY be pointed smooth spaces, C9 the mapping cocone of a base
point preserving smooth map g : X — Y. Then the natural map p : C9 — X is a smooth
fibration.

Proof. PY —Y is a fibration by 3.22(1). Thus the result follows from 3.20. O

3.25. Proposition. Let X and Y be pointed smooth spaces, C9 the mapping cocone of a
base point preserving smooth map g : X — Y. Then CY9 s diffeomorphic to the fiber over
Yo of the smooth fibration p : M9 — Y. Moreover the diffeomorphism can be chosen such
that its composition with the natural map M9 — X euqals the natural map C9 — X.

Proof. Recall that C? is the pullback of the path fibration PY over Y along g and that
PY is the set of all smooth functions ¢ : I — Y such that ¢(0) = yo while the projection
to Y is given by the evaluation at 1. Now let ¢ : PY — C*(I,Y) be the map defined by
@(c)(t) := e(1—1) which is obviously smooth by cartesian closedness. Then the composition
of this map with the natural map C9 — PY together with the natural map C'Y — X induce
by the universal property of the pullback defining M9 a smooth map ® : C9 — MY and one
immediately checks that the composition p o ® is the constant map yq.

On the other hand one easily checks that the fiber over yy of the fibration p: M9 — Y is
just the pullback of the diagram

Jvevg
g

X — Y
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where PY is the space of all smooth maps ¢ : I — Y such that ¢(1) = yo with the initial
smooth structure with respect to the inclusion into C*°(I,Y), and the obvious diffeomor-
phism PY — PY given by the same formula as the map ¢ above induces and inverse to

®. 0O

3.26. Before we can continue the study of smooth fibrations we have to do some more
work on cofibrations. First we give a characterization of inclusion mappings which are
cofibrations. This characterization also shows that the notion of cofibration we use i1s quite
near to the classical notion (c.f. [Whitehead, 1978, 1.5.1.]).

Definiton'. Let X be a smooth space, A C X a subspace. The pair (X, A) is called a
smooth NDR-pair iff there are smooth maps u: X — I and h : X x I — X such that:

() u(A) =0

(ii) hxx {0y = Idx

(iii) hlaxr = pr1, so h is a homotopy relative to A.

(iv) h(z,1) € A for all z € X such that u(z) < 1.

There 1s one subtle point in this context: Let ¢ : A — X be the inclusion of a subspace and
consider the smooth space (A x I) U; X which is defined as the push out

Ax {0} —— Ax T

d !

X — Ax)Uu X

Then the maps z — (z,0) and ixid; : AxI — X x I induce a smoothmap j : (AxI)U; X —
X x I which is clearly a bijection onto the subspace X x {0} U A x I. But it is not clear
at all that the two smooth structures coincide, so we have to distinguish between these two
spaces.

3.27. Proposition. Let X be a smooth space, A C X a subspace. Then the following
conditions are equivalent:

(1): (X, A) is a smooth NDR-pair.

(2): There is a smooth map H : X x I x I — X x I such that H|xxrxqo} = Idxxr,
H(Xx{0}x1I) C Xx{0}, H is a homotopy relative to AxI, H(XxIx{1}) C Xx{0JUAxT
and H|x «rx{1} is smooth as a map to (A x I) U; X.

(3): There is a smooth map f: X x I = (A x I)U; X such that the composition of f with
the map j defined above is homotopic to the identity relative to A x 1.

(4): The inclusion map of A into X is a smooth cofibration.

Proof. (1) = (2): Let u and h be the maps ocurring in the definition of an NDR-pair and
let ¢ € C°°(R, ) be an increasing map such that ¢(t) = 0 for all t < ¢ and ¢(¢) = 1 for all
t > 1 — e, where € is some small positive number. Then define H : X x I x I — X x I by
H(z,t,s) := (h(z,s),t(1 — se(u(x)))). Then obviously H(z,t,0) = (z,t) and H(z,0,s) €
X x {0} and since h(a,t) = a and u(a) = 0 for all @ € A we have H(a,t,s) = (a,t). Finally
if z is such that u(z) = 1 then clearly H(z,t,1) € X x {0} and if u(z) < 1 then h(z,1) € A
and thus H(z,t,1) € A x I. So it suffices to show that H|x {1} is smooth as a map to
(A x I)U; X. By definition of the smooth structure on a push out a map (A xI)U; X - R
is smooth if and only if it is induced by smooth map g1 : X — R and g2 : A x I = R which
satisfy g1]a = g2|AX{0} Now by construction of H the point H(z,t,1) lies in X x {0} if

u(z) > l—e and in Ax T ifu(z) < 1. Thus the composition of a smooth real valued function

INote that this definition is also a little weaker than the usual definition in topology, since there one only
deals with closed subspaces and requires that the subspace A is exactly the zero set of the function u.
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on (A x I)U; X as above with H|xxryx{1} is given by gi(h(z,1)) if u(z) > 1 — ¢ and by
g2(h(z, 1), t(1 — p(u(z)))) if u(z) < 1 and from this description one immediately concludes
that it is smooth.
(2) = (3): Put f = H|xxrxq1} : X x I = (A x I)U; X. By cartesian closedness the
diagram

Ax {0} x T —— AxIxI

] !

XxI —— (AxDU;X)xI

is a push out. Moreover the inclusion of X x {0} into X x I is obviously an initial morphism
and thus H|xyjoyxr : X x I = X is a smooth map and one immediately checks that
the composition of the natural map X — (A x I) U; X with this map together with the
composition of the natural map A x I — (A x I')U; X with the projection Ax I x I — AxT
onto the first two factors induces the desired homotopy.

(3) = (4): Let Z be an arbitrary smooth space and let H: Ax I — Z and g : X = Z be
smooth maps such that g[4 = H 4y {0}. Then these maps define a smooth map (AxI)U; X —
7 and composing this map with f we get a smooth map H: X x I — Z. Clearly we have
FI|AX1 = H and from the properties of f one immediately deduces that I~{|XX{0} is smoothly
homotopic to g relative to A.

(4) = (3): Applying the cofibration property to the canonical maps X — (A x I) U; X and
AxT = (Ax1I)U; X we get a smooth map f: X x I = (A x I) U; X such that flaxrs
is the canonical map A x I — (A x I) U; X and such that f|x o} is smoothly homotopic
to the natural map X — (A x I) U; X relative to A. Together with the composition of the
natural map A x I — (A x I) U; X with the projection A x I x I = A x I onto the first
two factors such a homotopy induces a smooth homotopy between the identity and f o j.
(3) = (1): Together with the constant map 1 : X — T the map A x I — I given by
(a,t) = 1 —t induces a smooth map v : (A x I) U; X — I and we define u : X - R as
v o flxx{1}. Then by construction u(A) =0. Let p: (A x I)U; X = X be the map induced
by the identity on X and the first projection A x I — X and let H : (A x I)U; X) x I —
(A x I) U; X be a smooth homotopy relative to A x T from the identity to f o j. Then we
can view the composition of p with the smooth map X x I — (A x I) U; X induced by H as
a homotopy relative to A between the identity on X and the map po (f|xx{0}). Next po f
is just a homotopy relative to A between po (f|xx{0}) and po (f|xx{1}). Piecing theses two
homotopies together smoothly we get a smooth homotopy relative to A, h : X x I — X from
the identity to po(f|xx{1}). But by construction of u if u(x) < 1 then (po(f|xx0}))(z) € A
and thus h satisfies all conditions of 3.26. O

3.28. Proposition. Let p: X =Y be an arbitrary smooth map and let (7, A) be a smooth
NDR-pair. Suppose we have given smooth maps H : Z x I —Y, HH : Ax I — X and
f:Z — X such that po f = H|zx0}, po Hi = H|axr and fla = Hilax{o}-

Then there is a smooth map H:ZxI— X such that lff|A><I = Hy, po H is smoothly
homotopic to H relative to A x I and FI|ZX{0} 1s smoothly homotopic to [ relative to A.

Proof. By 3.27(2) there is a smooth homotopy ® : 7 x I x I — 7 x I relative to A x T
with ®|zy 1y 0} = Idzxr such that the map ¢ := ®|; 1y {1} has valuesin Z x {0} UA x I.
Moreover the restriction of @ to the subspace Z x {0} x I has values in Z x {0}. As in the
proof of 3.27 we see that the maps Hy and f define a smooth mapg:Z x {0}JUAXxT — X
and by assumption pog = Hoj, where j : Z x{0}UAx T — Z x I is the inclusion. Consider
the map H :=go w:Z xI— X. As ® is a homotopy relative to A x I we obviously have
g|A><I = glaxr = Hy. Next we have pof] = Hojop. Now the homotopy ® passed backwards
is a homotopy relative to A x I between j o ¢ and the identity on Z x I and thus po H is
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smoothly homotopic to H relative to A x I. Finally FI|ZX{0} = go(@lzxio}) = folelzx{o})-
Now the restriction of ® to the subspace Z x {0} x I defines a smooth homotopy relative to
A between @[z 0} and the identity on Z and thus the maps lfI|ZX{0} and f are smoothly
homotopic relative to A. O

3.29. Fibers of a fibration. Let p: X — Y be a smooth fibration and let yo be a point
in Y. We define the fiber over yg to be the set p~!(yg) together with the initial smooth
structure with respect to the inclusion into X.

Now let u : I — Y be a path in Y and put y; := u(i) and let F; be the fiber over y; for
t =0,1. Let Z be an arbitrary smooth space and let f : Z — Fj be a smooth map. Then we
define asmoothmap H : ZxI — Y by H(z,t) := u(t). Viewing f asa map to X we see that
pof = H|Z><{0}7 so as p is a smooth fibration there is a smooth map H:Z xI— X such
that po H = H and H|Z><{0} is smoothly homotopic to f via a fiber respecting homotopy,
which just means that the maps H|Z><{0} and f are smoothly homotopic as maps from 7

to Fy. For the restriction g := ﬁ|Z><{1} we have po g = y; and thus g 1s a smooth map from
7 to Fl.

3.30. Lemma. Let p: X — Y be a smooth fibration, yo,y1 € Y and let u,v : I =Y be
maps with u(i) = v(i) = y; for i = 0,1 which are homotopic relative to {0, 1}, so there is a
smooth map h : I x I =Y such that h(0,t) = u(t), h(1,t) = v(t) and h(s,i) = y; fori=0,1
and all s € 1. Moreover let Z be an arbitrary smooth space and let U,V : 7 x I — X be
smooth maps such that p(U(z,t)) = u(t) and p(V(z,t)) = v(t).

If the maps Ulzyxq0y and V|zyqoy are smoothly homotopic as maps from Z to Fy :=
p~'(yo) then the maps Ulzx{1}y and V|zxq1y are smoothly homotopic as maps from Z to
Fr=p~'(n).

Proof. Define Hy : 7 x {0,1} x I = X by Hi(z,0,t) := U(z,t) and Hi(z,1,t) = V(z,1)
and define H : Z x I x I - Y by H(z,s,t) := h(s,t). Let f : Z x I — X be a smooth
homotopy between Uz 03 and V|zxq0}, viewed as a function with values in X. Then
by construction we have po f = yo = H|zx1x{0}, po H1 = H|zx{o, 1)1 and f|zxq0,1} =
Hi|zx10,13x{0}- Now (I,{0,1}) is easily seen to be a smooth NDR-pair and thus by 3.4(2)
and 3.27 (Z x I, Z x {0,1}) is a smooth NDR—pair. Thus we can apply proposition 3.28 to
get a smooth map H:Z x IxI— X such that H|Z><{0 1}x7 = H1 and such that poH 18
smoothly homotopic to H relative to 7 x {0,1} x I.

Thus there is a homotopy ® : Z x [ x I x I = Y such that ®|;,7xrxj0} = po H and
Q| zurxrx{1} = H and ®(z,i,t,s) = H(z,i,t) for i = 0,1. Applying the homotopy lifting
property of the fibration p to the maps ® and H we get a smooth map S ZxIxIx] =X
such that po ® = ® and such that ‘:I)|Z><I><I><{0} is smoothly homotopic to H via a fiber
preserving homotopy. Now consider the map ¥ := q>|Z><I><{1}><{1}~ We have po ¥ =
Q| zxrx{1}x{1} = H|zx1x{1} = ¥1, 50 ¥ can be considered as a smooth homotopy between
the maps ¥|; 0y and ¥|zy 41y : 2 — I,

Next we have poq>|ZX{ Ix{1yx1 = H|zxgitxq1y = w1 fori = 0,1, s0 q>|Z><{ Ix{1}x7 defines
smooth homotopies between the maps ¥|; ;) and (I)|Z><{z}><{1}><{0} as maps from Z to Fy
for i = 0,1. By construction the map &)|Z><I><I><{0} is smoothly homotopic to H via a fiber
preserving homotopy Z x I x I x I — X. Restricting this homotopy to Z x {i} x {1} x I we
get smooth homotopies between the maps ‘I>|Z><{ }x{1}x{0} and H|ZX{ Ix{1} as maps from 7
to Fy for i = 0,1 and we have H(z,0,1) = U(z,1) and H(z,1,1) = V(z,1). Piecing all these
homotopies together smoothly we see that U|Z><{1} and V|Z><{1} are smoothly homotopic
as maps from 7 to F;. O

3.31. Theorem. Letp: X =Y be a smooth fibration and assume that'Y is smoothly path
connected. Then for any two points yo,y1 € Y the fiber Fy over yg is smoothly homotopy
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equivalent to the fiber Fy over y;.

Proof. Let u : I — Y be a path in Y such that u(?) = y; for i = 0,1. Now from the
identity on Fy we construct as in 3.29 a smooth homotopy Hi : Fy x I — X such that
p(Hi(x,t)) = u(t) and such that Hi|p, {0} is smoothly homotopic to the identity as a map
from Fy to Fy, and we put f := Hi|p,xq1} : Fo = F1. In the same way replacing the path
u by the path u# defined by u(t) = u(1 —¢) we get a homotopy Hs : F1 x I = X such that
p(Hz(x,t)) = u(1 —t) and such that Hs|p, {0} is smoothly homotopic to the identity, and
a smooth map g := Ha|p, x{1}

As H3|p, x {0} is smoothly homotopic to the identity there is a smooth map H : Fy xI — X
such that po H = y; and H(2,0) = z and H(z,1) = Ha(2z,0). Now let ¢ € C°(R,T) be
an increasing map such that ¢(¢) = 0 for t < ¢ and ¢(t) = 1 for ¢ > 1 — ¢, where ¢ is some
small positive number and consider the map U : Fy x I — X defined by

Hy(z,¢(3t)) t<1/3
Ulat) = H(f@) o3 1) 1/3<t<2/3
Hy(f(z),p(3t—2)) t>2/3

The map U is smooth as it is by construction obviously smooth on the open subsets Fjy x
[0,(1+¢€)/3), Fox ((1—¢)/3,(24¢)/3) and Fy x ((2—¢)/3,1]. By construction U|p,x{o} is
smoothly homotopic to the identity and U|p,x 1} = gof. Themap poUisapathu: 1 =Y
given by
u(p(31)) t<1/3
ut)=1< 1/3<t<2/3
u(l — (3t —2)) t>2/3

Now the path 4 is smoothly homotopic to the constant path yg relative to {0, 1} via the
homotopy h: I x I — Y defined by

u(sp(3t)) t<1/3
h(s,t) =} u(s) 1/3<t<2/3
u(s(1-¢(3t-2))) 1>2/3

Applying lemma 3.30 to u and the constant path yy and to U and V : Fy x I — X given by
V(z,t) =  we see that g o f : Fy — Fy is smoothly homotopic to the identity. In the same
way one shows that fo g : Fy — F; is homotopic to the identity and thus Fy and Fy are
smoothly homotopy equivalent. O

3.32. Definition. Let p : X — Y and p’ : X’ — Y’ be smooth fibrations with ¥ and
Y’ smoothly path connected. A smooth map F : X — X’ is called a fibered morphism iff
for any z1,z9 € X with p(z1) = p(x2) we have p'(F(z1)) = p'(F(z2)). Thus we get a well
defined map f : Y — Y’ such that fop = p’o F. Since p is a final morphism in the category
of smooth spaces by 3.18 the map f is smooth.

Now assume that Y = Y”’, so wee have two fibrations over the same base. Then p and p’
are said to have the same fiber homotopy type iff there are fibered morphisms F : X — X'
and G : X! = X such that f = g = Idy,i.e.p’ o F = p and po G = p’, such that G o F and
F o G are homotopic to Idx and Idx: respectively via fiber preserving homotopies.

If p and p’ have the same fiber homotopy type then in particular for any point y € Y the
fibers p~1(y) and p’_l(y) are smoothly homotopy equivalent.
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3.33. Proposition. Let f : X =Y be a smooth fibration with' Y smoothly path connected
and let Mf be the mapping cocylinder of f. Then the fibration p : Mf — Y constructed in
3.21 has the same fiber homotopy type as f.

Proof. Recall that M/ is defined as the pullback

M —L 5 (1Y)

x 14 v

and that p : M/ — Y is defined as the composition of the evaluation at 1 with the natural
map j : MY — C*®(1,Y). In the proof of 3.22 we constructed a smooth map h : X — M/
such that g o h = I'dx, j(h(z)) is the constant curve ¢t — f(z) and po h = f. Consider the
smooth map H : MY x I =Y defined by H(z,t) := j(z)(t). Clearly foq = H|arsx {0}, 80
as f is a smooth fibration we get a smooth map H : M/ x I — X such that fo H = H and
such that lfI|MfX{O} is smoothly homotopic to ¢ via a homotopy which preserves the fibers
of f. Put g := Hlprsyqay M? - X. Then fog = Hlpixqiy =evioj=p.

Consider the map goh : X — X. By construction j(h(z)) is the constant curve ¢ — f(z)
and thus fo H o (hx Id) = fopry, so Ho (h x Id) is a fiber preserving homotopy between
g o h and I~{|fo{0} o h. By construction this map in turn is homotopic to g o h = Idx via
a fiber preserving homotopy.

Next define w : C®°(1,Y) x I — C*®(1,Y) by w(u,t)(s) := u(s +t — st). This is well
defined as s +¢ — st <1 and it is immediately seen to be smooth using cartesian closedness.
By construction we have (evgow)(j(2),t) = j(2)(t) = H(z, ) (foH)(z t) for all z € M/,
so by the universal property of the pullback there is a unique map H : M xT = Mf
such that jo H = wo (j x Id) and q o H=~H.Tn particular this implies that p o H =
evi ow o (j x Id) = popry by construction of w, so the homotopy H respects the fibers
of p. Now qo H|pysxqiy = 9 = qohog and (_] o H|fo{1})( z) is the constant curve
t— j(z)(1) = p(z) = f(9(2)) and this is just j(h(g(z))), so H|fo{1} =hogy.

So ho g is smoothly homotopic to H |+ {0} via a homotopy which preserves the fibers of
p and we have jOH|MfX{O} = jand quleX{O} = I~{|Mf><{0}. By construction of H there
is a smooth homotopy ® : Mf x I — X such that @lprsxfo} = lfI|MfX{0} and @|prr 5013 = ¢
and fo® = evgojopri. By the universal property of the pullback the map ® together with
the map jopry : M7 x I — C*(I,Y) induces a smooth map ®: M! x I — M such that
qo ® = ® and jo = Jopri, so in particular po = popry and thus ) respects the fibers
of p, and one immediately checks that ® is a smooth homotopy between H|fo{0} and the
identity on M. O

3.34. Our next task is to study exact sequences of sets of homotopy classes. We begin
with the case of free homotopy classes. Let W be a smoothly path connected smooth space.
Then for any smooth space X the set of homotopy classes [X, W] has a natural base point,
namely the homotopy class of the map which maps the whole of X to a single point. (As W
is smoothly path connected all smooth maps which map X to a single point are smoothly
homotopic) Now let f: X - Y and g : Y — Z be smooth maps. Then the sequence

X 5 Y 4 7 is said to be right exact if and only if for any smoothly path connected

smooth space W the sequence [Z, W] <5 [V, W] [X, W] is an exact sequence of pointed
sets, i.e. a homotopy class in [Y, W] is mapped by f* to the base point of [X, W] if and only
if it lies in the image of g*.
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3.35. Proposition. Ifi: X = Y is a smooth cofibration with cofiber Y/i(X) then the
sequence X — Y 5 Y/i(X) is right exact.

Proof. As poi maps the whole of X to a point it is clear that i* o p* maps [Y/i(X), W] to
the base point of [X, WW]. So let us conversely assume that f : Y — W is a smooth map such
that *([f]) is the base point of [X,WW]. This just means that there is a smooth homotopy
H : X x I — W such that H(z,0) = (f oi)(z) and H(z,1) = wq for some wy € W. Now by
the cofibration property this implies that there is a smooth homotopy H : Y x I — W such
that H o (i x Id) = H and such that Hly 0} is smoothly homotopic to f relative to X.

Put f := lff|y><{1}. Then by construction f is smoothly homotopic to f and maps i(X) to

wg. Thus it factors to a smooth map on Y/i(X) and hence the homotopy class of f which
equals the class of f lies in the image of p*. O

3.36. Corollary. Let f : X — Y be an arbitrary smooth map with homotopy cofiber Cj.
Then the sequence X Ly o C'; is right exact.
Proof. Let M¢ be the mapping cylinder of f. Then by 3.9 and 3.10 we get a diagram

x 1 v y

L

X — 5 M T ¢

which 1s commutative up to homotopy and in which 7, 7 and k are inclusions, i is a smooth
cofibration and j is a homotopy equivalence. Thus the result follows from 3.35. O

3.37. Now we can iterate the above procedure. Let fy : Xg — X; be a smooth map and
let f1 : X1 — X3 be the homotopy cofiber of fy. Then for any smoothly path connected
space W there is a long exact sequence of pointed sets
fx faoa fas i £
S X, W] S X, W — S [ X, W] = [Xo, W]
in which f, : X,, = Xp41 is the homotopy cofiber of f,_1. We will give an explicit
description of the spaces X, later on.

3.38. Now we consider the case of exact sequences of homotopy classes of base point pre-
serving smooth maps. For arbitrary pointed smooth spaces (X, zg) and (Y,yo) the set
[X,Y]o of homotopy classes of base point preserving smooth maps has a natural base point,
namely the homotopy class of the map which maps the whole space X into y3. A se-

quence X i) Y 2 Z of base point preserving smooth maps between pointed smooth
spaces is called right exact if and only if for any pointed smooth space (W, wg) the sequence
[Z, W] L5 [Y, W] EARN [X, W]o is exact.

3.39. Proposition. (1): Let (X,zq) be a pointed smooth space and let i : X — 'Y be a
smooth cofibration in the category C§° (c.f. 3.16) and consider i(zq) as the basepoint of Y.

Then the sequence X Ly o Y/i(X) is right exact.
(2): Let f: X =Y be a base point preserving smooth map between pointed smooth spaces

X and Y and let C} be the reduced mapping cone of f. Then the sequence X Ly o C'J’,
s right exact.

(3): Let fo : Xo = X1 be a base point preserving smooth map between pointed smooth spaces.
Then for any pointed smooth space W there is a long exact sequence of pointed sets

N Fra s N 15
e — [Xn, W]O — [Xn—h W]o —_— ... — [Xl, W]o — [)(()7 W]o
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i which fn @ Xy = Xny1 s the reduced mapping cone of fn_1.
Proof. The proof is similar to 3.35, 3.36 and 3.37. O

3.40. Our next task i1s to give a more explicit interpretation of the long exact sequence
constructed in 3.37. For this we need some definitions. Recall that for a smooth space X
the cone C' X over X was defined as the mapping cylinder of the unique smooth map X — pt.
Thus there is a smooth cofibration X — C'X and we define the (unreduced) suspension SX
over X to be the cofiber of this cofibration, i.e. SX = CX/X. By 3.5 the suspension over
a base space is again a base space. Note that the cone has obvious functorial properties, so
for a smooth map f : X = Y we get a smooth map C(f) : CX — CY which is induced by
fxId: X xI—Y xI. Thismapin turn now induces a smooth map S(f) : SX — SY.
Moreover note that by 3.14 the space SX is smoothly homotopy equivalent to the homotopy
cofiber of the cofibration X — C'X which is the space CX Urq, CX. For later use we also
need the anti suspension operator —S(f) : SX — SY induced by a smoothmap f: X - Y.
This is the smooth map induced by (z,t) — (f(z),1 —1).

For later use we also define the reduced suspension S’ X of a pointed smooth space X as
S$'X := C'X/X. In the same way as above we define S’ X and the maps S’ (f) : " X —
S'™Y for a base point preserving smooth map f: X =Y.

3.41. Lemma. Let f : X — Y be an arbitrary smooth map with homotopy cofiber g 1 Y —
Cy, and let h : Cy — C be the homotopy cofiber of g. Then there is a commutative diagram

y 2 ¢ y Cy

| [

c; —1— Sx

where q1 s a homotopy equivalence and q is induced by the natural projection C; —

Ci/g(Y).

Proof. By 3.11 the map g is a smooth cofibration and from 3.14 we see that there is a
smooth homotopy equivalence §; : Cy — C/g(Y') such that ¢; o h is the natural projection.
We claim that the space C¢/¢(Y) is diffeomorphic to SX. Recall that Cy = CX U;Y. Now
in the diagram

x L,y S pt
| s |
CX y O Ct/g(Y)

the left hand square and the right hand square are by definition push outs and thus the
outer square is also a push out. But this is just the push out which defines SX, so we get
the claimed diffeomorphism. 0O

3.42. Applying the above lemma to the next step in the sequence we get a commutative
diagram

h 7
\Cg N Ch

| L

Cy —+— 8Y

Cy

where g5 arises as C'(Cy) Uy Cy ~ Cy/h(Cy) = SY.
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Lemma. The diagram

C, —— C,

| e
sx Y, gy

1s commutative up to homotopy.

Proof. Tt suffices to show that —S(f) o q1 is smoothly homotopic to ¢’. Let us temporarily
denote by SY the space C'Y Urd, CY and to distinguish the two cones let us denote them
by C1Y and C,Y. Now we have two homotopy equivalences py,ps : SY — SY induced by
the canonical projections SY = gY/ClY and SY — gY/CzY, respectively and we want
to clarify the relation between these two maps. As an intermediate step we define a third
map ¢ : SY — SY as follows: Consider the map Y x I — Y x I given by (y, 1) — (y,t/2).
This map obviously induces a smooth map C'Y — CY and composing it with the natural
projection C'Y — SY we get a smooth map ¢; : CY — SY. On the other hand the
composition of the natural map Y x I = C'Y — SY with the map (y,t) — (y, 1 —t/2) maps
Y x {0} to a single point and thus induces a smooth map 5 : CY — SY. Now one easily
sees that the maps 1 on C1Y and ¢y on C2Y induce a smooth map ¢ : SY — SY.

Next the map Y x I x I = Y x I defined by (y,t,s) — (y, st/2) induces a smooth map
®, : CY x I = SY and the map given by (y,t,s) — (y,1 —t(1 — s/2)) induces a smooth
map @, : CY x I — SY. By cartesian closedness of the category of smooth spaces the
diagram

YxI —— 1Y x1

! !

CY x I —— SY x1I

s a Push out and the maps ®; on C1Y x I and ®5 on C5Y x I induce a smooth homotopy
®: SY x I — SY. From the definition it immediately follows that <I>|5YX{O} 1s induced by
the maps C7 — pt and (y,t) — (y,1 — 1) on C2Y and thus (I)|S~Y><{0} = —S(Idy) o ps while
obviously (I)|S~Y><{1} = . Similarly one constructs a homotopy between ¢ and p; using the
maps (y,t,s) — (y,t(1 —s/2)) and (y,%,s) = (y, 1 — st/2) and thus the map p; is smoothly
homotopic to —S(Idy) o pa.

Recall that in the diagram

¥ cy
l s l
cx y O y O

the two squares are push outs and thus the outer rectangle is a push out, too. Hence
the identification of CY with C1Y together with the map C(f) : CX — C3Y induces
a smooth map ¥ : C; — SY. Now p2 oV : Cy = SY maps the space Cf to a single
point while it induces the natural map CY — SY on CY and thus ps o ¥ = ¢’. On the
other hand p; o ¥ maps CY to a single point while on C} it is given by mapping Y to
a point and the induced map C;/g(Y) =2 SX — SY is clearly equal to S(f) and thus
p1o¥ = S(f) oqi. Thus we see that S(f) o ¢1 is smoothly homotopic to —S(Idy) o ¢’
and since clearly —S(Idy) o —S(Idy) = Idsy and —S(Idy) o S(f) = —S(f) the lemma
follows. 0O
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3.43. We are now ready to formulate the final version of the long exact sequence 3.37. For
a smooth space X we define inductively the n—fold (unreduced) suspension S™X over X
by S1X := SX and S"X := S(5"71X), and for a smooth map f : X — Y we define
SYH(f) := S(f) and S™(f) := S(S™*~L(f)) : S"X — S"Y.

Theorem. Let f: X — Y be a smooth map between arbitrary smooth spaces with homotopy

cofiber g 1 Y — C, and let ¢ : C; — SX be the map constructed in 3.41. Then for any
smoothly path connected smooth space W the sequence

s st w29 ey, wy 229

sy, w] S ey W] -

o [SX, W] D [0, W] s 1y, w LD X,

of pointed sets is exact.

Proof. The exactness of the sequence with all maps S™(: )* replaced by (—S)"(: )* follows
via induction from 3.41 and 3.42. Clearly changing the maps from (=S)*( )* to S"( )*
does not destroy the exactness. 0O

3.44. Our final task in this section is to establish the dual version of the exact sequence
derived in 3.43. As before we are mainly interrested in the case of sets of free homotopy
classes. If (X, zg) is a pointed smooth space then for any smooth space W the set [W, X of
free homotopy classes of smooth maps from W to X has a natural base point, namely the
homotopy class of the map which maps the whole space W to zg.

Now let f: X - Y and ¢ : Y — Z be base point preserving smooth maps between

pointed smooth spaces. Then the sequence X Iy v % 7 is said to be left exact if and only
if for any smooth space W the sequence [W, X] ELN [W,Y] L5 [W, Z] is an exact sequence
of pointed sets.

3.45. Proposition. Let p: X =Y be a smooth fibration, o € X a point, yo := p(xq) and
leti: F — X be the inclusion of the fiber F := p~1(yo). Then with the natural base point
fo:=1i"'(x) € F the sequence F - X Ly is left exact.

Proof. Let W be any smooth space. By definition p o ¢ maps the whole space F' to the point
yo and thus clearly p, o i, maps the whole set [W, F] to the base point of [W,Y]. So let us
assume that f : W — X is a smooth map such that p.([f]) is the base point of [W,Y]. This
means that there is a homotopy H : W x I — Y such that H|w 0} = po f and H w1}
is the constant map yo. Applying the fibration property of p to the maps H and f we get
a smooth map H : W x I — X such that po H = H and H |y {0} is smoothly homotopic
to f (even via a fiber preserving homotopy). Thus f is smoothly homotopic to the map
H|w w413 which by construction has values in i(F") and thus [f] lies in the image of 4,. O

3.46. Corollary. Let f: X = Y be an arbitrary base point preserving smooth map with
homotopy fiber Cf. Then the sequence CT — X yiis left exact.

Proof. Let M7 be the mapping cocylinder of f. Then by 3.22 and 3.25 we get a diagram

F s M L2 5y

ol

cf sy X




3. SMOOTH FIBRATIONS AND COFIBRATIONS 37

in which F' is the fiber over yg of the fibration p, ® is a diffeomorphism, ¢ 1s a homotopy
equivalence, the left hand square is commutative and the right hand square is commutative
up to homotopy since the evaluation at 0 and the evaluation at 1 are smoothly homotopic.
Now MY has a natural base point, namely the one which is sent by the canonical maps to
zo and the constant map 1y, respectively and this also defines the base point of Cf. With
this conventions all maps in the above diagram are base point preserving. Thus the result
follows from 3.45. O

3.47. As in the case of the dual sequence we can now iterate the above procedure to get a
long exact sequence as follows: Let fO : X! — X0 be a base point preserving smooth map
and let f': X? = X! be the homotopy fiber of f°. Then for any smooth space W there is
a long exact sequence of pointed sets

AR e B e B S x ) s w x)

in which f* : X"+1 — X7 is the homotopy fiber of f»~1. Our next task will be to describe
the spaces X™ more explicitely.

3.48. Recall that for any pointed smooth space X we defined the path fibration PX — X
as the mapping cocylinder of the inclusion of the base point into X. Now we define the loop
space QX of X to be the fiber over zy of this fibration. Thus QX is the set of all smooth
maps ¢ : I = X such that ¢(0) = ¢(1) = 2o with the initial smooth structure with respect
to the inclusion into C*° (7, X'). Note that the loop space is obviously funtorial: Any base
point preserving smooth map f : X — Y induces a smooth map f, : C®(I,X) = C®(I,Y)
which restricts to a smooth map Q(f) : QX — QY. For later use we also define the anti loop
operator —Q(f) : QX — QY to be the smooth map defined by —Q(f)(c)(2) := f(e(1 —1)).

3.49. Proposition. Put & := I/{0,1} with the final smooth structure. Then for any
pointed smooth space X there is a canonical diffeomorphism QX = C§° (6, X).

Proof. Obviously the two underlying sets coincide, so we only have to consider the smooth
structures. Let p : I — & be the canonical projection. Since C§°(&, X) has by definition
the initial smooth structure with respect to the inclusion into C* (&, X) we only have to
show that the smooth map p* : C* (&, X) — C*(I, X) is an initial morphism.

First we show that for any smooth space Y the morphism p x Idy : I xY = &' x Y
is final. Solet f: & x Y — R be a function such that f o (p x Idy) is smooth. Then by
cartesian closedness (fo(px Idy))Y : I — C°(Y,R) is smooth and one immediately verifies
that (f o (p x Idy))Y = fop. Since p is final this means that f is smooth and thus by
cartesian closedness f is smooth.

So let us turn to the initiality of p*. Let ¢ : R — C'°°(&?!, X) be a curve such that p* oc is
smooth. Then by cartesian closedness (p* o ¢)™: R x I = X smooth. Now one immediately
verifies that (p* o ¢)"= é o (Idg x p) and since Idg x p is final we see that é is smooth and
thus by cartesian closedness ¢ 1s smooth. O

3.50. Proposition. Let X be a pointed smooth space, S'X the reduced suspension of X
(c.f. 3.40). Then there is a natural diffeomorphism S’X = SGA X, where A denotes the smash
product (c.f. 1.25). Thus for any pointed smooth space Y there is a natural diffeomorphism
CP(S'X,Y) = CP(X,QY), so the functors S' and Q form an adjoint pair. Moreover this
diffeomorphism induces a bijection [S'X, Y]y = [X,QY]q.

Proof. By definition the smash product is the quotient space (& x X)/(&V X). On the
other hand the reduced suspension is given as S'X = (X x I)/(X x {0, 1}eup{zo} x I).
From the proof of 3.49 we see that & x X = (X x I)/(X x {0,1}). Thus the identity on
X x I induces a smooth map & x X — S’ X and since in S’ X the fiber over the base point is
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contracted this map factors to a smooth map & A X — S’ X. In the same way the identity
on X x I induces a smooth map X x I — & A X and clearly this map factors to a smooth
map S’X — & A X which is obviously inverse to the map constructed above.

Now the diffeomorphism between the spaces of base point preserving smooth functions
immediately follows from 1.26. Finally one immediately checks the compatibility of this
diffeomorphism with homotopies. O

3.51. Lemma. Let X and Y be pointed smooth spaces, f: X — Y a base point preserving
smooth map with homotopy fiber g : Cf — X, and let h : C9 — Cf be the homotpy fiber of
g. Then there i1s a commutative diagram

Qy Qv
Jvkl J,k
co Lty 0r L, x

in which ki is a smooth homotopy equivalence and k is induced by the inclusion of the fiber
of g over xg.

Proof. Recall that by 3.24 the map g : Cf — X is a smooth fibration. By the universal
property of the pullback defining C/ the inlusion of QY into PY together with the constant
map zo induces a smooth map k : QY — Cf and one immediately verifies that k is a
diffeomorphism onto the fiber over zg of g. Now let M9 be the mapping cocylinder of
g. Then from the proof of 3.33 we see that there is a smooth fiber homotopy equivalence
H:cf = M9 (which is called A in 3.33) with the following properties:

(): po H =g, where p: M9 — X is the natural map.

(2): qo H = Id where ¢ : M9 — C is the natural map.

Let H denote the restriction of H to the fibers over zg which is then a homotopy equivalence,
too. Finally let ¥ be the diffcomorphism between the fiber over zg of p which is inverse to
the one constructed in 3.25. So by construction we have ho ¥ = ¢. Now put k1 := Wo Hok.
Then we get hoky = hoWoHok =qo Hok = k. From the construction one easily verifies
that the map k; : QY — C7 is induced by &k : QY — C/ and the map which sends the whole
space Y to the constant path zq in PX. O

3.52. Applying the above lemma to the next step of the sequence we get a commutative
diagram

Qx Qx
b L
ch 5 09 o

in which ks is a smooth homotopy equivalence and k' is induced by the inclusion of the fiber
of h over the base point of C7.

Lemma. The diagram
ax =29, qy

b e
ch 1 o9
1s commutative up to homotopy.

Proof. Clearly it suffices to show that k1 o —Q(f) is smoothly homotopic to k’. Let us
temporarily denote by QX the homotopy fiber of the path fibration over X. Explicitely this
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space can be realized as the set of pairs (c1, c2) with ¢; € PX such that ¢1(1) = (1) with
the initial smooth structure with respect to the two projections to C*° (I, X). There are two
obvious maps ji,js : QX — QX defined by Ji(e) = (e,z0) and ja(e) = (zg,¢), where by
xo we also denote the constant map. First we clarify the relation between these two maps:
Define H : QX x I = QX as H(w,t) = (e1(w,t), ca(w,t)) where ¢1(w,t)(s) := w(ts) and
ea(w,t)(s) ;= w(l — (1 —t)s). Then this is obviously smooth and one easily checks that it
indeed has values in QX. Thus H defines a smooth homotopy between j; and js o —Q(7d).
In the diagram

9 ct PY
| s |
PX s x L 4y

both squares are pull backs and thus the outer rectangle is a pullback, too. Hence the
projection QX — PX onto the first factor together with the composition of the map P(f) :
PX — PY with the projection onto the second factor induces a smooth map ® : QX — C9.

Now the composition ® o j; is given by the inclusion 2X — PX and the constant map
to the base point of Cf and thus we have ® o j; = k’. On the other hand ® o j, is induced
by the constant map to the base point of PX and a map QX — Cf which is in turn
induced by the constant map to the base point of X and the composition of the inclusion
QY — PY with Q(f). From these data one easily verifies that ® o js = k1 0Q(f). Thus from
above we conclude that &’ is smoothly homotopic to k1 o Q(f) o —Q(Jd) and since clearly
Q(f) o —Q(Id) = —Q(f) this completes the proof. O

3.53. Now we can formulate the final versions of the exact sequence constructed in 3.47.
For a pointed smooth space X we define inductively the n—fold loop space Q"X over X
by Q'X = QX and Q"X := Q(Q""'X) and for a base point preserving smooth map
[ X =Y wedefine QY(f) := Q(f) and Q*(f) := Q(Q"~1(f)) : Q"X — QY.

Theorem. lLet f: X — Y be a base point preserving smooth map between pointed smooth
spaces with homotopy fiber g : Cf — X, and let k : QY — Cf be the smooth map constructed
n 3.51. Then for any smooth space W the sequence

o I arrty] 28y grory 229

2%(g). (W, Q" X] Q" (). W, QY] Q"7 (k).

2D v £ w0 2 [, X)L [, Y]
1s an exact sequence of pointed sets.

Proof. The exactness of the sequence with all maps Q(: ). replaced by (—Q)i(: ). follows by
induction from 3.47, 3.51 and 3.52. Clearly changing the maps from QZ( )« to (—Q)Z( )s
does not destroy the exactness. [

4. Convenient vector spaces, algebras and modules

4.1. Definition. (1): A smooth vector space is a smooth space F which is also a real
vector space such that the addition £ x E — E and the scalar multiplication R x £ — E
are smooth maps.

(2): A smooth vector space is called preconvenient iff its smooth structure is generated by
some set, of real valued linear functionals.

(3): For smooth vector spaces E and F we write L(E, F') for the vector space of all smooth
linear maps from E to F' and we write E’ for L(E,R).
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4.2. On a preconvenient vector space E there is a canonical locally convex topology, namely
the finest one for which E’ becomes the topological dual of E. That this topology exists is
shown in [Ja, p. 58, p. 61] and in [F-K, 2.1.9]. In fact this so called Mackey topology defines
a functor a from the category of preconvenient vector spaces and smooth linear maps to the
category of locally convex vector spaces and continuous linear maps.

On the other hand on any locally convex vector space there 1s a canonical smooth structure
namely the one generated by the topological dual. This defines a functor 8 from the category
of locally convex vector spaces and continuous linear maps to the category of preconvenient
vector spaces and smooth linear maps.

Obviously the composition 3 o a is the identity, but this is not the case for a o 8. Our
next aim is to describe this composition.

4.3. Definition. Let E be a locally convex vector space.

(1): A subset B C F is called bounded iff for any 0-neighborhood U in E there is a real
number ¢ such that B C¢-U.

(2): A linear map between locally convex vector spaces is called bounded iff the image of
any bounded set is bounded.

(3): The bornologification of F is the vector space F together with the topology induced by
taking as a basis of 0—neighborhoods all absolutely convex sets U such that for any bounded
subset B C F there is a real number ¢ such that B C ¢U. That this defines a unique locally
convex topology on E is shown in [Ja, p. 33].

(4): For an absolutely convex subset B of a locally convex vector space E we denote by Ep
the linear span of B in F with the topology induced by the so called Minkowsky functional
l|z||p := inf{t > 0: 2 € tB}, which is a seminorm.

4.4. Proposition. For any locally convex vector space E the space faE is the bornologifi-
cation of E. The bornologification can also be described as follows: Let By be a basis of the
bornology of E, i.e. a family of bounded set such that any bounded set is contained in a set
which belongs to By, which consists of absolutely conver sets. (Such a basis always erists.)
Then the inclusion makes By a directed set and for By C Bs the inclusion Ep, — FEp,
1s continuous and the bornologification of E 1s the colimit in the category of locally convex
spaces of the so obtained inductive system.

Proof. [F-K, 2.4.1,2.4.3 and 2.1.19] O

4.5. As by definition a preconvenient vector space is a smooth space it also carries the
canonical topologies defined in 1.9 and in particular the r¢—topology which is also called
c®-topology or Mackey—closure topology. (We will use the notation ¢*—closed for closed in
this topology etc.) The ¢®—topology is also the final topology with respect to the inclusions
of the seminormed spaces E'g for B in a basis of the bornology of E consisting of absolutely
convex sets. (c.f. [F-K, 2.2.23])

In general the ¢®*—topology on a preconvenient vector space is not a vector space topology
since the addition is only partially continuous. It turns out that the (bornological) locally
convex topology aFE is the finest locally convex topology which is coarser than the ¢®—
topology. A condition which ensures that the two topologies coincide is that the locally
convex topology is metrizable.

The relation between the Tr-topology of a preconvenient vector space and its locally
convex topology seems to be much more complicated.

4.6. It turns out that the smooth linear mappings between two locally convex vector spaces
are exactly the bounded ones. We will always view preconvenient vector spaces as locally
convex spaces and follow the convention that if we have given a preconvenient vector space
as a locally convex space then we consider on it the given locally convex topology (and
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not the bornologification). On the other hand if we directly construct preconvenient vector
spaces then we always equip them with the bornological topology.

Note that two locally convex spaces can be isomorphic as preconvenient vector spaces
without being isomorphic as locally convex spaces. (For instance any locally convex spaces
is isomorphic to its bornologification as a preconvenient vector space.)

4.7. Definition. A preconvenient vector space F is called convenient iff (1): E’ is point
separating and

(2): For any smooth curve ¢ : R — FE there is a smooth curve ¢ : R — F such that for all
A € E' we have A(¢(0)) = %|0 (Aoc)(t).

4.8. Remarks. There are several equivalent ways to express the separation condition (1)
and the completeness condition (2) of 4.7 (c.f. [F-K, 2.5.2 and 2.6.2]). We only list two
important conditions which are equivalent to (2) (assuming (1)):

(2°): Every sequence (z,) with z, € E such that there are positive reals t,,, with
limy, n—00 tm.n = 00 such that the set of all ¢, n(2m — ,) is bounded in E (such a se-
quence is called a Mackey—Cauchy sequence) converges (weakly).

(2”): Any bounded subset of E is contained in an absolutely convex bounded subset B such
that Fp is a Banach space.

From (2’) it is obvious that the completion condition is quite weak.

4.9. Proposition (Completion). For any preconvenient vector space E there is a (up to
isomorphism) unique convenient vector space E called the completion of E with a bounded
linear map i : E — E such that for any bounded linear map f : E — F into a convenient
vector space F there 1s a unique bounded linear map f . E — F such that foi = f.
This completion defines a functor which is left adjoint to the inclusion of the category of
convenient vector spaces into the category of preconvenient vector spaces.

Proof. [F-K, 2.6.5]. Explicitly E can be constructed as the closure in the 7e—topology of
the image of F under the canonical map F — [[, R. O

4.10. Theorem. Let Pre be the category of preconvenient vector spaces and bounded linear
maps, Con the full subcategory of convenient vector spaces.

(1): The category Pre has initial and final structures with respect to the forgetful functor to
the category of vector spaces.

(2): The category Pre is complete and cocomplete.

(3): The category Con is complete and cocomplete.

Proof. (1): The initial smooth structure as described in 1.3 is obviously linearly generated.
For the final structure with respect to a family of linear maps f, : Fo — E one takes the
smooth structure generated by all linear maps A : E — R such that Ao f, € E/, for all a.
One easily verifies directly that this defines initial and final structures.
(2): This follows from pure category theory since the category of vector spaces is complete
and cocomplete. Limits (colimits) are formed by forming the limit (colimit) of the underlying
vector spaces and then putting on it the initial (final) structure.
(3): This also follows from pure category theory since the completion functor is left adjoint
to the inclusion. Limits are formed by forming them in Pre and colimits are formed by
applying the completion functor to the colimit in Pre.

Explicit descriptions of some limits and colimits in the categories Pre and Con can be

found in [F-K, 3.3-3.5]. O

4.11. A more delicate question is the existence of initial and final C'on structures, i.e. the
question whether subspaces and quotients of convenient vector spaces are again convenient.
One can show that ¢*—closed subspaces of convenient vector spaces are again convenient
([F-K, 3.2.1]). On the other hand a quotient of a convenient vector space is convenient
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iff the kernel is closed in the locally convex topology and the final locally convex topology
satisfies the completeness condition 4.8(2’) ([F-K, 3.2.4]).

4.12. Our next task i1s to show that spaces of bounded linear and multilinear mappings
between preconvenient vector spaces are preconvenient vector spaces and that they are
convenient under certain assumptions. To do this we first have to consider spaces of smooth
functions from smooth spaces to preconvenient vector spaces which are obviously vector
spaces with the pointwise operations.

Theorem. Let X be a smooth space, E a preconvenient vector space. Then the smooth
structure on the space C*° (X, E) defined in 1.6 is linearly generated and thus C* (X, E) is
a preconvenient vector space. Moreover if E is convenient then so is C* (X, E).

Proof. [F-K,4.4.12] O

4.13. Let F and F be preconvenient vector spaces. On L(FE, F), the space of all smooth
linear maps from E to F' we put the initial Pre structure with respect to the inclusion
L(E,F) < C°(E, F). This structure exists since L(F, F) is obviously a linear subspace of
C*®(E,F). Moreover by 1.8 for any z € E the map ev, : C®°(E, F) — F is smooth and
thus continuous for the ¢* topologies. Now L(E, F) is the intersection of the kernels of all
maps evy +1 - evy — eVgpqysy and thus it is c*—closed in C*®(E,F). Thus by 4.11 and 4.12 if
F' is convenient so is L(FE, F).

For preconvenient vector spaces F1,..., Ep and F denote by L(FE1,..., Ey; F) set of all
m-linear smooth maps from F; X ... X E,, to F. On this space we put the initial Pre
structure with respect to the inclusion into C®°(E; X ... x En, F). As above one easily
shows that L(F1,..., Ep; F) is ¢®—closed in C®°(Fy X ... x FEp, F) and thus is convenient
if F'is.

4.14. Proposition. For preconvenient vector spaces F1, ..., E, and F there is a natural
tsomorphism of preconvenient vector spaces

L(Ey,...,Em: F)= L(Ey,... Ex; L(Egy1, ..., Em; F))

Proof. By cartesian closedness of the category of smooth spaces (1.7) there is a natural
diffeomorphism C®(Ey x ... X Ep, F) = C®(F1 X ... X By, C®(Fgq1 X ... X Ep, F)). One
easily checks that this diffeomorphism is linear and restricts to the subspaces of multilinear
maps. O

4.15. Theorem (Multilinear uniform boundedness principle).
Let Eq, ..., Ey be convenient vector spaces, F' a preconvenient vector space. Then for a
subset B of L(En, ..., Em; F) the following conditions are equivalent:
(1): B is bounded, i.e. B(A) C F s bounded for all bounded A C E1 X ... X Ep,.
(2): B(A1 x ... x Ap) is bounded for all bounded A; C F;.
(3): B(x1,...,xm) is bounded for all z; € F;.

This implies that the Pre structure on L(E1, ..., Em; F) is the initial one with respect to
all evaluation maps evy,, 5. : L(E1,...,En; F)— F.
Moreover a m-linear map £ : E1 x...X Ep, — F 1s bounded and thus smooth iff it is partially
bounded.

Proof. [F-K, 3.6.4,3.7.4 and 3.7.5] O

4.16. Tensor products. Let E and F' be preconvenient vector spaces, £ ® F' the algebraic
tensor product. By b: F x F — EF ® F we denote the canonical bilinear map. On F @ F
we put the smooth structure generated by all linear maps h : £ ® F — R such that
hob: Ex F — R is smooth. With this structure £ @ F' is by definition a preconvenient
vector space. If £ and F are convenient then we denote by EQF the completion of E @ F.
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Theorem. (1): With the tensor product @ the category Pre is symmetric monoidally
closed, i.e. ® is a functor and there are natural isomorphisms (of preconvenient vector
5]3(1665)5 L(El,L(EQ,Eg)) = L(E1 ® Ez,Eg), E1 ® Ez = E2 ® El, El ® (E2 ® E3) =
(E1®E2)®E3 andE@}REE

(2): With the tensor product & the category Con is symmetric monoidally closed, i.e. @ is a
functor and there are natural isomorphisms (of convenient vector spaces): L(F1, L(F2, F3)) =
L(E1®E2, E3), E1®E2 = E2®E1, E1®(E2®E3) = (E1®E2)®Eg and E@R = F.

Proof. [F-K, 3.8.1 and 3.8.4] O

4.17. Corollary. Let E;, F be (pre)convenient vector spaces. Then there are natural
isomorphisms of (pre)convenient vector spaces:

(1): L(F, HjeJEj) = HjeJL(Fa Ej)

(2): L(HjeJEj’F) = HjeJL(Eja F)

Proof. ([F-K, 3.8.5]) (1): By existence of the tensor product the functor L(F, ) has a left
adjoint and thus commutes with limits and in particular with products.
(2): The existence of a natural isomorphism

L(Fy, L(Es, F)) = L(Es, L(Ey, F))

can be expressed as the fact that the functor L( | F) : Pre” — Pre has a left adjoint,
namely L( ,F) : Pre — Pre®® and thus commutes with limits, i.e. transforms limits in
Pre to colimits in Pre. In particular it transforms coproducts into products. 0O

4.18. Definition. A convenient algebra is a convenient vector space A together with a
bilinear bounded map p : Ax A — A such that A is an associative algebra with multiplication
1. We will always assume that the algebra A has a multiplicative unit element and that all
homomorphisms preserve the unit elements.

For a convenient algebra A we denote by A°? the opposite algebra to A, i.e. A? = A as
a vector space but the multiplication in A% is given by p°(a,b) := p(b, a). Obviously AP
is also a convenient algebra.

4.19. Examples. (1): Let E be a convenient vector space. Then the composition map
o: L(E,E) x L(E,E) = L(E,E) is smooth by cartesian closedness of the category of
smooth spaces (1.8). Thus (L(E, F), o) is a convenient algebra.

(2): Let X be a smooth space, A a convenient algebra and consider the space C*(X, A)
which is a convenient vector space by 4.12. By cartesian closedness the functor C*° (X))
has a left adjoint and thus commutes with limits and in particular with products, so
C®(X,A) x C®(X,A) = C®°(X,A x A). Composing this isomorphism with the map
He » C®(X, A x A) = C®(X, A) which is smooth by 1.8 we see that the pointwise mul-
tiplication in C° (X, A) is smooth and thus C*®° (X, A) with the pointwise operations is a
convenient algebra. In particular this applies to C*°(X,R).

4.20. Lemma. Let A be a convenient algebra. By A™ we denote the set of those elements
of A which have a multiplicative inverse. Let i : A* — A be the inclusion and let v : A* — A
be defined by v(a) := a='. Then A* with the initial smooth structure with respect to the
maps 1 and v is a smooth group.

Proof. Obviously A* is a group with multiplication g induced by the multiplication of A
and inversion v, so we only have to show that these maps are smooth: For the inversion
v we have 1ov = v and v ov = i and thus v is smooth. On the other hand ¢ o u is the
composition of the multiplication in A with the map ¢ x ¢ and j o u is the composition of
the multiplication in A with (j x j) o ¢ where ¢(a,b) := (b, a) and thus p is smooth. O
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4.21. Definition. (1): A convenient category is a category C such that for each pair of
objects F and F of C the set of morphisms C(F, F) is a convenient vector space and such
that all composition maps C(F,G) x C(E, F) — C(FE,G) are bounded and bilinear. Note
that a convenient algebra A can be viewed as a convenient category with a single object
and morphisms corresponding to the elements of A.

(2):Let C and €’ be convenient categories. A functor ¢ : C — €’ is called convenient iff for
any pair of objects F and F of C the map C(E, F) — C'(¢(E), ¢(F)) induced by ¢ is a
bounded linear map.

(3): Let A be a convenient algebra, C a convenient category. A convenient left A-module
in C is a covariant convenient functor from A viewed as a convenient category to C, so it is
just an object E of C together with a bounded algebra homomorphism A : A — C(E, E). A
convenient right A—module in C is a convenient left A°’-—module in C.

(4): Let (E,Ag) and (F, Ar) be two convenient left A-modules in a convenient category C.
A homomorphism of A—modules between F and F' is a natural transformation between the
corresponding functors, so it is a morphism f € C(E, F) such that foAg(a) = Ap(a)o f for
all @ € A. This also defines homomorphisms between convenient right A-modules.

(5): By C — Mods we denote the category of convenient left A-modules in € and module
homomorphisms and we write C — Mod# for right modules and homomorphisms. Moreover
we write simply Mod, and Mod? instead of Con — Mod4 and Con — Mod? and we write
Hom, and Hom? for the morphisms in these categories.

4.22. Proposition. Let C be a convenient category, D and arbitrary small category. Then
the category CT of all (covariant) functors from D to C is a convenient category.

If the category D is also convenient then the convenient functors form a full subcategory and
thus also a convenient category. In particular this implies that for any convenient category
C and any convenient algebra A the categories C — Mody and C — Mod? are convenient
categories.

Proof. The morphisms in C? are by definition the natural transformations. TLet I =
{...,4,7,...} denote the set of objects of D. Then a natural transformation between two
functors ¢, : D — C consist of morphisms a; € C(¢(i), (i) for each i € I such that
for each morphism fi; € D(i,j) we have 9(f;;) o a; = a; o ¢(fi;). This induces an in-
jective map C2 (¢, ¥) — [1; C(¢(i), ¥(i)). Moreover the image of this map is a ¢®—closed
linear subspace since it is exactly the intersection of all kernels of the bounded linear maps
[1; Cleld), (1)) — Cle(5), ¥ (k)) given by x> 9(fjr) o prj(z) — pre(z) o o (fix) for all pairs
(j, k) of objects of D and all fjx € D(j,k). Thus all morphism sets in CP have canonical
structures of convenient vector spaces. Moreover the composition of morphisms is induced
by the composition in C and using this it is easily seen to be bounded and bilinear. O

4.23. Proposition. If A and B are convenient algebras and C is a convenient category
then the categories (C —Modp) —Moda and (C —Mods) —Modp are naturally isomorphic.

Proof. This is clear since both categories are isomorphic to the category of convenient bi-
functors from A x B (product of categories) to C. O

4.24. Now we can define bi— and multimodulesin an appropriate way. We write C—Mod4_p
for the category (C — Modp) — Mody4 and C — ModB for (C — ModB) — Mod4 and so on.

Inductively we define the categories C — ModBl_::::ﬁ:‘. By 4.22 all these categories are
convenient categories. From the proof of 4.23 we see that an object of C — ModBl_::::ﬁm

is just an object E of C together with bounded algebra homomorphisms X; : A; — C(E, E)
and p; : BY — C(E, F) such that each morphism in the image of A; commutes with all
morphisms in the images of A; for j # ¢ and all morphisms in the images of all p; and so
on. The morphisms in these categories are just the morphisms in ¢ which commute with

the actions of all algebras.
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As before we use the convention that we write Mod for Con — Mod and we write

_B,, . . Bi——Bn,
_ a7 for the morphism sets in Mod 41 ="~ ™.

Hom’' ="
4.25. Lemma. Let C and C' be convenient categories, ¢ : C — C' a covariant convenient
functor and A a convenient algebra. Then ¢ lifts canonically to a smooth functor ¢ :

C — Mody — €' — Mody such that the following diagram commutes

C — Mody4 L} C - Mod 4

! !

c —Fs
where the vertical arrows are the forgetful functors.
If ¢ is contravariant then the same holds with C' — Mod 4 replaced by C' — Mod*.

In non categorical language this means that for any left A—module E in C we get a natural
left (if ¢ is covariant) respectively right (if ¢ is contravariant) A-module structure on ¢(E).

Proof. The lift ¢ is just the restriction to the subcategory of convenient functors A — C
of the natural lift ¢, : C4 — 't of © to the categories of functors. Since for a functor
¥ A — C we have ¢, (¢) = ¢ o9 the functor ¢, maps smooth functors to smooth functors
and thus ¢ makes sense. Moreover @, acts on a natural transformation by acting on each
morphism of the transformation via ¢ and from this it follows immediately that @ is a
smooth functor. 0O

4.26. Proposition. The following are smooth functors:
(1): L(E,.): Con — Con for any convenient vector space E.

. By—--—B; . Bi——Bmn, Bijj1——Bn . Bi——Bm
(2): Hom ! _ (E,.): Mod 1= 2™ — MOdAhLl—«««—An for any object E of Mod 'y~ Z /™.

(3): L(., E): Con — Con for any convenient vector space E.

(4): Homy! Z 0 (L B) : Mod 512 2R — Modg'*1 Z 23" for any object E of Mod 5! 2 5.

(5): E®.: Con — Con for any convenient vector space E.

Proof. (1): The map f. = L(E,f) : L(FE,F) = L(E,G) induced by f € L(F,G) is given
by g — fog. We have to show that the map f — f. is a smooth linear map L(F,G) —
L(L(E,F),L(E,G)). Linearity is obvious and to show smoothness it suffices in view of
cartesian closedness of the category of smooth spaces (c.f. 1.7) and the fact that the spaces
of bounded linear maps are closed linear subspaces of the corresponding spaces of smooth
maps to show that the associated map L(F,G) x L(E, F) — L(F,G) is smooth. But this
is just the composition mapping which is smooth by 1.8.

(2): Tn the case n = ¢ and m = j the functor has values in Con and the induced map is just
the restriction of the map considered in (1) to appropriate subspaces, so smoothness follows
as in (1). The rest follows by induction using 4.25.

(3): The map f* : L(f, E) : L(G, E) — L(F, E) induced by f € L(F,G) is given by g — go f
and we have to consider the map f — f* which is a map L(F,G) = L(L(G, E), L(F, E)).
As in (1) we can now pass to the associated map which is again the composition map.

(4): This follows from (3) in the same way as (2) is deduced from (1).

(5): The map EQf : EQF — E®G induced by f € L(F,G) is the map induced by the
bilinear bounded map (a,b) = a ® f(b), E x F — E®G. We have to consider the map
[~ E&f as amap L(F,G) = L(EQF, EQG). This map can be written as:

L(F,G) 222 [(Ex FE x G) 2
— L(E x F,E&G) > L(E&F, E&G)
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where b : E x G = E®G is the canonical bilinear map and ® is the isomorphism constructed
in 4.16. Since all the maps in the composition are easily seen to be bounded an linear the
proof is complete. O

4.27. Now we can use smooth functors to show the existence of limits and colimts in
categories of modules. Let D be an arbitrary small category and assume that every diagram
of type D in C (i.e. every functor in C?) has a limit. Then we get a functor lim : C? — C as
follows: For a functor ¢ : D — C, lim(y) is the limit of ¢ and for a natural transformation
@ @ ¢ — 1 we get by the universal property of the limit a unique morphism lim(a) :
lim(¢) — lim(3).

In the same way if we assume that all diagrams of type D in C have a colimit we get a
functor colim : ¥ — C.

4.28. Proposition. For arbitrary convenient algebras Ay, ..., A, and By, ..., By, the cat-

egory ModB1 _ ﬁn’” 1s a complete and cocomplete additive category.

Proof. As the category Con of convenient vector spaces is complete and cocomplete by
4.10 we have for any small category D the functors lim and colim : Con? — Con. We
claim that these are smooth functors. Let us start with the functor lim: For two functors
©,% : D — Con we have to show that the map @D(go, ) = L(lim(g), lim(¢))) induced by
lim is bounded and linear. Linearity is clear by the universal property of the limit. To show
boundedness recall that @D(go,i/)) is a closed linear subspace of []; L(¢(i), ¥(i)) where
I is the set of objects of D and that the limits of ¢ and 3 can be realized as closed linear
subspaces of [[; ¢(¢) and [];%(i). Then it is obvious that the map under consideration
is just the restriction to @D(go,d)) of the map [[; L(e(i),¥(i)) = L(I1; ¢, [1; ¥(7))
which sends (f;)ier to the map (z;)ier — (fi(i))ier and thus it suffices to show that this
map is smooth. Using cartesian closedness one concludes that it suffices to show that the
associated map [[; L(¢ (%), ¥ () x [1; ¢(?) = [1; (%) is smooth. But this is just a product
of evaluation maps which are smooth by 1.8.

The proof of smoothness of the functor colim is similar.

Since spaces of module homomorphisms are just ¢ closed linear subspaces of the cor-
responding spaces of bounded linear maps the above proofs show also smoothness of the
functors lim and colim on categories of modules in Con.

Now let ¢ : D — ModBl_::: ™ be a diagram. Then ¢ is a functor to the category of
smooth functors from A; x . >< B (product as categories) to Con, so it corresponds to
a bifunctor D x (A1 X ... x Bm) — Con which is convenient in the second variable. This
bifunctor in turn can be viewed as a convenient functor (A; X ...x Bp,) — @D, SO 18 1n
get a canonical module structure on the limit and the colimit of the underlying convenient
vector spaces by 4.25. To show that these modules are in fact the limit and the colimit in
the categorical sense we only have to show that the maps induced by a family of module
homomorphisms via the universal property are module homomorphisms. But this is clear
from the definition of the module structures.

By 4.22 the morphism sets of ModBl_m_f’" are convenient vector spaces and thus in

particular abelian groups and the composition is bilinear. Moreover the zero object of Con

clearly induces a zero object in Modi:::g:‘ and since the existence of products and direct

sums has been shown above the additivity of the category follows. O

a natural way a module in Con”. Thus for any diagram in the category Modﬁiz Al we

4.29. Free modules. Let F be a convenient vector space, A a convenient algebra. Then
F(E) := A®F has a canonical left and right A-module structure since it is the value on
A of the smooth functor .©E. This defines a functor F : Con — Mod4 (respectively
ModA). Moreover € — e ® 1 where 1 denotes the unit of A defines a bounded linear map
i:FE— F(E).
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We call F(F) the free A-module over E.

Proposition. The A-module F(E) has the following universal property: If M is a left
or right A-module and f : E — M s a bounded linear map then there is a unique A-
module homomorphism f : F(F) —» M such that foz' = f. This property qives rise
to an isomorphism of convenient vector spaces L(E, M) = Homyu(F(E), M) (respectively
L(E, M) = Hom”(F(E), M)). Thus the functor F is left adjoint to the forgetful functor.

Proof. We prove the proposition only for left modules, the proof for right modules is similar.
So let M be a left A-module with module action A : A — L(M, M). For a bounded linear
map f: F — M consider F : Ax E — M given by F(a,e) := Apr(a)(f(e)). Obviously this is
a bounded bilinear map and thus by the universal property of the tensor product i1t induces
a bounded linear map f : F(F) — M. That this map is in fact a module homomorphism
follows immediately from the definition of the A-module structure on F(F).

The map f — f can be written as the composition of the bounded linear isomorphism
L(A,E;M) = L(A®E, M) with the map f + evo (A x f) and thus is a bounded linear map
L(E, M) = Homu (F(F), M) which is easily seen to be inverse to the bounded linear map
. O

4.30. The free modules over finite dimensional vector spaces can be described very easily:
F(R™) =2 A" the direct sum (or equivalently direct product) of n copies of A.

Another interesting special case is the case of the free module over a module. If M is
a left (right) A-module then the identity Idys defines a canonical homomorphism of left
(right) A-modules mps : F(M) —> M.

Definition. (1): An A-module M is called finitely generated iff there is a surjective homo-
morphism of A-modules p : A” — M for some n € N which has a bounded linear section,
i.e. there is a bounded linear map s : M — A" such that pos = Idy,.

(2): An A-module M is called projective iff there is an A-module homomorphism j : M —
F(M) such that mpr 0o j = Id.

We write P(A) for the category of finitely generated projective right A-modules.

4.31. Proposition (Characterization of projective modules).

Let P be a left or right A-module. Then the following conditions are equivalent:

(1): P is projective.

(2): There is an A-module @ such that P ® @ (direct sum as A-modules) is isomorphic to

a free module.

(3): There is a free module F and a bounded module homomorphism p : F — F withpop =p

such that P 1s isomorphic to the image of p.

(4): If f : M — N is a bounded homomorphism between A-modules and g : P — N is a

bounded module homomorphism such that there s a bounded linear map v : P — M such

that fow = g then there is also a bounded module homomorphism h : P — M with foh = g.
If P is finitely generated then the free modules in (2) and (3) can be chosen to be A" for

some n € N.

Proof. (1)=(2): Put @ := Ker(wp) C F(P). As mp is a bounded module homomorphism
@ is a ¢®—closed submodule of F(P) and thus a convenient A-module. Moreover the map
J@®i: P®Q — F(P), where j is a section of wp and i is the inclusion of @ into F(P) is
an isomorphism of A—modules.

(2)=(3): f P®Q = F for a free module F then the map I'dp @0 has the desired properties.
(3)=(4): Let us first show that free modules satisfy (4): Let i : F — F(FE) be the canonical
map. The bounded linear map ¢y o¢ : F — M corresponds to a unique bimodule homomor-
phism A : F(E) > M and hoi =1 o7 and thus fohoi= fowoi=goi Hence foh and
g are module homomorphisms corresponding to the same linear map £ — N and thus are
equal.
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In the general case assuming (3) the map gop : F — N is a bounded bimodule homomor-
phism and ¢ o p is a bounded linear lift. Thus we get a bounded module homomorphism
h : F — M such that fo h = gop. Let h be the restriction of h to the submodule
Im(p) = Ker(Id — p) = P. As fohop=gopop=gop wesee that foh=g.

(4)=(1): Apply (4) to the case f =7p : F(P) > P, g = Idp and ¢ = i.

Let us now assume that P is finitely generated. Applying (4) to the case M = A", N = P,
f=p, 9= Idp and ¥ = s (with notation as in 4.30) we conclude that there is a bounded
module homomorphism A : P — A” such that poh = Idp. As above one concludes that
conditions (2) and (3) are satisfied for F' = A”. O

4.32. Corollary. For any convenient algebra the category P(A) of finitely generated pro-
Jjective right A-modules is a convenient pseudo-abelian category. (c.f. [Ka, 1.6.7])

Proof. P(A) is a full subcategory of the convenient category Mod” and from 4.31(2) one
immediately concludes that a finite sum of finitely generated projective modules is again
finitely generated and projective, so P(A) is an additive category. To complete the proof we
only have to show that for an object P of P(A) and a morphism p : P — P which satisfies
pop = p the kernel of p is again projective. But this is obvious from 4.31(3). O

4.33. Lemma. Let A be a convenient algebra, (M, p) € Mod? and (N,A) € Mod 4.

(1): There is a convenient vector space M@ N and a bounded bilinear map b : M x N —
M®&aN, (m,n) — m ®a n such that b(p(a)(m),n) = b(m, A\(a)(n)) foralla € A, m e M
and n € N which has the following universal property: If E is a convenient vector space
and f : M x N — E is a bounded bilinear map such that f(p(a)(m ) n) = f(m, A(a)(n))
then there is a unique bounded linear map f M®sN — E with f ob = f. (2): For
any convenient vector space FE there is a natural isomorphism of convenient vector spaces
Hom* (M, L(N,E)) = L(M&4N, E).

(3): . ©aP: Mod? — Con and M&4.: Mody — Con are convenient functors.

(4): For M € ModA, N € Modﬁ and P € Modpg there is a canonical isomorphism of
convenient vector spaces M@a(N@pP) = (M@aN)@pP.

(5): For M € Modﬁ, N € Modg and P € Modg there is a natural isomorphism of
convenient vector spaces

Hom§ (M&pN, P) = Hom% (M, Hom® (N, P)).

Proof. We construct M@, N as follows: Let M @ N be the non completed tensor product
of M and N constructed in 4.16 and let V be the closure in the associated locally convex
topology of the subspace generated by all elements of the form p(a)(m) ® n — m ® A(a)(n)
and define M@ N to be the completion of M ®4 N := (M ® N)/V. As M ® N has the
universal property that bounded bilinear maps from M x N into arbitrary locally convex
spaces induce bounded and hence continuous (in the locally convex topology) linear maps
on M ® N, (1) is clear.
(2): The space L(N, E) has a canonical right A-module structure by 4.25 and 4.26. Moreover
one immediately checks that by definition of this structure a bounded linear map f: M —
L(N, E) is a module homomorphism if and only if the associated map f M x N —> FE
satisfies the condition of (1). Thus by (1) we have a bijection between the two spaces. The
map L(M&aN,E) — HomA(M, L(N, E)) which establishes this bijection is associated to
b* and thus it is bounded and linear. So we only have to show that the inverse is bounded.
From 4.16 we get a bounded linear map ¢ : L(M,L(N,E)) - L(M ® N, F) which is
inverse to the map induced by the canonical bilinear map. Now let L2 V(M @ N, E)
be the closed linear subspace of L(M ® N, E) consisting of all maps which annihilate V.
Restricting we get a bounded linear map ¢ : Hom* (M, L(N, E)) — L*™ V(M @ N, E).
Lety : M@N = M®4 N - M®4N be the composition of the canonical projection
with the inclusion into the completion. Then % induces a well defined linear map ¥, :
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L V(M @ N,E) — L(M®aN, E) and 1, o ¢ is inverse to b*. So it suffices to show that
1, 18 bounded.

This is the case if and only if the associated map L2 V(M ® N,E) x (M&aN) — E
is bounded. This in turn is equivalent to boundedness of the associated map M@4 N —
L(L* V(M ® N, E), E). But this is just the prolongation to the completion of the bounded
linear map M@4 N — L(L*™ V(M @ N, E), E) which sends z to the evaluation at z and
thus it is bounded.

(3): We only consider the functor .@P, the proof for the other one is similar. Thus we have to
show that for two right A—-modules M and N the map HomA(M, N) = L(M@4P,N24P)
induced by functoriality of the tensor product is bounded and linear. First observe that
the spaces M x P and N x P are naturally objects of Modﬁ by using the right action on
M respectively N and the left action on P. Forming the product with the identity map
on P now induces a bounded linear map Hom” (M, N) — Hom% (M x P,N x P). Flip-
ping the first P part we get a linear map to HomA(M, Homy (P, N x P)) which is bounded
by cartesian closedness. Next a short computation shows that b, : Homs (P, N x P) —
L(P,N®4P) is a homomorphism of right A-modules and thus it induces a bounded lin-
ear map Hom” (M, Homy (P, N x P)) — Hom®(M, L(P, N®4P)). Finally we have the
isomorphism HomA(M, L(P,N®aP)) = L(M@aP, N©aP) constructed in (2). A short
computation shows that the composition of all these maps is exactly the map induced by
functoriality of the tensor product.

(4): Straightforward computations show that both spaces have the following universal
property: For any convenient vector space E and any bounded module homomorphism
fe HomA(M, HomB(N, L(P, E))) there is a unique linear map prolonging f.

(5): One easily checks that the isomorphism constructed in (2) restricts to the claimed
isomorphism. [

4.34. Let ¢ : A — B be a bounded homomorphism between convenient algebras. Then B
becomes in a natural way a convenient A-bimodule as follows: Let g : B = C*°(B, B) be
the map associated via cartesian closedness to the multiplication p: B x B — B. Clearly
it is in fact a bounded algebra homomorphism B — L(B, B) and composing it with ¢ we
get a left A-module structure on B. The right module structure on B is constructed in the
same way using that ¢ is also an algebra homomorphism A°? — B°P.

Using the left A-module structure on B we can now construct a functor ¢, : Mod” —
Mod? between the categories of right modules as follows: For a right A-module M we define
0«(M) := M®4B. By 4.33(3) this is a right B-module and ¢, is a convenient functor.

If f,g : M — N are two A-module homomorphisms then ¢, (f +g¢) is the map induced by
(m,b) = (f(m)+g(m))@ab = f(M)@ab+g(m)@4b and as by 4.33(1) bounded linear maps
from M ® 4 B to any convenient vector space are uniquely determined by their compositions
with the canonical map M x B — M &4 B this implies that . (f 4+ g) = ¢« (f) + ¢«(g9) and
thus ¢, is an additive functor. In particular this implies that ¢, commutes with finite direct
sums (In fact the functor . = .©4 B commutes with all colimits as it has a right adjoint

by 4.33(2)).
4.35. Proposition. ¢, restricts to a convenient additive functor P(p) : P(A) — P(B).

Proof. We only have to show that if P is a finitely generated projective right A-module
then P@4B is finitely generated and projective as a B-module. First of all AR4B is
immediately seen to be isomorphic to B. As . commutes with direct sums this implies that
A"©aB = B". Now if P is an arbitrary object of P(A). Then there is a right A-module Q
such that P@Q = A" for some n. Then we have ¢, (P)® e« (Q) = ¢.(PBQ) = ¢.(A") = B
and thus ¢, (P) is finitely generated and projective. O
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5. Bundles of projective modules over base spaces

5.1. Definition. Let A be a convenient algebra and let X be a base space. By an A—bundle
over X we mean a locally trivial fiber bundle p : E — X over X in which every fiber is a
finitely generated projective right A-module and the transition functions are isomorphisms
of A-modules. So any point z € X has an open neighborhood U, such that there is a
diffeomorphism ¢, : p~1(U,) = U, x P with pry o ¢, = p, where P is a finitely generated
projective right A-module and if z and y are such that U, := U,NU, # @ then the function
goxogo;1 : Ugy X P — Ugy x P is of the form (z, u) — (2, pay(z, u)) where @z : Ugy x P — P
is a smooth function which has the property that for any z € X the map u — @z, (2, u) is a
homomorphism of right A-modules. Using cartesian closedness one immediately concludes
that the last condition is equivalent to the fact that the map @gy : Uz y — Aut(P) is smooth,
where Aut(P) denotes the smooth group of all A-module isomorphisms of P. (Aut(P) is
the group of invertible elements of the convenient algebra Hom# (P, P) and thus is a smooth
group by 4.20.)

Note that the isomorphism type of the module P may be different over different connected
components of the space X.

If p: E - X is an A-bundle over X then we define a right action » of A on E by
v (r(e;t(z,u),a)) = (z,pp(a)(u)) where pp : A — L(P, P) defines the right module
structure of P. This is well defined since the transition functions of the bundle are module
homomorphisms.

Ifp: E— X and p' : B/ — X are A-bundles over X then a morphism from E to E’ is
a smooth map f : E — E’ which is fiber respecting and covers the identity, i.e. p’ o f = p,
and is equivariant for the actions of A constructed above. This is equivalent to the fact that
the restriction of f to any fiber is a homomorphism of right A-modules.

By £4(X) we denote the category of A-bundles over X with morphisms as described
above.

5.2. Let p: F — X be an A-bundle over a connected base space X. Then in the termi-
nology of 2.19 E is a smooth fiber bundle over X with fiber P and structure group Aut(P),
the smooth group of all A-module automorphisms of P, where P is a finitely generated
projective right A-module. Thus by 2.27 the set of isomorphism classes of such bundles
(with P fixed) is in bijective correspondence with the set [X, B Aut(P)], where B Aut(P) is
the classifying space of the smooth group Aut(P). If X is not connected then this applies
to each connected component of X.

5.3. Let p: F — X be an A-bundle over a base space X. If u and v are in the same fiber,
i.e. p(u) = p(v) then we can add the two elements by adding them in a chart. This is well
defined (independent of the chart) since the transition functions are module homomorphisms
and thus in particular linear.

Lemma. The fiberwise addition defines a smooth map £ xx £ — E.

Proof. Clearly addition is well defined as amap Exx E — E. Let ¢ : £ xx E — X denote
the natural map. Take a point z € X and let U, be an open neighborhood such that there
is a chart ¢, : p71(Uy) — Uy x P. Then ¢=1(U,) is the set of all (u,v) € E x E such
that p(u) = p(v) € U;. On this open subset the map is given by (u,v) — ¢ (p(u), (pre o
) (u) + (prao¢z)(v)) and this is obviously smooth since the canonical maps F xx £ — F
are by definition smooth. O

5.4. Direct sums. Let p: F — X and p’ : ' — X be A-bundles over a base space X
and define E @ E' := E xx E’. Then we have a canonical smooth map ¢ : F® F' — X.
Let z be a point in X and let U, be an open neighborhood of z such that there are
diffeomorphisms ¢, : p~1(U;) — U, x P and ¢/, : p’_l(Uz) — U, x P'. Then the open
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subset ¢=1(U,) of E & E’ consists of all pairs (u,v) such that p(u) = p'(v) € Uy. Define
VYo 1 g7 (Uz) = Uy x (P ® P') by ¢z (u,v) := (p(u), (ip o pra o vz )(u) + (ipr 0 pra o ¢ (v))),
where ip : P - P @® P’ and ip: : P/ — P @ P’ are the canonical maps. Obviously this
defines a smooth map. To see that it even is a diffeomorphism we proceed as follows: By
4.28 P & P’ is isomorphic to P x P’ and thus we have natural projections 7p : P& P’ — P
and mpr : P @ P’ — P’. The smooth maps ¢;' o (Id x np) : U, x (P® P') — E and
(ph) Vo (Id x 7p) : Uy x (P @ P') — E' induce by the universal property of the fibered
product a smooth map U, x (P& P') — ¢~ (U;) C E & E’ which is immediately seen to
be inverse to 1, and thus 1, is a diffeomorphism.

To show that ¢ : E® E' — X is indeed an A-bundle over X we have to verify that the
transition functions have the right form. So let z and y be such that U, # @. Then a short
computation shows that (v, o dzy_l)(z, w) = (z,1ip(Pey(z, Tp(w))) + ip/(gogy(z, wp(w)))),
where gy and ¢, are the transition functions of £ and E’ and this map is obviously
A-linear in w since the maps ip, ip/, mp and wp: are A-module homomorphisms and the
maps @gy and go'xy are A-linear in w.

One easily checks that the fiberwise addition defined above is in fact a morphism of

A-bundles E ® F = E.

5.5. Lemma. For any base space X and any convenient algebra A the category £4(X) of
A-bundles over X is an additive category.

Proof. Let f,g : F — E' are two morphisms between A—bundles over X. Then these maps
define a smooth map f xx g : E — E’ xx E’' by the universal property of the pullback
and we define the sum of the two morphisms to be the composition of this map with the
fiberwise sum E’ xx E' — E’. One easily checks that this sum is again a morphism and
that with this definition the set of all morphisms between two A-bundles over X becomes
an abelian group. It is also clear that the composition of morphisms is bilinear for this
addition.

The zero object 1s the trivial A-bundle Idx : X — X. So we only have to show that
E@®E’ is indeed the categorical coproduct of F and E’. First consider the map 0g' : X — E’
defined by z — (¢')~!(,0) for some chart map ¢’ of E’. This is again independent of the
choice of the chart by the form of the transition functions and it is obviously smooth.
Together with the identity on E the composition of 0g: with the projection p of E induces a
smooth map ig : E — E @ E’ and in the same way we define ig: : /' — E® E’. Now let F
be another A-bundle over X and let f : F — F and f' : E’ — F’ be morphisms. We have to
show that there is a unique morphism g : @ E’ — F such that goig = f and goig = f'.
The composition of f and f’ with the canonical maps E® E’ — F and F&® E' — E’ defines
by the universal property of the pullback a smooth map § : F® E’ — F x x F and we define
g: EF® FE' — F to be the composition of the fiberwise addition and §.

The smooth map ¢ is immediately seen to be a morphism and uniqueness of g follows
easily from uniqueness of g. 0O

5.6. Lemma. Let A be a convenient algebra, X a base space, m : E — X an A-bundle over
X. Then there s a natural number n and an A-bundle F over X such that EQF =2 X x A™
as an A-bundle.

Proof. Let us first show that without loss of generality we may assume that the fiber of F
is A™ for some m. Let Xq,..., X be the finitely many connected components of X. Then
the bundles 7 : 7T_1(XZ') — X; are locally trivial fiber bundles with fiber P; and structure
group Aut(P;) for finitely generated projective right A-modules P;. Now for any i there
is an m; such that P; is a direct summand in A™¢. Thus for any 7 we can find a finitely
generated projective right A-module @; such that P; & Q; =2 A™ where m is the maximum
of all m;. Let ENZ be the trivial bundle X; x Q; — X;. Then these bundles together form an
A-bundle E over X and E @ E is an A-bundle with fiber A™.
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So we assume that F has fiber A™. By compactness of X there is a finite atlas (U;, ¢;)¢_,
for the bundle E, which has a subordinate partition of unity {f~Z i =1,...,£}. Then
x — Zle f?(:z:) is a strictly positive smooth function and so also f : X — R defined by
f(z) = \/Zle f?(éb) is smooth and we define f; : X — R by fi(z) := % Then the
family {f;} of smooth functions is subordinate to the cover {U;} and satisfies 5 f? =
Now we put n := £-m and define & : F — X x A" = X x (H?Am) by

®(u) := (p(u), (fi(p(u) - pra(pi(u)))izi)-

This is well defined since the function f; is zero locally around points where ¢; is not defined
and 1t 1s smooth for the same reason. Moreover by definition it 1s a morphism of A-bundles
over X.

Consider the map ¥ : X x (Hle A™) = E defined by

U(z, (uy, ... u }:ﬁ o7 (),

where the sum is the fiberwise addition. The map ¥ is then easily seen to be a smooth
morphism of A-bundles. Moreover using that > f? = 1 one immediately shows that ¥o® =
Idg. Now consider p:=Id—®oW¥ : X x A" - X x A". As ¥ o ® = Jd one immediately
concludes that pop = p. Moreover p is obviously a smooth morphism of A-bundles over X
and clearly @ induces an isomorphism of A-bundles F = Ker(p), where Ker(p) is the set of
all (z,u) such that p(z,u) = (z,0).

Next we define p := ®o ¥ : X x A” — X x A”. Then obviously this is a morphism of
A-bundles and if Ker(p) is an A-bundle then X x A" = Ker(p) @ Ker(p) as an A-bundle
over X. So to finish the proof it suffices to show that Ker(p) is an A-bundle over X, i.e.
that it is locally trivial.

Fori=1,...,¢ put V; := f71((0,1]). Then clearly (V;) is an open covering of X. Now
define 9; : Vi x A" = V; x Am=1) by

1/)2'(1” (ula . '7u£)) = (I1 (U11 sy U1y Uiy ~1UZ))

and w; : V; X A=) Vi x A" by

CL)Z'(I,(Ul,.. y Uj— 17u2+17"~1u£)) =
:( (Ul,.. y Ui—1, — Z fs I)SDZJ )an+11...,Ug)).
J#i

Here the ¢;; denote the transition functions of the bundle E i.e. we have (¢; o goj_l)(:b, u) =
(2, ij(x)(u)) for all 2 € U; NU; and all u € A™. The map w; is well defined and smooth
since f; is positive on V; and thus 1/f; is smooth and since f; is zero locally around points
where ¢;; is not defined. Moreover both ¢; and w; are obviously morphisms of A-bundles
and clearly 1; o w; = Id. We want to use the restriction of ¢; to Ker(p) N (V; x A") as a
chart. Let us first show that w; has values in this subspace. A short computation shows
that for (z, (u1,...,us)) € X x A” the k—th component of (pry o ® o ¥)(z, (uy,...,us)) is
given by Z§:1 fr(2)fi(®)er;(2)(u;) and thus we get for the k—th component of (prqs o @ o
Woow; ) (2, (Uty ..oy Uim1, Uig1,y - .o, Ug)):

Efk z)erj () (u;s Efj onz ) (ij () (us)

J#e J#i
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which is zero since @g;(z) o ;;(2) = r;(2).

Next if (z, (u1,...,us)) € Ker(p)N(V; x A™) the i-th component of (proo®oW)(z, (u1,. . ., u))
must be zero and thus we get 0 = Z§:1 fi(@)fi(2)pi;(2)(u;) and since fj(x) > 0 and
@i (2) = Id this is equivalent to u; = — Zj# %g@ij(:c)(uj) which shows that on this sub-
set we have w; ov; = Id. Finally since v; and w; are morphisms of A-bundles the transition
functions are also morphisms of A-bundles and thus the proof is complete. O

5.7. Corollary. If m: F — X 1s an A-bundle over a base space X then there is a natural
number n and a morphism of A-bundles p : X x A" — X x A" such that pop = p and
E = Ker(p) as an A-bundle over X.

5.8. Sections of vector bundles. By a convenient vector bundle we mean a locally trivial
fiber bundle 7 : E'— X with fiber a convenient vector space V' and structure group GL(V),
the group of all bounded linear maps from V to V' which have a bounded linear inverse.
GL(V) is a smooth group by 4.20. A section of the bundle 7 : F — X is a smooth map
s: X — F such that mos = Idx.

A convenient vector bundle over a smoothly paracompact space (and thus in particular
over a base space) has many sections. First we can construct the zero section Og as in the
proof of 5.5. Then let (U,, o) be an atlas for the bundle E, i.e. each ¢, : p~'(Us) —
U, x V is a diffeomorphism. As X is smoothly paracompact we may assume that there
is a partition of unity {f,} subordinate to the cover {U,}. For any « choose a smooth
function g4 : Uy — V. (There are many such smooth functions as there are many real
valued smooth functions.) Now the smooth section z — ¢ (2, fo(z) - go(z)) defined on
U, can be extended by the zero section to the whole of X and thus defines a global smooth
section which we denote by fog,. Then one easily checks that  — > (faga)(x) where the
sum is defined as in 5.3 also defines a smooth section.

5.9. Lemma. Let 7 : E — X be a convenient vector bundle over a smooth space X,
T'(E) the space of all smooth sections of the bundle. Then T(F) has a natural structure of
a convenient vector space.

Proof. Let us first consider the case of a trivial bundle pry : X x V. — X. In this case
the sections of the bundle correspond bijectively to the smooth maps from X to V, so
T'(E) = C*(X,V) which is a convenient vector space by 4.12. If we have a bundle which
is isomorphic to a bundle of the form X x V' then we clearly get an isomorphism (of vector
spaces) T'(F) = C*(X, V) and we define the smooth structure on T'(F) via this isomorphism.

In the general case let (Uy, o) be an atlas for the bundle E, and denote by F, the
convenient vector bundle 7 : 771 (U,) — U,. For any a the restriction defines a linear map
['(E) — ['(E,.) and together these maps define an injective linear map ¢ : ['(E) — [[, ['(Ea).
We claim that the linear subspace i(T'(E)) is ¢®—closed in [[, I'(E,). For any a and any
z € U, the evaluation at x defines a bounded linear map ev, : C*(U,, V) — V and thus also
evy :I'(Ey) = V. Defineevy 5 : [[, T(Ea) = V as evy 5 := evy opro. Now for any pair «, 3
of indices and any point ¢ € U, N U we get a bounded linear map evag . : [[,[(Es) = V
defined by evag s 1= eva o —evg, and obviously i(I'(E)) is exactly the intersection of all
kernels of the maps ev,g ., and thus ¢*—closed and a convenient vector space and we put
on I'(E) the smooth structure obtained in this way.

To see that this construction does not depend on the choice of the atlas one proceeds
as follows: First one easily shows that one gets the same smooth structure on T'(E) if one
replaces an atlas (U;, ¢;) by an atlas (V}, ¢;) where the covering {V;} is a refinement of {U;}
and the maps ¢; are appropriate restrictions of the maps ;. Then if one has two different
atlases one may without loss of generality assume that they are defined with respect to the
same covering and the using the ‘transition’ functions between two charts defined on the
same open set one easily shows that one gets the same structure on T(F). O
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5.10. Proposition. Let A be a convenient algebra, X a base space and © : E — X an
A-bundle over X. Then the space of sections T'(F) is a convenient right module over the
convenient algebra C* (X, A).

Proof. Let us first define the module structure in the case of a trivial bundle F = X x P,
where P is a finitely generated projective right A-module. Let pp : A°? — L(P, P) be the
algebra homomorphism which defines the module structure on P and let pp : A? x P —
P be the map associated to pp via cartesian closedness. From 4.19 it is evident that
C*®(X,A)P = C™(X, A%). Consider the map C*®(X, A?) x C*(X,P) x X — P defined
by (f,s,z) — pp(f(z),s(z)). This is easily seen to be smooth as it can be written as a
composition of pp with evaluation maps which are smooth by cartesian closedness. Thus
the map p : C%(X, A) x C(X, P) — C(X, P), given by (4(f,5))(2) = pr(/(2), 5(z))
is smooth and it is obviously linear in s and so again by cartesian closedness the associated
map

p: C=(X, AP) = C*(C™(X, P), (X, P))

is smooth and has values in L(C'*® (X, P),C*(X, P)) and one easily checks that it is an
algebra homomorphism. Thus this defines a right module structure on C* (X, P) 2 I'(E).

In the general case let (U;, ¢;) be an atlas for the bundle E and let P; be the fiber over
U; for any i. Then from 5.9 we know that there is a bounded linear map j : T'(E) —
[T, C>(U;, P;) which induces an isomorphism from T'(E) to a closed linear subspace of
the second space. For any ¢ let j; : U; < X be the inclusion. This induces bounded linear
restriction mappings j& : C®(X,A?) — C*®(U;, A°?) which are even homomorphisms
of convenient algebras for the pointwise structures. Putting these together we obtain a
homomorphism of convenient algebras ¢ : C®(X,A%) — T[], C>°(U;, A°P). Now we
define g : [[;_, C>=(U;, A?) — L(I1;_, C°(U;, B;),[1;=, C> (Ui, P;)) by

Pl Fa)(s1svisn) = (pr(f1)(s1)s s pn(fn) ()

, where p; denotes the module action of C'*°(U;, A?) on C*°(U;, P;) constructed as above.
Then this is obviously bounded and linear and thus also the composition j* o po ¢ :
C>(X,A?) — L(T(E), 1=, C*(Ui, P;)) is a bounded linear map. Moreover one immedi-
ately checks that for any f € C* (X, A°P) and any s € T'(E) the element (i* o gop)(f)(s) lies
in the subspace j(T'(E)). Using cartesian closedness twice one concludes that the induced
mapping p := j. o j*opop : C°(X,A?) —» L(T'(F),T'(E)) bounded and linear and one
easily checks that it is an algebra homomorphism and thus T'(E) is a right module over

C®(X,A). O

5.11. Theorem. The pseudo—abelian category associated to the additive category E4(X) of
A-bundles over the base space X (c.f. [Ka, 1.6.10] ) is equivalent to the category P(C* (X, A))
of finitely generated projective right modules over the convenient algebra C* (X, A).

Proof. By 4.32P(C*(X, A)) is a pseudo—abelian category and thus by [Ka, 1.6.12] it suffices
to construct an additive functor

[:E4(X) = P(C®(X, A))

which is fully faithful and such that any object of P(C* (X, A)) is a direct factor of an
object in the image of T'. In 5.10 we saw that for any A-bundle 7 : E — X the space
['(E) is a convenient right module over C'* (X, A). By construction the module structure
can be described as follows: Take f € C*(X,A) and s € ['(E), let z € X be a point and
let ¢, : ﬂ'_l(Ux) — Uz x P be a chart defined on a neighborhood U, of z. Then we have

(p(F)(5))(¥) = ¢35 (v, pr (f () ((praopsos)(y))) for y € Uy, where pp denotes the A—module
structure of P. If ' : B/ — X is another A-bundle and ¢ : E — E’ is a morphism then
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we define T'(¢) : T(E) = T(E’') by T'(¢)(s) := ¢«(s) = ¢ o s. As the restriction of ¢ to any
fiber is an A—module homomorphism one immediately concludes from the description of the
action of C*°(X, A) above that T'(¢) is a homomorphism of C'*° (X, A)-modules. Moreover
it is clear that if ¢ and ¢y are two such morphisms then T'(¢1 + ¢2) = T'(p1) + T'(p2). So
it remains to show that T'(y) is bounded. By definition of the smooth structure of T'(E) it
suffices to do this in the case where both bundles are trivial, but there T'(y) is just the map
s 1 C°(X, P) = C*°(X, P') which is smooth by 1.8.

In the case of a trivial bundle pry : X x A” — X we have I['(X x A") = C®(X, A") =
C*®(X,A)" (by 4.17). By 5.7 for an arbitrary A-bundle E over X there is a morphism
p: X x A" = X x A" with pop = p such that £ = Ker(p). Then T'(p) is a module
homomorphism and a projection and one easily sees that the isomorphism F = Ker(p)
induces an isomorphism T'(F) = Ker(T'(p)) and thus by 4.31 T(E) is a finitely generated
projective C° (X, A)-module. Thus T' : £4(X) — P(C(X, A)) is a functor and every
object of the second category 1s a direct factor of an object in the image by 4.31. Moreover
the functor I' is immediately seen to be faithful, since for every point u in an A-bundle
there is a section s such that u = s(7(u)). (c.f. 5.8)

Let us next show that any module homomorphism g : C® (X, A)” = C®(X,A)™ is
induced by a morphism of A-bundles ¢ : X x A" = X x A™. Define ¢(z,u) := g(s4)(x)
where s, : X = X x A" is the constant section y — (y,u). ¢ is smooth as g and the
evaluation are smooth and u — s, is the map associated via cartesian closedness to pry :
A" x X = A", and thus ¢ is obviously a morphism of A-bundles. To show that g = T'(y)
it suffices to show that if s(z) = u then g(s)(z) = g(sy)(z) and for this in turn it suffices to
show that if s(z) = 0 then g(s)(z) = 0. Now let uy, ..., u, be the ‘unit vectors’ in A”, i.e.
the elements for which pr;(u;) is 14 for i = j and 0 for ¢ # j. Then since the projections
A" — A are smooth one easily concludes that any section s of X x A™ can be written in
the form s(y) = > su,;(y) - fi(y) for unique functions f; € C°(X, A). But then we have
9(s)(y) = > g(su;)(y) - fily) and if s(z) = 0 then f;(z) = 0 for all 7 and thus g(s)(z) = 0.

Finally if E and E’ are A-bundles over X and g : T(F) — T(E’) is a module homo-
morphism then let n and m be such that T'(E) = Ker(T'(p)) C C®(X,A)" and T'(F’') =
Ker(T(p')) C C=(X,A)™ for projection morphisms p and p’. Then io0goT'(/d —p) is a
module homomorphism C'* (X, A)” — C*(X, A)™, where i : Ker(T(p')) = C=(X,A)™
denotes the inclusion. By the argument above this homomorphism is induced by a morphism
of A-bundles X x A” — X x A™. Now one easily sees that this morphism has values in
Ker(p') and the restriction to Ker(p) defines a morphism of A-bundles ¢ : E — E’ which
is easily seen to induce g. Thus the functor T is full and the proof is complete. O

5.12. Corollary. For any convenient algebra A and any base space X the category Ea4(X)
15 a convenient category.

Proof. Via T' we can identify £4(X) with a full subcategory of the category P(C* (X, A))
which is a convenient category by 4.32. O

5.13. Corollary. Let A be a convenient algebra such that for any finitely generated projec-
tive convenient module P over A the set of invertibles Aut(P) is ¢ ~open in Hom" (P, P)
and the inversion Aut(P) — Aut(P) is smooth for the initial smooth structure with respect
to the inclusion into HomA(P, P). (In particular these conditions are satisfied if A is a
Banach algebra).

Then for any base space X the categories E4(X) and P(C*(X, A)) are equivalent.

Proof. 1t suffices to show that for any base space X the category £4(X) is pseudo—abelian
since then the result immediately follows from 5.11. So we have to show that if 7 : £ — X
is an A-bundle over X and p: F — E is a morphism such that p o p = p then the kernel
of p exists and to do this it suffices to prove that the bundle Ker(p) is locally trivial. Since
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this is a local question we may assume that the bundle E is trivial, i.e. £ = X x P for some
finitely generated projective A-module P.

Now write p : E — F as (z,2z) — (z,9(z,z)). Then ¢ : X x P — P is smooth and
thus the associated map ¢ : X — C%(P, P) is smooth and has by assumption values
in the closed linear subspace HomA(P7 P) and thus is smooth as a map to this space.
Choose a point zg € X and consider the map f : X — HomA(P,P) defined by f(z) :=
Id — g(z) — §(zo) + 24(x0) o (). Then f is obviously smooth and thus continuous for the
Te—topologies and since f(zq) = Id and Aut(P) is ¢®-open in HomA(P, P) there is an open
neighborhood U, of zg such that f(z) is an isomorphism for all z € U,,. Now consider
the map ¢ : Uy, X P — Uy, x P defined by (2,2) — (z, f(z)(z)). By construction this is
an isomorphism of smooth A-bundles over Uy, since the map  + (f(z))~! is smooth by
smoothness of the inversion. One immediately verifies that f(z) o §(z) = ¢(z¢) o f(z) and
thus ¢ induces an isomorphism between the A-bundles Ker(p) [ U, and U, x Ker(§(zq))
and clearly Ker(§(zg)) is a finitely generated projective A-module.

Let us finally show that the assumptions of the theorem are satisfied if A is a Banach
algebra. In this case for any n the space A" is a Banach space and since any finitely
generated projective A-module 1s the kernel of a bounded and thus continuous projection
defined on some A™ all these modules are Banach spaces. Thus the spaces HomA(P, P) are
Banach algebras and so the invertibles form an open subset and the inversion is smooth by
the implicit function theorem. O

5.14. Proposition. Let A and B be convenient algebras and let X and Y be base spaces.
(1): Any smooth map f : X =Y induces an additive functor f* = E4(f) : Ea(Y) = Ea(X).
(2): Any bounded algebra homomorphism ¢ : A — B induces an additive functor ¢. =
Eo(X) 1 €a(X) = E(X). In the case where X is a single point and thus £4(X) is equivalent
with P(A) this functor coincides with the one constructed in 4.35.

Proof. (1): f p: E = Y is an A-bundle over Y then we define f*E to be the pullback
in the category of smooth spaces. A short argument similar to the proof of 2.6 shows that
this 1s an A-bundle over X. Using the universal property of the pullback one immediately
concludes that a morphism « : E — E’ between A-bundles over Y induces a morphism of
A-bundles f*a: f*F — f*E’ and that f* is indeed an additive functor.

(2): Let p: E — X be an A-bundle. Then for any = € X the fiber F, := p~!(z) is a finitely
generated projective right A-module. Thus we can apply the functor P(y) constructed in
4.35 to any fiber to get a finitely generated projective right B-module P(¢)(FE,), and we
define ¢, (F) as a set to be the disjoint union of all the spaces P(¢)(E;). Then there is an
obvious projection p : ¢.(E) — X which sends P(¢)(E;) to z. Next we have to define a
smooth structure on ¢, (F).

Let (Ui, u;) be an A-bundle atlas on E, so any U; is an open subset of X and wu; :
p~1(U;) — U; x P; is a fiber respecting diffeomorphism, where P; is a finitely generated
projective right A module. For any z € U; the map u; induces a smooth and thus bounded
A-module homomorphism u; , : £, — F;. Now we define a bijective map u; : ]5_1(UZ-) —
Ui x P(e)(P;) by z = (p(2), P(¢)(uip(-))(2)) and we define a smooth structure on ¢ (F)
by requiering that all maps u; are diffeomorphisms. To show that this is a correct definition
it suffices to show that for any i¢,j such that U;; := U; NU; # @ the map 4; o ﬂj_l :
Usj x P(e)(P;) = Ui; x P(¢)(P;) is a diffeomorphism. But by definition of an A-bundle
we have (u; o uj_l)(a:,p) = (z,u;;(x)(p)) for some smooth map w;; : U;; — Hom™ (P, P}).
By 4.35 P(p) is a convenient functor and thus it induces a smooth linear map P(y) :
Hom? (P;, P;) — Hom® (P(¢)(P:), P(¢)(P;)). Now a short computation shows that (i; o
"Nz, 2) = (x, (P(p) o ui;)(2)(z)), and the result follows. Moreover the same argument

J
shows that the smooth structure on ¢, (E) does not depend on the choice of the atlas and

that ¢.(F) is a B-bundle.

U
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Next let ¢ : F — X be another A-bundle and let f : E — F be a morphism of A-bundles.
Then the restriction f; : B, — F; of f to any fiber is a bounded A-module homomorphism,
so applying P(y) we get induced B-module homomorphisms P(¢)(E;) — P(¢)(Fy) and
thus an induced fiber respecting map ¢« (f) : ¢«(E) = @«(F). Using the description of
atlasses given above and the fact that the functor P(yp) is convenient one immediately
deduces that . (f) is smooth and thus a morphism of B-bundles. Moreover from this
description 1t is clear that the functor ¢, is addittive. O

6. Elementary K—Theory

6.1. Proposition. Let M be a commutative monoid. Then there is an up to isomorphism
unique abelian group K (M), called the Grothendieck group of M, with a homomorphism of
monoids s : M — K (M) which has the following universal property: If G is an abelian group
and f: M — G is a homomorphism of monouds then there is a unique group homomorphism
K(f) : K(M) — G such that K(f)os = f. This construction defines a functor from the
category of commutative monoids to the category of abelian groups which is left adjoint to
the forgetful functor.

Proof. Let us write the algebraic structures as +. On M x M define an equivalence relation
by declaring (m, n) to be equivalent to (m',n') if and only if there is a p € M such that
m+n'+p =m'+n+pand let K(M) be the set of all equivalence classes. Let us write [m, n]
for the equivalence class of (m,n). Now define [my, n1]+[ma, na] := [m1 +ma, n1+ns]. This
is easily seen to be well defined and it is clearly associative and commutative. Moreover
[0,0] is a neutral element and for [m, n] the inverse is given by [n,m]. Thus K(M) is an
abelian group. Now define s : M — K (M) by s(m) := [m,0]. Then this is clearly a monoid
homomorphism. If G is an abelian group and f : M — G 1s a monoid homomorphism then
we define K(f) : K(M) — G by K(f)([m,n]) := f(m) — f(n). Then this is a well defined
group homomorphism and K(f) o s = f. Uniqueness of K(f) follows immediately from the
fact that [m,n] = s(m) — s(n). The functoriality of the construction is obvious. O

6.2. Lemma. (1): Any element of K(M) can be written as s(m) — s(n) for some elements
m,ne€ M.

(2): The map s : M — K (M) is injective if and only if the monoid M has cancellation, i.e.
off for any m,n,p € M the identity m +p = n + p implies m = n.

(3): If the monoid M is equipped with an associative multiplication which is distributive
with respect to addition and such that 0 -0 = 0 then there is a natural ring structure on
K (M) such that the map s is compatible with the multiplications.

Proof. (1) was already observed in the proof of 6.1.

(2): s(m) = s(n) if and only if there is an element p € M such that m+p=n+ p.

(3): Define [m,n] - [m',n'] := [mm' + nn’,mn’ + nm/]. All properties are then easily
verified. O

6.3. Definition. First we define the Grothendieck group of an additive category C as
follows: TLet ®(C) denote the set of isomorphism classes of objects of C. Then this is a
commutative monoid with addition given by the coproduct and we define K (C) := K(®(C)).
If D is another additive category and ¢ : C — D is an additive functor then ¢ commutes
with finite direct sums and thus induces a monoid homomorphism ®(C) — ®(D) and hence
a group homomorphism K (C) — K (D).

For a convenient algebra A define K(A4) = Ko(A) := K(P(A)).

If A is a convenient algebra and X is a base space then we put Ka(X) = K{(X) :=
K(€4(X)).
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6.4. Proposition. (1): A — K(A) defines a covariant functor from the category of con-
venient algebras and bounded homomorphisms to the category of abelian groups.
(2): (A, X)— Ka(X) defines a functor which is covariant in A and contravariant in X.

Proof. (1): From 4.35 we know that a bounded algebra homomorphism ¢ : A — B induces
an additive functor P(¢) : P(A) = P(B) and this induces by 6.3 a group homomorphism
K(p) : K(A) = K(B) and using 4.33(4) one easily shows that this indeed defines a functor.
(2): By 5.14(1) a smooth function f : X — Y between base spaces induces an additive
functor f* : £4(Y) = £a(X) and thus a group homomorphism Ka(f) : Ka(Y) = Ka(X)
and one easily shows that this defines a functor.

By 5.14(2) a bounded homomorphism ¢ : A — B induces an additive functor £,(X) :
Ea(X) — &Ep(X) for any smooth space X and thus a group homomorphism K, (X) :
Ka(X) = Kp(X) and again one easily checks that this defines a functor. O

6.5. Lemma. Let A be a convenient algebra.

(1): Any element of Ko(A) can be written as [P] —[A"] for some finitely genrated projective
right A-module P and some n € N, where [P] denotes the class of P in Ko(A).

(2): Two finitely generated projective right A-modules P and @ represent the same class in
Ko(A) if and only if P® A™ = Q ® A™ for some n.

Proof. (1): By 6.2(1) any element of Kg(A) can be written as [P]—[Q] for finitely generated
projective right A-modules P and ). By 4.31 there is a finitely generated projective right
A-module R such that Q@ @ R = A" for some n. Thus (P® R) ® Q = P @& A" and hence
[P & K] — [A") = [P] - [Q] in Ko(A).

(2): P and @ represent the same class in Kg(A) if and only if there is a finitely generated
projective right A-module R such that P® R = Q @ R. By 4.31 there is a finitely generated
projective right A—-module S such that RS =2 A” for some n and thus the result follows. O

6.6. Lemma. Let A be a convenient algebra, X a base space. Let 8, be the trivial bundle
over X with fiber A", 1.e. 0, = X x A™. Then we have:

(1): Any element of K4(X) can be represented as [E] — [0,] for some A-bundle E over X
and some n € N. (Here [E] denotes the class of E in Ka(X).)

(2): Two A-bundles E and F represent the same class in K4 (X) if and only if E ® 6, =
F @0, for some n.

Proof. This is proved as 6.5 above using 5.6 instead of 4.31. O

6.7. Reduced K-Theory. Let pt be the smooth space consisting of a single point. Then
for any smooth space X there is a unique smooth map p : X — pt. For any convenient alge-
bra A this smooth map induces a group homomorphism K4 (p) : Ka(pt) = K(A4) = K4(X)
and we define the reduced K—theory f\’A(X) of X to be the cokernel of this homomorphism.
Thus we have an exact sequence

0= K(A) = K4(X) = Ka(X) =0

If we choose a point 25 € X then the inclusion of zy induces a group homomorphism
Ka(X) — K(A) which is left inverse to K4(p) and thus we get a splitting K (X) =
Ka(X)® K(A).

6.8. Let A be a convenient algebra, 7 : F — X a smooth A-bundle over a base space X.
Then for two points of X which are in the same connected component the fibers over the
two points are isomorphic and thus the bundle F determines a locally constant function
X — ®(P(A)) and composing this with the map to the Grothendieck group we get a locally
constant function rg : X — K(A), i.e. an element of the abelian group H°(X, K(A)), the
Cech cohomology of X with values in K(A). Note that if we put on K(A) the discrete
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smooth structure then H°(X, K(A)) = [X, K(A)], the set of smooth homotopy classes of
smooth maps from X to K(A).

Clearly rg depends only on the isomorphism class of F and E +— rg defines a homomor-
phism of monoids ®(£4(X)) — H°(X, K(A)). By the universal property of the Grothen-
dieck group we thus get a group homomorphism K4 (X) — H°(X, K(A)) and we denote by
K',(X) the kernel of this homomorphism. Thus we have an exact sequence

0— KY(X) = Ka(X) = H°(X,K(A)) =0

Now let f : X — ®(P(A)) be a locally constant function. Then f is constant on any of
the connected components X1,...,X,, of X. For any ¢ choose a finitely generated pro-
jective A—module P; which is in the isomorphism class to which f maps X;. Then con-
sider the A-bundle over X given over X; by X; x P;. Forming the isomorphism class
and composing with the map to the Grothendieck group we get a monoid homomor-
phism H?(X,®(P(A))) — Ka(X). Clearly the Grothendieck group of H°(X,®(P(A)))
is just H°(X, K(A)) and thus by the universal property we get a group homomorphism
H(X, K(A)) = Ka(X). Obviously this homomorphism splits the above exact sequence
and thus we get a natural isomorphism K4 (X) = K/, (X) & H°(X, K(4)).

If X is connected then there is a natural isomorphism H°(X, K(A)) = K(A) and the split
map K(A) = Ka(X) constructed above is the same as the map induced by the projection
of X to a point and thus in this case the groups K 4(X) and K’,(X) are isomorphic.

6.9. Our next task is to give a homotopy theoretic interpretation of K 4(X). This requires
an intermediate step. For any n € N let <I>ﬁ(X) denote the set of all isomorphism classes
of smooth A-bundles over X with fiber A”. Let GL(n,A) be the smooth group of all
isomorphisms of right A-modules A" — A", i.e. GL(n, A) = Aut(A"). Then by 2.28 there
is a bijection ®2(X) = [X, BGL(n, A)], the set of homotopy classes of smooth maps from X
to the classifying space of the smooth group GL(n, A). Adding trivial bundles with fiber A
we get maps @4 — <I>fl‘+1 we denote by ®4(X) the direct limit of the so obtained inductive
system of sets. The direct sum of A-bundles defines maps ®2(X) x &4 (X) — <I>fl‘+m (X).
As the category of sets is cartesian closed ®2(X) x ®4(X) is the direct limit of the sets
@A (X) x ®4(X) and thus these maps induce a map ®2(X) x ®4(X) — ®4(X) for any
n which in turn induce a map ®4(X) x ®4(X) — ®4(X) which defines the structure of a
commutative monoid on ®4(X).

Now let 6,, be the bundle X x A" for any n. Then we define a map ®2(X) — K, (X) by
E + [E] — [#,]. Obviously these maps define a homomorphism of monoids o : ®4(X) —
K (X).

6.10. Lemma. The homomorphism o : ®4(X) — K',(X) defined above is an isomor-
phism. Thus ®4(X) is an abelian group.

Proof. If [E]—[0,] = [F]—[0m] in K4 (X) then E®6,, and F&6, represent the same class in
K 4(X) and thus by 6.6(2) E®8, ®6, = Fdb, db, for some p, and since b, B, = O, 4p the
bundles £ and F represent the same element of ®4(X) and the homomorphism is injective.

On the other hand by 6.6(1) any element of K4(X) can be written as [E] — [f,] for some
A-bundle E and some n. Let X;,7=1,...,k be the connected components of X and let P;
be the fiber of E over X;. If [E]—[f,] lies in the subgroup K, (X) then for any i the modules
P; and A™ represent the same class in Ky(A). Thus for any i there is a finitely generated
projective right A-module @); such that P; & @Q; = A™ @& @;. Now for any 7 we can choose
a module R; such that Q; ® R; = A™ for some fixed m. Thus we get P; & A™ = A"t™ for
each i. By definition [E & 0,,] — [fn4m] = [E] — [0n] in K4(X) and we just saw that E & 0,
is an A bundle with fiber A?*™ so [E @ 0] — [0n1m] is in the image of o and thus o is
surjective. O
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6.11. Let us now express the last result in terms of sets of homotopy classes. From 6.9 we
know that ®2(X) = [X, BGL(n, A)]. Now f + f ® Ids induces a smooth homomorphism
GL(n,A) = GL(n+ 1, A) and thus a smooth map between the classifying spaces which in
turn induces a map [X, BGL(n, A)] = [X, BGL(n + 1, A)] that clearly corresponds to the
map @ (X) — @5, (X) constructed in 6.9. Let [X, BGL(A)] denote the direct limit of the
so obtained inductive system. Then there is a bijection ®4(X) = [X, BGL(A)]. Thus we
have an isomorphism K/, (X) = [X, BGL(A)] where the group structure on [X, BGL(A)] is
induced by the direct sum of homomorphisms.

Define [X, Kq(A) x BGL(A)] to be the direct limit of the sets [X, Ko(A) x BGL(n, A)] where
the connecting maps are constructed as above and Ky(A) is equipped with the discrete
smooth structure. Now one easily verifies that for arbitrary smooth spaces we have [X,Y x
Z] = [X,Y] x [X, Z] and by cartesian closedness of the category of sets the product with a
fixed set commutes with direct limits and so we have:

[X, Ko(A) x BGL(A)] 2 [X, Ko(A)] x [X, BGL(A)] = K 4(X).

Let us finally compare the functorial properties of K4(X) and [X, Kq(A) x BGL(A)]. So
let Y be another base space and f : Y — X a smooth function and let [E] — [#,] be
an element of K4(X). By construction this element is mapped by Ka(f) to the ele-
ment [f*E] — [0,] of Ka(Y). Clearly the element of [V, Ko(A)] corresponding to this
is given by f* of the element of [X, Ko(A)] corresponding to [E] — [#,].On the other
hand f induces maps f* : [X, BGL,(A)] — [Y,BGL,(A)] which in turn induce a map
f* : [X,BGL(A)] — [Y,BGL(A)]. If [E] — [0,] lies in K';(X) then the classifying ho-
motopy class of f*F is given by f*([g]) where [¢] is the homotopy class corresponding
to the bundle E. Thus we have an isomorphism of functors between X — K 4(X) and
X — [X, Ko(A) x BGL(A)]

Similarly from the definiton of the functor £,(X) induced by a bounded algebra homomor-
phism ¢ : A — B one easily concludes that there is an isomorphism of functors between
A Ka(X) and A — [X, Ko(A) x BGL(A)]. Putting these results together we get:

6.12. Theorem. There is a natural isomorphism of bifunctors

Ka(X) 2 [X, Ko(A) x BGL(A)).

6.13. Higher K-—groups. For any smooth space X we define Xt to be the disjoint
union (coproduct) of X and a single point z*. Clearly this constrution defines a functor
+: C% — CF° from the category of smooth spaces to the category of pointed smooth spaces.
Moreover one immediately checks that this functor is left adjoint to the forgetful functor.
Finally it is easy to see that for any smooth space X the space X1 is well pointed, i.e. the
inclusion £t < Xt is a smooth cofibration.

Now in analogy to classical topological K-theory we define for any convenient algebra A,
any base space X and n > 0 the groups K;"(X) = K4 (S™(XT)), where S™ denotes the
n—fold unreduced suspension (c.f. 3.43). (Note that clearly X is a base space and thus by
3.12 S (X*) is a base space.)

Next for any convenient algebra A and n > 0 we define K, (A) := K;"(pt), where pt
denotes the smooth space consisting of a single point.

Finally note that the higher K—groups have obvious functorial properties. For a smooth
map f : X = Y we define

K™ (f) == Ka(S™(f%)) : K7"(X) = K3™(Y)
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and for a bounded algebra homomorphism ¢ : A — B we put

K ™(X) = Ky (S™(X 1)) : K7™(X) = K" (X)
Ka(g) = K;™(pt) : Kn(A) = Kn(B)

Our next task is now to find several different expressions of K—groups in terms of homotopy
theory.

6.14. Proposition. Let (X, zq) be a well pointed smooth space. Then the inclusion zq x
I — SX is a smooth cofibration. Thus the natural projection SX — S’ X from the unreduced
to the reduced suspension is a homotopy equivalence and the reduced suspension is a well
pointed smooth space.

Proof. By 3.27 it suffices to show that (SX, zq x I) is a smooth NDR-pair in order to proove
the first statement. Again by 3.27 (X, o) is a smooth NDR-pair and thus there are smooth
maps u : X — I and h : X x I — X such that u(zo) =0, hxxq0} = Idx, h(xo,t) = x, for
all t and h(z,1) = z¢ for all z such that u(z) < 1.

Now let ¢ € C*° (IR, I) be a smooth map such that ¢(#) = 0ift <z ort>1—¢ where ¢
is some small positive number and ¢(t) = 1 for 1/4 <t < 3/4 and define U : X x I — I by
U(x,t) = u(z)-p(t). Since U(CL‘, 0) = U(:E, 1) = 0 this factors to a smooth map U : SX — T
which by construction vanishes on zg x I. Next let a : X x I - CX — SX be the natural
mapanddeﬁnef]:XxIxI—)SX by

- . alh(z,t),s(1 —u(z)p(1/2 — s)t)) s<1/2
' alh(z,t), s+ (1 — s)u(z)p(3/2 — s)t) s>1/2

Then this is well defined and smooth since by construction of ¢ we have ﬁ(r,s,t) =
a(h(z,t),s) for 1/2—e < s < 1/2+ . Next since f{(:b,O,t) = a(h(z,t),0) = a(xo,0) and
lff(:t:, 1,t) = a(h(z,t),1) = a(zq, 1) the map H factors to a smooth map H : SX x I — SX.
Then since ff(a:,s,O) = a(z,s) we get H|sxxqo} = Idsx and since u(zo) = 0 we have
f[(:ﬂo,s,t) = af(zg,s), so H is a homotopy relative to zg x I. Finally suppose that
a(z,s) € SX is a point such that U(a(z,s)) < 1. Then either u(z) < 1 or u(z) = 1
and ¢(s) < 1. If u(z) < 1 then h(z,1) = 2o and thus H(a(z,s),1) € zg x I. On the other
hand if ¢(s) < 1 then s < 1/4 or s > 3/4. For s < 1/4 we have 1/2 —s > 1/4 and thus
o(1/2—5) = 1,so0ifu(z) = 1 we get H(a(z,s),1) = a(h(z,1),0) = a(zg,0) and in the same
way one shows that for s > 3/4 and u(z) = 1 we get H(a(z,s),1) = a(h(z,1),1) = a(zo, 1).
Thus the pair (U, H) statisfies all conditions of 3.26 and so the first part of the proof is com-
plete.

Now the natural projection SX — S’X is given by contracting the contractible subset
zg x I to a single point and thus it 1s a homotopy equivalence by 3.13. Finally the inclusion
of the base point (the point to which zq x I is contracted) is a smooth cofibration by 3.5. O

6.15. Corollary. For any well pointed smooth space X and any n > 0 there is a canonical
smooth homotopy equivalence between S X and S X.

Proof. From the proof above we get a smooth homotopy equivalence p : SX — S’ X. Now
one immediately checks that then S(p) : SSX — SS’X is a smooth homotopy equivalence,
too. Since S’ X is again well pointed we get a smooth homotopy equivalence SS' X — 5’5’ X,
so its composition with S(p) gives a smooth homotopy equivalence S?X — 5 X. Now the
result follows by induction. O
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6.16. Next we want to show that the K—groups can also be expressed via sets of homotopy
classes of base point preserving smooth maps. This needs some preparation. First let (X, A)
be a smooth NDR-pair, Y an arbitrary smooth space, f,g : X > Y and p: Ax I =Y
smooth maps. Then we say that f is homotopic to g along ¢ and write f ~, g iff there is
a smooth homotopy H : X x I =Y between f and g such that H|ax1 = .

Lemma. In a setting as above assume that ¢ : A x I — Y is a smooth map which s
smoothly homotopic to ¢ relative to A x {0,1}. If f ~, g then there is a smooth function
v € C®(I,1I) with y(i) =i for i = 0,1 such that f ~yo(id,x~) 9-

Proof. By assumption there is a smooth map h : Ax I x I — Y such that h(a,t,0) = ¢(a,t),
h(a,t,1) = ¢(a,t) and h(a,i,s) = ¢(a,i) = (a,i) for i = 0,1 and all s and ¢ and a smooth
map H : X x I =Y such that H(z,0) = f(z), H(z,1) = g(z) and H(a,t) = ¢(a,t) for all
a € A. Now since (X, A) is a smooth NDR—pair it follows from 3.4(2) that the inclusion
of A x I into X x I is a smooth cofibration. Applying the cofibration property to the
maps h and H we get a smooth map H : X x I x I — Y such that ﬁ](a,t,s) = h(a,t,s)
and such that fNI|XX1X{0} is smoothly homotopic to H relative to A x I. Thus there is a
smooth map # : X x I x I =Y such that H(z,¢,0) = H(z,t), H(z,t,1) = f[(m,t,O) and
H(a,t,s) = H(a,t) = ¢(a,t).

Now we consider the following homotopies: H|xx{o}x7 is a homotopy between f =
H|X><{0} and H|X><{0}><{0} and by construction we have #H(a,0,s) = ¢(a,0) = ¥(a,0).
Next H|X><{0}><I connects H|X><{0}><{0} to H|X><{0}><{1} and H(a 0,5) = h(a,0,s) = 1/)(&,0).
Then H|X><I><{1} connects H|X><{0}><{1} to H|X><{1}><{1} and H(a t,1) = h(a,t,1) = 9¥(a,t).
Next H|X><{1}><I backwards connects H|X><{1}><{1} to H|X><{1}><{0} and H(a 1,8) = h(a 1,8) =
¥(a, 1) and finally H|x « {1} x 1 backwards connects H|X><{1}><{0} to H|xxq1} = gand H(a,1,s) =
H(a,1) = ¢(a,1) = ¢(a,1). Thus piecing these five homotopies together smoothly we get a
smooth homotopy between f and g along a reparametrization of ¢y. O

6.17. Corollary. Assume that (X, zq) is a well pointed smooth space, (Y, yo) a pointed
smooth space and that u : I =Y is a smooth path withu(0) = u(1) = yo and let f, g : X =Y
be base point preserving smooth maps. If f ~, ¢ and u is homotopic to the constant path
yo relative to {0,1}, then f and g are smoothly homotopic as base point preserving maps.

6.18. Now for any smooth group G we define the base point of the classifying space BG to
be the orbit of the point (1,¢,0,¢,0,¢,...) € EG, where e denotes the unit element of G.
(In fact the choice of the base point in BG is not important since BG is the smooth image
of the contractible smooth space EG and thus is smoothly path connected.)

Now let (X, zg) be a pointed smooth space and let A be a convenient algebra. Then
we have the smooth homomorphisms i, : GL(n, A) = GL(n + 1, A) considered in 6.11.
The induced maps B(i,) : BGL(n, A) = BGL(n + 1, A) are clearly base point preserving
and thus they induce maps [X, BGL(n, A)lo — [X,BGL(n + 1, A)]o between the sets of
homotopy classes of base point preserving smooth maps and we define [X, BGL(A)]o to
be the direct limit of the so obtained inductive system. For any n we have a forgetful
map v, : [X,BGL(n,A)lo — [X,BGL(n, A)] and clearly these maps induce a map v :
[X,BGL(A)]o — [X, BGL(A)].

6.19. Theorem. If X is well pointed then v : [X, BGL(A)]o — [X, BGL(A)] is bijective.

Proof. First let f : X — BGL(n,A) be an arbitrary map. Since BGL(n, A) is smoothly
path connected there is a smooth path from f(zg) to the base point of BGL(n, A). Applying
the cofibration property of (X, zg) to this path and f we get a smooth map H : X x [ —
BGL(n, A) such that H(zo,1) is the base point of BGL(n, A) and such that H|xy{o
is smoothly homotopic to f (even relative to zg). Thus f is homotopic to a base point
preserving map, so for any n the map v, is surjective and thus v is surjective.
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To complete the proof it now suffices to show that if fo, fi : X — BGL(n, A) are two
base point preserving maps which are freely homotopic then B(¢) o fi and B(y) o fy are
homotopic as base point preserving maps, where ¢ : GL(n, A) - GL(2n, A) is the map
g g®Idan.

First we define a smooth map FGL(n, A) x EGL(n, A) = EGL(2n, A) as follows: Let
k — (i(k), j(k)) be a bijection between N and N xNsuch that 7(0) = j(0) = 0 and we map the
element ((¢;, gi), (s;, h;)) € EGL(n, A)x EGL(n, A) to the element of EGL(2n, A) which has
as k—th t—coordinate ;(x)-s;(x) and as k-th g—coordinate g;x)®h;x). Then one immediately
checks that this map is well defined and smooth. Next we have the canonical projections
EGL(n,A) x EGL(n, A) - BGL(n, A) x BGL(n, A) and EGL(2n, A) - BGL(2n, A) and
one immediately checks that the map defined above factors to a map e : BGL(n, A) x
BGL(n,A) — BGL(2n, A) which is smooth since the map FGL(n, A) x EGL(n, A) —
BGL(n,A) x BGL(n, A) is the projection of a locally trivial fiber bundle and thus a final
morphism.

Now let x be the base point of BGL(n, A) and consider the map z — z e x. On the level
of EGL(n, A) this map is given by sending a sequence (Z;, g;) to the sequence (si, hy) where
s = 0if j(k) # 0 and s = t;) if j(k) = 0 and hg = gi(x) @ idan. In particular we have
sg = tg and hg = go ® ida~. We can construct a homotpy between this map and the map
E(p) as follows: Using the homotopy A constructed in the proof of 2.20 but starting moving
not in the 0— but in the 1-coordinate we deform E(y) to a map having zeros in all odd
t—coordinates and our map to one having zeros in all even {—coordinates but ¢y and then
connect the points affinely (c.f. the proof of 2.23). Projecting this homotopy to the BGL
level we get a smooth homotopy between z — z e and B(y) as base point preserving maps.

In the same way we can construct a homotopy of base point preserving maps between
z — x ez and B(v) where ¢ : GL(n, A) = GL(2n, A) is the map g — Ida» @ g. Finally we
want to show that B(y) and B(v) are smoothly homotopic as base point preserving maps.
Consider the smooth map a : GL(n, A) x I — La(A?", A*™) given in matrix notation by

(1—t)g  t-idan
gh}( —tg (1—t)-idan )

Then a short computation shows that this matrix is invertible for all ¢ with inverse given by

(1-t)g=t  —tg™"
< t-idn (1—ﬂ.mAn)'
Thus « is smooth as a map GL(n, A) x I — GL(2n, A). Thus it induces a smooth map
EGL(n,A) x I - EGL(2n, A) and since for any ¢ we have a(gh,t) = a(g,t)¢(h) this map
factors to a map BGL(n, A)x I — BGL(2n, A) which is smooth since the map FGL(n, A) x
I — BGL(n,A) x I is the projection of a locally trivial fiber bundle and thus a final
morphism. So we get a smooth homotopy of base point preserving maps between B(y) and

B(w), where w : GL(n, A) = GL(2n, A) is the map g — (_Og ZdOAn

) and thus B(y) = B(w).

). But now for any

0 —idagn
idan 0

Together we have now shown that the maps z — zex and z — xez are smoothly homotopic
to B(¢y) as base point preserving maps. So let us now assume that fo, f1 : X - BGL(n, A)
are two base point preserving maps which are freely homotopic, so we have a smooth map
H : X x I - BGL(n, A) such that H|xx;} = fi. Then ¢ : I — BGL(n, A) defined by
c(t) := H(zo,t) is a smooth curve such that ¢(0) = ¢(1) = . Now define h : X x I —
BGL(2n, A) by h(z,t) := ¢(1 —t) e fi(z). Then by constrution this is a homotopy from
* o f1 to itself along the path ¢ — ¢(1 —t) @ . From the argument above we see that

element g € GL(n, A) we have ¢(g) = w(g) - (
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t +— ¢(1 —t) e x is smoothly homotopic to the path t — B(¢)(c(1 — t)), and so by lemma
6.16 there is a smooth fuction v € C*°(7, I) and a smooth homotopy h from * e f1 to itself
along the path ¢ — B(p)(e(y(1 —1))).

Now consider the following homotopies: First take (z,t) — B(¢)(H (z,v(t))) which is a
homotopy from B(g) o fo to B(g) o f1 along the path co~y. Then take a homotopy between
B(y) o f1 and * e f; as base point preserving maps. Next take the homotopy h from * e fi
to itself along the path ¢t — B(g)(c(y(1—1))) and finally take a homotpy between e f; and
B(y) o f1 as base point preserving maps. Piecing these four homotopies together smoothly
we get a smooth homotopy between B(yp) o fo and B(g) o f1 in which the base point runs
first along some path and then runs back the same path. Clearly this path of the base point
is homotopic to the constant path * relative to {0, 1} and thus by corollary 6.17 B(¢) o fo
and B(p) o f1 are homotopic as base point preserving smooth maps. O

6.20. Corollary. Let X be a well pointed base space and let [X, Kq(A) x BGL(A)]o be
the direct limit of the system of sets [X, Ko(A) x BGL(n, A)]o. Then there is a canonical
isomorphism K4 (X) 2 [X, Ko(A) x BGL(A)]o.

Proof. Asin 6.11 one shows that
[X, Ko(A) x BGL(A)]o 2 [X, Ko(A)]o x [X, BGL(A)]o.
Using 6.19 we conclude that
[X, Ko(A) x BGL(A)]o 2 Ker(Ka(7) : Ka(X) = Ko(A)),

where 7 : pt — X denotes the inclusion of the base point. By 6.7 there is a short exact
sequence
0— Ko(A) = Ka(X) > Ka(X) >0

and K 4(7) is a canonical split of this sequence, so the claimed isomorphism follows. O

6.21. Corollary. For any base space X and any convenient algebra A there is a canonical
isomorphism K4(X) = Ka(XT).

Proof. Let Y be an arbitrary pointed smooth space and let i : X — X+ be the natural
inclusion. Then one immediately checks that the composition [X+, Y]y — [X1 V] — [X,Y]
of i* and the forgetful map is a bijection. Applying this to BGL(n, A) and passing to limits
one immediately concludes that there is an induced isomorphism [X*, Kq(A) x BGL(A)]y =
[X, Ko(A) x BGL(A)] and consequently the claimed isomorphism follows from 6.20 and
6.12. O

6.22. Lemma. Let E™t! and S™ be the closed n + 1-cell and the n-sphere as in 1.19.
Then the spaces E™"t! Ugn E"tl and C'S™ Ugn CS™ are smoothly homotopy equivalent.

Proof. Consider S™ and E™t! as being embedded into R™*! in the usual way. Define
f:8"x I — E"by f(z,t) := te. This is oviously smooth and sends S* x {0} to 0 and
thus factors to a smooth bijective map f : C'S™ — E"*!. The inverse of f (which is not
smooth) is given by f~!(z) = p(ﬁm, [|z|]) for  # 0, where p: S™ x I — C'S™ denotes the
canonical map and f~1(0) is the base point of C'S™. Now let ¢ € C*(I,I) be a smooth
increasing map such that ¢ is zero locally around zero and ¢(¢t) = 1 for all ¢ > 1/3 and
define g : E"*1 — CS™ by g(z) = f_l(ﬂl{-lxﬁllmm). Obviously z — ﬂl{-lzﬁllmm is a smooth map
Entl 5 Entl To show that g is smooth it suffices to show that for any smooth function
Y € C*°(CS™,R) the function 1og is smooth on E"+1. By definition of the smooth structure
on C'S™ smoothness of ¢ i1s equivalent to smoothness of 1 o p, so we assume that 1 is given
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as a smooth function on S™ x I which is constant on S™ x {0}. Without loss we generality
we may assume that ¢ is zero on S” x {0}.

Let ¢ : R — E™t! be a smooth curve and let » € I be the maximum value such that
e(r) = 0. If |[e(?)]] < 7 then 1 o g o ¢ is identically zero and thus smooth locally around ¢.
Thus we may without loss of generality assume that c(t) # 0 for all £. But then ¢ can be
written uniquely as ¢(t) = »(¢) - (¢), where r : R = ] and z : R — S™ are smooth curves.
(Recall that the smooth curves into E"*+! are exactly those which are smooth as curves into
R+

As 9 : S” x I — R is smooth we conclude from cartesian closedness that the associated
map ¢ : S* — C°(I,R) is smooth, too. In [Kriegl, 1990] it is proved that for a convex
subset K of R” with nonempty interior a function K — R is smooth for the initial smooth
structure if and only if it is smooth (in the usual sense) in the interior of K and all derivatives
on the interior extend to continuous maps on K. In the special case of I this implies that
the smooth real valued functions are exactly the restrictions of smooth real valued functions
defined on R. Thus for any a € C®(I,R) the integral fo s)ds is well deﬁned and we

have a(t) — = tfo (ts)ds. Applying this to ¢)(x) one gets P(z, t) =t 1/)(:E ts)ds

and one easﬂy shows that the map h : S™ x I — R defined by h(z,1) fo 651/) z,1s)ds is
smooth. Thus we have

(Yogoc)(t)=p(x(t), ¢(r(t)) = p(r(®)h(z(t), p(r(1)))

for r(t) > r. But this equation also holds for r(#) < r since there both sides vanish. So
1 o g o ¢ is smooth and thus g is smooth.

The map fog : E"tl — E™tlis given by 2 +— ¢|(||l:x||”)x and thus (z,t) — (t+(1—1) Hlx””))
is a smooth homotopy from f o ¢ to the identity which equals the identity for any ¢ on the
subspace S™. On the other hand g o f is induced by the map S™ x I — S” x I, (z,t) —
(z,¢(t)) and thus a homotopy to the identity is induced by (z,t,s) — (2, st + (1 — s)¢(?)).
Again this map equals the identity for all s on the subspace S™ x {1}. Thus all maps and
homotopies induce maps on E?*! Ug- E*t! and CS™ Ug» C'S™, respectively and the result

follows. O

6.23. Lemma. The smooth space X := E"™ Ugn—1 E™ 1s smoothly homotopy equivalent to
the smooth manifold S™.

Proof. Let S™ be embedded into R?*! in the usual way and consider R™ as the subspace of
all vectors for which the last coordinate is zero. Now define fy : E” — S” by

fe(@) = fe(zr, ... 2n) = W(?ml, oy 2, (1 = |2])7)).

Then fy is obviously a smooth map from E” to the upper (respectively lower) half of S”
which 1s even a diffeomorphism on the open interiors since we have f;l(ml, ey Bpy1) =
ﬁ(ml, ..., &n). Moreover the restrictions of fy and f_ to S"~! obviously both coincide

with the inclusion of S"~! into S™ and thus we get an induced smooth bijective map
f:X =5

The map f~' is not smooth since X has an ‘edge’ in S?~! so we have to deform it to a
smooth map. Let ¢ € C*®(R,R) be an increasing smooth map such that ¢(t) = ¢ for all
t <2/3 and p(t) = 1 for all £ > 1 — ¢ where ¢ is some small positive number. Then clearly

r —H—lﬂm defines a smooth function on R™ and we define 1 : S — S™ on the upper half

sphere by ¥(z) := f4 (”ly+7f+ (z)) and on the lower half sphere in the same way using

f- instead of f,. Then 1/) 1s smooth as it is obviously smooth on the open half spheres and
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by construction of ¢ it is given on an open neighborhood of S?~! as a smooth retraction of
this neighborhood to S”~!. Then define g : S® = X by g := f~ ! o 4.

To see that g is smooth let ¢ : R — S™ be a smooth curve and let A : X — R be a smooth
function and consider h o g o c. By definition of the smooth structure of X the restriction
h of h to S"~1 is a smooth map. Now assume that ¢5 € R is such that e(tg) € sr=1 c s7.
Then + o ¢ stays in S?~! C S” locally around t, and since the restriction of f~! to S7~!
is the identity we see that h o g o ¢ i1s smooth locally around #3. So we may without loss
of generality assume that the curve ¢ stays in one open half sphere. But the restrictions of
g to the half spheres are obviously smooth as maps into £” and thus g o ¢ is smooth as a
curve into one of the n—cells, so h o g o ¢ is smooth by definition of the smooth structure of
X.

The composition fog : S” — S™ is just 1. A smooth homotopy from ¢ to the identity can
be constructed as po H where H : S™ x I — R"+1\{0} is defined by H(z,t) := (1—t)¢(z)+tz
and p : R"+1\ {0} — S™ is the smooth map z ﬁ On the other hand go f : X — X is

induced by the map « : E™ — E™ on both copies of E™ which is given by a(z) = %m. By

cartesian closedness we have X x I = (E" x I)Ugn-1y7(E" xI). Now define H : E" xI — E"
by H(z,t) := (1 —t)a(z) + tz. This map on both copies of E™ induces then a smooth
homotopy between g o f and the identity. O

6.24. Proposition. Define &™ := S™(pt*), where pt denotes the smooth space consisting
of a single point. Then for any n the space &" is smoothly homotopy equivalent to the
smooth manifold S™.

Proof. By definition ptt is consists of two points with the discrete smooth structure, so
ptt = SO So let us inductively assume that we have found a homotopy equivalence f :
S" — &". Then S(f) : S(S") — S&™ = &"*+! is a homotopy equivalence, too. On
the other hand by 6.22 and 6.23 the manifold S?*' is smoothly homotopy equivalent to
CS™ Ugn CS™, which in turn is homotopy equivalent to S(S™) by 3.14 since the spaces are
the homotpy cofiber and the cofiber of the cofibration S — C'S?. O

6.25. Corollary. For any convenient algebra A and any natural number n there is an

isomorphism Kp(A) = [S™, BGL(A)]o.

Proof. By definition we have K,(A) = K% (pt) = K$(&™) and by 6.12 the this group is
isomorphic to [6", BGL(A)] which clearly by 6.24 is isomorphic to [S™, BGL(A)] and finally
by 6.19 this group is isomorphic to [S™, BGL(A)]s. O

7. Relative K—groups and long exact sequences

The main aim of this section is to establish the two fundamental long exact sequences of K-
goups, the one induced by a smooth map and the one induced by an algebra homomorphism.
To formulate thse results we need the definitions of the relative K—group corresponding to a
smooth map or an algebra homomorphism. To define these groups we start from the general
definition of the K—group of a functor due to Karoubi (c.f. [Ka]). Then we show that for
the groups we are interested in there are nice interpretations in terms of homotopy theory
and derive the long exact sequences from the Puppe-sequences constructed in chapter 3.

7.1. Definition. Let C and C’' be additive convenient categories (c.f.4.21), ¢ : C = C' a
convenient additive functor. Let T'(¢) denote the set of all triples (F, F, a) where F and F
are objects of C and « is an isomorphism between ¢(FE) and ¢(F). Two triples (E, F, )
and (E’', F', o) are called isomorphic iff there are isomorphisms f: £ — E' and g : F — F’
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such that the following diagram commutes.

p(E) —— @(F)

lw) lw(g)

p(E') —2— o(F)

A triple (F, F,a) is called elementary iff £ = F and a is homotopic to id,g) as an
automorphism of ¢(F). (This makes sense since C'(p(F), ¢(F)) is a convenient algebra and
thus the automorphisms form a smooth group.) Finally we define the sum of two triples by

(E,F,a)+ (E',F',d/y:=(E® E',F® F',a®d).

Now we define the K—group K (¢) of the functor ¢ to be the quotient of T'(¢) with respect
to the equivalence relation defined by declaring two elements o and ¢’ to be equivalent if
and only if there are elementary triples 7 and 7/ such that o+ 7 and ¢/ + 7/ are isomorphic.
We write d(F, F, a) for the class of the tripel in K ().

Obviously the addition defined above factors to an addition on K(g) which defines the
structure of a commutative monoid on K ().

7.2. Proposition. In K(¢) we have the relation d(E, F,a)+d(F, E,a™1) = 0. Thus K(p)
s an abelian group.

Proof. (c.f. [Ka, 11.2.14]) Let (E, F, a) be an arbitrary element of T'(¢). Then by definition
we have d(E, F,a)+d(F,E,a” YY) = d(E®F, F®& E,a®a™!). Clearly the tripel (E® F, F &
E,a® a~!) is isomorphic to the triple (E & F, E @ F, 3), where 3 is defined by the matrix

=1
<0 e > In the group of automorphisms of ¢(F) @ ¢(F) we have:

a 0
0 —a '\ _ [id —a7! id 0 id —a~!
a 0 —\0 id a id 0 id '
, . . id f
Now let f € C'(¢(F),¢(F)) be any morphism. Then the matrix X defines an

0 d
id —f id tf
0 Z.d>andthustr—>~<0 id)

defines a smooth curve in the smooth group of automorphisms. Similarly for any f as above

automorphism of ¢(F) @ ¢(F) with inverse given by <

t— (;? ZI) defines a smooth curve. Thus we can define a smooth curve ¢ in the group

of automorphisms by

(t) _fd —ta~ ! id 0 id —ta!
‘A= 0 id ta id)\0 id |-

Then ¢(0) = id,(g)gu(r) and c(1) = B and thus the triple (F @ F, E @ F, 8) is elementary
and the result follows. O

7.3. Let X and Y be base spaces, f : X = Y a smooth map and let A be a convenient
algebra. Then f induces the additive functor f* = E£4(f) : £4(X) = Ea(Y) (c.f. 5.14) and
we want to describe the K—group of this functor. So let (F, F, @) be an element of T'(£4(f)).
Then E and F are A-bundles over Y and a : f*F — f*F is an isomorphism. Thus we
can assign to this triple a locally constant fuction Y — K(A) by assigning to any point
the difference of the classes in Kg(A) of the fiber of E and the fiber of F' over the point.



68 7. RELATIVE K—GROUPS AND LONG EXACT SEQUENCES

Clearly this gives the constant function zero on elementary triples and is compatible with
the addition and thus it induces a group homomorphism r : K(€a(f)) — H°(Y, Ko(A)).
Now the function f induces a group homomorphism f* : H(Y, Ko(A)) — H°(X, Ko(A))
and as the bundles f*F and f*F are isomorphic the homomorphism r has values in the
subgroup Ker(f*) C H°(Y, Ko(A)). Moreover one immediately checks that r is surjective
onto this subgroup and we define K'(£4(f)) to be the kernel of r. So we have a short exact
sequence

0 — K'(€a(f)) = K(€a(f)) — Ker(f*) — 0.

Now let ¢ be an element of Ker(f*). Then g : Y — Kg(A) is a locally constant function and
go f is identically zero. We assign to g an element of K(€4(f)) as follows: Let Y7,...,Y, be
the connected components of Y which are not contained in the image of f. Then by 6.2 for
any i we can write ¢(Y;) = [P;] — [Qi] € Ko(A), where the P; and @; are finitely generated
projective right A-modules. Now let £ be the A-bundle over Y which is over Y; given by
Y; x P; and F' the one given by Y; x @; while over the components which are hit by f both
bundles are zero, i.e. the identitiy map. Then clearly this defines a splitting of r and thus
we have an isomorphism K (€4 (f)) = K'(£a(f)) ®Ker(f*). Finally one immediately checks
that Ker(f*) = [C}, Ko(A)]o, the group of pointed homotopy classes of smooth maps from
the mapping cone Cy of f to the discrete smooth group Ky(A), so there is an isomorphism

K(&a(f) = K'(€a(f)) & [Cy, Ko(A)]o-

7.4. Our next task is to give an interpretation of the group K’(£4(f)) via homotopy theory.
This requires an intermediate step. Consider the set of all pairs (F, o), where F is an A-
bundle over Y with fiber A" and « is an isomorphism between f*E and the trivial bundle
X x A™. Two such pairs (E, a) and (E’,a’) are said to be equivalent if and only if there is
an isomorphisms ¢ : F — E’ such that o’ o f*¢ is homotopic to a as an isomorphism from
f*E to X x A™. Let ®,(£4(f)) be the set of all equivalence classes.

Now (F,a) — (FE @ 1, a® id), where 0; denotes the trivial ‘line’ bundle Y x A over Y
defines a map @,(E4(f)) = Pn4+1(€a(f)) and we define ®(E4(f)) to be the direct limit of
the so obtained inductive system. Next ((F,a),(F,B)) — (F ® F,a ® () defines a map
D, (Ea(f)) X ®m(Ea(f)) = Pnim(Ea(f)) and as in 6.9 one shows that this induces the
structure of a commutative monoid on ®(€4(f)).

Now we define a map o, : ®,(Ea(f)) = K'(Ea(f)) by on(E,a) := d(E,Y x A", a).
This is easily seen to be well defined and clearly it induces a monoid homomorphism o :

(Ea(f) = K'(Ealf))-

7.5. Proposition. The homomorphism o defined above is bijective, so ®(Ea(f)) is an
abelian group.

Proof. Let (E, F,a) be an element of I'(£4(f)) and let us write 8 for the trivial A-bundle
Y x A*¥ over Y. By 5.6 there is an A-bundle G over Y, a natural number n and an
isomorphism ¢ : F & G — 6,, of A-bundles and clearly the tripel (E, F, o) is equivalent to
(E® G, F& G, adids ) which in turn is equivalent to (E® G, 0y, f*Y o (a®id)). Now let
Y1, ..., Ys be the connected components of Y and let P; be the fiber of E®G over Y; for any 1.
Then if the class of the above triple in K (£4(f)) lies in the subgroup K'(€4(f)) then for any
i the modules P; and A™ represent the same class in Ko(A). Thus for any 7 there is a finitely
generated projective right A-module @; such that P, @ Q; = A” ® Q;. Now for any ¢ we can
choose a module R; such that Q; ® R; = A™ for some fixed m. Thus we get P;HA™ = Antm
for each i. Now the above triple is equivalent to (E ® G @ O, Opym, (f*¢ o (a @ id)) @ id)
which by construction is in the image of & since £ @& G @ 0, has fiber A”T™ and thus o is
surjective.

To prove that o is injective assume that E and F' are A-bundles over Y with fiber A” and
A™ respectively such that (E,0,,a) and (F, 0y, 3) are equivalent. Then by 7.2 we have
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d(E @ 0,0, ® F,a® B~1) =0, so there are elementary triples (G, G,+) and (L, L, A) such
that the triples (E @0, &G, 0, F &G, a® B~ @) and (L, L, X) are isomorphic. By 5.6 we
can find an A-bundle G’ over Y, a natural number p and an isomorphism g : G® G’ — 0, of
A-bundles. Then clearly the triple (E® 0, GG 0, b F dGHG  adf~ ' &ydidsq)
is isomorphic to (L & G', L & G', A @ ids+q/). Thus by definiton there are isomorphisms
0 EDlp GG - LG and ¢ : 0, F GG — LG such that f*y o
(@B ' ®ydidsg) = (ADidsc)o f*p. Since by construction 4 and A are homotopic
to identity mappings as isomorphisms we may conclude from this that f*(¢)=') o f*¢ and
(a ® B! @ idgaar) are homotopic as isomorphisms between f*(E & 6, & G & G') and
ffh e FoGad).

Now let ® : E® 0, $ 6, - F 0, & 6, be the isomorphism defined by ® := (r d g) o
Y=t oo (idpge, ®g~'), where 7 : 0, & F — F & 0, is the canonical isomorphism and
g :G® G — 0, is the isomorphism from above. Then we have:

(B@id®id)o f*® =
—(id® B @ f'g) 0 (") o frpo(id@id @ f(s7),

and this is homotopic as an isomorphism to

(idoB® fg)oledp ' @ido(idoidd f*(g~")) =
=(a®id @ id).

Thus the pairs (E,«) and (F, 8) represent the same element in ®(£4(f)) and hence ¢ is
injective. O

7.6. Next we define amap u, : ®,(£4(f)) — [Cy, BGL(n, A)]o for any n, where C denotes
the mapping cone of f, as follows: Clearly any pair (F, ) is equivalent to a pair in which the
bundle is of the form g* EGL(n, A)[A"] (c.f.2.25 and 2.27) and since any isomorphism of A-
bundles is an 1somorphism of associated bundles and thus induced by a unique isomorphism
of the corresponding frame bundles (c.f. 2.24 and 2.27) we may assume that we have given a
smooth map g : Y — BGL(n, A) and an isomorphism « : f*g* EFGL(n, A) = X x GL(n, A)
of principal bundles.

Now the composition of the canonical maps f*¢g*EGL(n, A) = g* EGL(n, A) > EGL(n, A)
with a~! and the canonical section z + (z,id) of the bundle X x GL(n, A) is a smooth map
s: X > EGandpos=gof, where p: EGL(n, A) > BGL(n, A) is the projection of the
universal bundle. Now the space EGL(n, A) is contractible and thus s is homotopic to the
constant map (1,¢d,0,id,0,4d,...). The image of a nullhomotopy under p is a homotopy
between g o f and the constant map %, where x denotes the base point of BGL(n, A) so it
factors to a smooth map H : CX — BGL(n, A) which maps the peak of the cone to the
base point and coincides on the subspace X with go f.

Recall that the mapping cone C; of f is defined as the push out

x v

! !

CX —— C

Thus the maps g and H induce a smooth base point preserving map Cy — BGL(n, A) the
homotopy class of which we assign to the pair (¢* EGL(n, A), a).
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7.7. Lemma. The map u, defined in 7.6 above is well defined.

Proof. We keep the notation of 7.6 and we write G for GL(n, A). Let us first fix ¢ and a.
Then we have to show that the definition does not depend on the choice of the nullhomotopy.
So let us assume that hq, hs : CX — EG are smooth maps which both restrict to s on X and
map the peak of C'X to the point (1,id,0,:d,0,id, ...). There is a natural inclusion X+ —
C'X which restricts to the natural inclusion on X and maps the poin ¥ to the peak of CX.
By assumption the two maps hy; and hs define a smooth map hy Uhs : CX Ux+ CX — EG
Which is again homotopic to the constant map (1,id,0,id,...). Thus there is a homotopy
h:(CXUx+ CX)x T — EG such that h(z,0) = (hy Uhs)(z) and h(z,1) = (1,id,0,4d, . ..).
By cartesian closedness we have (CX Ux+ CX) x I = (CX x I)Ux+xs (CX x I) and thus
from h we get two homotopies hi, hr; CX x I — EG which coincide on the subspace X T x I
and satisfy h; lcxx{o} = h; and h; |CX><{1} is the constant map (1,:d,0,4d,...). Now let
v € C*®(R,I) be a smooth increasing map such that y(t) = 0 for ¢ < ¢ and 'y(t_) =1 for
t>1—c¢, Where ¢ is some small positive number and define H : X x I x I — EG by

:1

ha(m(a, ), (1 - s)y(41)) t<1/4
(r(as+ (L= sy = 1), (1-5)  1/4<t<1/2
o(r(e, 1= (1= s)y(4t = 2),(1—s))  1/2<1<3/4
ha(m(a. ), (1— s)(1 - y(4¢ - 3))) 3/4<t,

>t

'fl(m,s,t) =

o

™

where m : X x I — CX denotes the canonical projection. One immediately checks that
this map is well defined and smooth. Moreover by construction 72(:15, 0,t) is independent of
z and thus the map # factors to a smooth map # : CX x I — EG which is obviously a
homotpy between h; and hs. On the subspace XT x T this homotopy behaves as follows:
On X x I it equals s o pry while the point T runs through a curve starting and ending at
the point (1,4d, ...) and then runs the same curve backwards. Clearly this map is smoothly
homotopic relative to X+ x {0,1} to the map which equals s o pry on X x I and the
constant map (1,id,...) on z* x I. Now one easily verifies that (CX, XT) is a smooth
NDR-pair, and thus we conclude from lemma 6.16 that there is a homotopy H of base
point preserving maps between hq and hs which restricts to sopr; on X x I. Thus together
with the map gopr; : Y x I — BG the mappo H : CX x I — BG induces a smooth map
C; x I — BG which is by construction a smooth base point preserving homotopy between
the maps constructed using h; and hsy, respectively.

So let us now assume that (g, @) and (g, &) give rise to equivalent pairs. Then there is an
isomorphism ¢ : ¢* EG — g* EG such that a o f*¢ and « are homotopic as isomorphisms
between f*¢*EG and X x G. Thus we get an isomorphism ¥ : f*¢*FG x I - X x I x G
of principal bundles over X x I which restricts to a on f*¢* EG x {0} and to & o f*¢ on
f*9g*EG x {1}. On the other hand by 2.22 there is a homomorphism ® : ¢* FG x [ — EG
of principal bundles which restricts to p*g on ¢* EG x {0} and to p*§o ¢ on ¢* EG x {1}.
Now we define a map h : X x I — EG by h(z,t) := (® o (u x id) o W~1)(z,¢,id), where
u: f*g*EG — g*EG is the canonical map. Then clearly h|x {0} is the map constructed
from a in 7.6 and from the commutative diagram

f*9*EG —— ¢*FEG
lf"w l%"
FPEG — s G EG

we conclude that h|x {1} is the map constructed from & as in 7.6. Since EG is contractible

the map h is homotopic to the constant map (1,4d,0,1d,0,id,...), so there is a map H
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X x I x I — EG such that f[(m,O,t) = (1,4d,0,4d,...) and ﬁ[(m,l,t) = h(z,t). Since
lff(:t:, 0,t) is independent of z this map factors to a smooth map H : CX x I — EG and
by construction the map p o H together with the map Y x I — BG induced by @ defines
a smooth map Cy x I — BG which is a homotopy of base point preserving maps between
the maps associated to the two pairs. O

7.8. Theorem. For any n € N the map u, : ®,(£4(f)) = [Cy, BGL(n, A)]o is bijective.
Together these maps induce an isomorphism of abelian groups ®(E4(f)) = [Cy, BGL(A)]o.

Proof. Step 1: u,, is surjective.

Let g : Cy — BG be a base point preserving smooth map where as before we write G for
GL(n,A). Nextlet j: Y - Cf, k: CX - Cp and m: X x I - CX be the canonical
mappings and let ¥ € C*°(R, ) be a smooth increasing map such that y(¢) = 0 for ¢t < ¢
and y(t) = 1 for t > 1 — £, where ¢ is some small positive number. Define ¢ : X x I - BG
by ¢(z,t) := (g ok om)(x,v(t)) and set P := (g o j)* EG. Then by construction we have
¢(z,0) = #, the base point of BG and ¢(z,1) = g o j o f, so we can identify f*P with a
subbundle of ¢* FG. Moreover ¢ satisfies the conditions of 2.11, so there is an isomorphism
® . f*P x I — ¢"EG of principal bundles over X x I which restricts to the natural
inclusion on f*P x {1}. By construction the map (p*¢ o ®)|xx0} @ f*P — EG has
values in the fiber over the base point of BG which is canonically diffeomorphic to G and
thus together with the projection of f*P it defines an isomorphism « : f*P — X x G of
principal bundles. Now consider the smooth map H : X x I — EG defined by H(z,t) :=
(p*¢ o ®)(a~!(x,id),t). Then by construction we have H(z,0) = (1,id,0,id,...), while
H|xx{1} is the map constructed from « as in 7.6. Thus the map associated to the pair
(P[A™], ) is induced by goj on Y and w(z,s) — (g o k)(7(z,¥(s))), and one immediately
verifies that it is homotopic to g as a base point preserving map.

Step 2: Assume that h : Cy — BG is the smooth map associated to a pair (¢, a) and
let @ : f*¢*EG — X x G be the isomorphism constructed from h as in Step 1. Then
we show that (g, ) and (g, &) are equivalent. First note that the isomorphism a can be
reconstructed from the corresponding map s : X — EG asfollows: Let 7 : EGxpg FG — G
be the smooth map constructed in 2.3. Then a short computation shows that a(z) =
7(s((g o f)*p(2)),p* (9 o f)(2)), where (g o f)*p is the projection of the bundle f*¢* EG and
p*(go f): ffg"EG — EG is the canonical map. Conversely given a map s as above with
pos=go f the formula above defines an isomorphism f*¢*EG — X x G.

Now let s, : X — EG be the maps corresponding to a and &, respectively. From
the construction above we get a nullhomotopy H : X x I — EG with f](m, 1) = §(z).
On the other hand from 7.6 we get a nullhomotopy H with H(z,1) = s(z) which clearly
can be reparametrized in a way such that po H = po H : X x I — BG. Thus we
can define 0 : X x I = G by o(z,t) := T(H(;r,t),ﬁ(m,t)). Since both H and H are
nullhomotopies we get o(z,0) = id and by construction we have s(z) = §(z) - o(z, 1) where
the dot denotes the principal action. Now we define an 1somorphism of principal bundles
®: f*¢g*EGx T — X xIxGby ®(z,t) := (2,t,(c(x, 1))~ - a(z)), where z = (g o f)*p(z).
Then one immediately verifies that this is a homotopy between & and « and thus (g, @) and
(g, &) are indeed equivalent.

Step 3: To complete the proof it suffices to show that two pairs are equivalent if theire
associated maps are homotopic as base point preserving maps. Recall that by cartesian
closedness Cy x I is the push out

XxI X yur

! s

CX x I 2% ¢px 1.
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So assume that we have given a smooth map H : C; x I — BG such that H(C; x {1}) =
H(k(m(z,0)),t) = %, which is a homotopy between the maps associated to two pairs (g, @)
and (g, &). Without loss of generality we may assume that H satisfies the conditions of 2.11
(i.e. can be constantly extended to C; x R). Put P := (H o (j x id))*EG. By construction
we have H o (j x id)|y w0} = g, so by 2.11 there is an isomorphism of principal bundles
® : g*EG x I — P which restricts to the natural inclusion on ¢* EG x {0} and we define an
isomorphism ¢ : g* EG — §*EG as ¢ := ®|gepaxq1}-

Next let v € C*°(R,T) be the map used in step 1, and define ¥ : X x I x I — BG
by w(z,5,8) = H(k(n(x,7(5))),1). Then we have $lxxi1yxr = H o ((j o f) x T), 50 by
2.11 there is an isomorphism ¥ : f*P x I — ¢*FEG which restricts to the identity on
J*Px{1}. On the other hand ¢(z,0,%) = * and so (p*1/o¥)|s+ px {0} induces an isomorphism
Q: f*P = X xIxG and clearly Q restricts to the isomorphism 3 constructed from H|c, x {0}

as in step 1 and to B constructed from H|c, {1} as in step 1 on f*Plxy{o} = ¢"FG and
J*Plxx{1} = §° EG, respectively. Now ® induces an isomorphism (fxid)*® : f*¢* EG xI —
f* P and thus we get an isomorphism Qo f*® : f*¢g* FGx I — X x I x(G, and by construction
this i1s a homotopy of isomorphisms between § and B o f*p. In view of step 2 this proves
that (g,a) and (§, &) are equivalent.

So it remains to discuss the compatibility of the maps u,, with the algebraic structures.
One easily verifies that the map [Cy, BGL(n, A)]o x [C¢, BGL(m, A)ly — [Ct, BGL(n +
m, A)]o which induces the addition on [Cy, BGL(A)] is induced by the obvious analogs
e : BGL(n,A)x BGL(m, A) = BGL(n+m, A) of the map constructed in the proof of 6.19.
Let us also denote by e the corresponding map EGL(n, A) x EGL(m, A) - EGL(n+m, A).
Let (g, «) and (§, &) be two pairs in dimensions n and m, respectively and consider the map
G : Cy - BGL(n 4+ m, A) induced by their sum. Then the composition of G with the
natural map Y — Cy clearlyis g @ §. Let s : X — EGL(n, A) and §: X — EGL(m, A) be
the maps constructed from « and & as in 7.6. Then clearly se§: X — EGL(n+ m, A) is
the map constructed from a @ & as in 7.6. Consequently given nullhomotopies A and h for s
and § the map h e hisa nullhomotopy for the map s e 5. Thus we see that we can construct
the map associated to the sum of the pairs as the e—product of the individual maps. This
shows that the maps u,, induce a map u : ®(€4(f)) — [Cy, BGL(A)] and that u is a group
homomorphism. O

7.9. In order to define homomorphisms between absolute and relative K—groups it 1s more
convenient to work with the map f* : X+ — Y+ associated to f (c.f. 6.13). So let Cy+ be
the mapping cone of f7.

The inclusion X — X7 induces an inclusion CX — C(X*) and together with the
inclusion Y — Yt this map defines a smooth map i : C; — C+ which is base point
preserving if we choose for both spaces the ‘peaks’ of the cones as base points.

Proposition. The map i : Cy — C+ defined above is a smooth homotopy equivalence of
pointed smooth spaces.

Proof. First note that by cartesian closedness the space X1 x I is the coproduct of X x I
and {zT} x I. Thus we can define a smooth map X+ x I — CX by requiering that it is
the natural map on X x I and maps {#%} x I to the peak of CX. Together with the map
Y+ — C} which is the natural map on Y and maps y* to the base point of C} this map
induces a base point preserving smooth map j : Cy+ — C}, and one immediately verifies
that joiis the identity. So it remains to show that ioj : Ct+ — Ct+ is smoothly homotopic
to the identity as a base point preserving map.

Consider the map X+ x I x I — X+ x I defined by (z,s,t) = (z,s) for z # z* and
(zt)s,t) = (zF,ts), which is smooth by cartesian closedness. Moreover since for all z we
have (z,0,t) — (z,0) this map induces a smooth map C'(X*+) x I — C(X*) and composing
the natural map C(X+) — Cy+ with this one we get a smooth map h : C(X*) x I — C}+.
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On the other hand define a map Y+ x I — C}+ by mapping (y,t) to the image of y under
the canonical map Y+ — Cy+ for y # y* and mapping (y*,t) to h(z*, 1,¢). Then this map
is smooth by cartesian closedness and since again by cartesian closedness the diagram

Xtxl —— Y+txI

! !

C(XH)x T —— Cpa x I

is a push out it induces together with A a smooth map H : Ct+ x I — Cy+ which is easily
seen to be a homotopy of base point preserving maps between i o j and the identity. O

7.10. Corollary. For any convenient algebra A and any smooth map f: X =Y between
base spaces there is a canonical isomorphism of abelian groups K (€a(f)) = K§(Cj+).

Proof. From 7.8 we get an isomorphism K'(£4(f)) = [C, BGL(A)]o. So from 7.3 we see
that K(€a(f)) = [Cy, Ko(A) x BGL(A)]o. Next by 7.9 we get an isomorphism [C, Ko (A) x
BGL(A)]o = [Cy+, Ko(A) x BGL(A)]o and thus the result follows from 6.20. O

7.11 Definition. In anlogy to 6.13 we now define K="(€4(f)) := R’A(S"(Cﬁ)) for n > 0.
(Note that in view of 6.15 we could also use the reduced suspension.)

From the above description one immediately sees that the relative K—groups have func-
torial properties as follows: Suppose that

x vy

¢| |v

Xty
is a commutative diagram of base spaces and smooth maps. Then C(¢T) and ¢* in-
duce a base point preserving smooth map Cr+ — Cf+ and thus group homomorphisms

K=™(&a(f)) = K=" (€a(f)) for any n > 0.

On the other hand for a homomorphism ¢ : A — B between convenient algebras
IN{L,,(S”(CJw)_) is a group homomorphism K~"(E4(f)) = K" (€a(f)).

Moreover we also get homomorphisms between absolute and relative K—groups as follows:
The natural map Y+ — C}+ induces maps S”(Y+) — S"(Cy+) and consequently homo-
morphisms K=" (E4(f)) = K;"(Y) for n > 0. For n = 0 we compose this map with the
isomorphism K 4(Y+) — K4(Y) from 6.21 to get a homomorphism K (£4(f)) = Ka(Y).

On the other hand the map ¢ : Cy+ — S(X*) constructed in 3.41 (this is the map induced
by contracting Y to a point) induces smooth maps S™(C+) — S"+1(X*) and thus group
homomorphisms K"~ (X) = K="(Ea(f)) for all n > 0.

7.12. With the aid of the relative K—groups we can now also give a new interpretation
of the higher K—groups. Let X be a base space and let i : X — C'(X) be the inclusion.
Since this map is a smooth cofibration we conclude from 3.14 that the mapping cone C;
of i is smoothly homotopy equivalent to S(X). Thus from 7.8 and 6.19 we conclude that
On the other hand for a pointed base space let [X, GL(n, A)]y be the set of all pointed
smooth homotopy classes of base point preserving smooth maps from X to the smooth
group GL(n, A), where as the base point of GL(n, A) we take the identity. The smooth
homomorphisms GL(n, A) - GL(n+1, A) induce maps [X, GL(n, A)]o — [X,GL(n+1, A)]o
and we denote by [X, GL(A)]y the direct limit of the so obtained inductive system. Clearly
the pointwise multiplication of smooth maps induces a group structure on [X, GL(A)]o.
Similarly for an arbitrary base space we define [X, GL(A)], which is also a group.
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7.13. Theorem. For any pointed smooth space (X, zo) there is a natural isomorphism
Ka(SX) =[X,GL(A)o. In particular [ X, GL(A)]o is always an abelian group.

Proof. For any n > 0 We define a map v, : [X,GL(n, A)] = ®,(€a(7)) by assigning to a
smooth map f : X — GL(n,A) the pair (CX x A" ay), where ay : X x A" - X x A"
is the isomorphism defined by ay(z,u) := (z, f(z)(u)). Then one easily shows that for a
map g : X — GL(n, A) which is smoothly homotopic to f the isomorphism e, is smoothly
homtopic to ay in the space of isomorphisms and so v, is well defined. Moreover from the
defintions of the connecting maps one immediately concludes that the maps v, induce a
map v : [X,GL(A)] = ®(£a(7)).

Next we show that each map v, is surjective. So let (E,a) be a pair representing a
class in ®,(€4(7)). Since CX is smoothly contractible the bundle F must be isomorphic
to CX x A", so without loss of generality we may assume that F = C'X x A”. Then
clearly ©*F = X x A", so « is an automorphism of X x A"™. The second component of
a is then a smooth map X+t x A" — A™ and we denote by a : X — C(A", A™) the
map associated to « via cartesian closedness. Then by definition & has values in subspace
of invertible A-module homomorphisms and since a~! is smooth we conclude that & is
smooth as a map X — GL(n, A). Now let f : X — GL(n, A) be the smooth map defined
by f(z) := a(z) - (&(zo))~'. Then af = aoi*p, where p : CX x A" — CX x A" is the
isomorphism defined by ¢(z,u) = (2, (&(20))~*(u)). Thus by definition the pairs (E, a) and
(CX x A", ay) are equivalent and the map v, is surjective.

On the other hand assume that f,¢ : X — GL(n, A) are smooth maps such that the
pairs (CX x A" ay) and (CX x A" a4) are equivalent. Then there is an isomorphism
p:CX x A" - CX x A" such that ay and a4 o i*p are homotopic as isomorphisms. The
isomorphism ¢ can be viewed as a homotopy of isomorphisms between i*¢ = |x and the
isomorphism @ : X x A” = X x A" defined by (2, u) = (z, pra(e(*, u))) where * denotes
the ‘peak’ of C'(X*+). So a; is homotopic as an isomorphism to a, o @ and thus there is an
isomorphism H : X x I x A” — X x I x A™ which restricts to a; over X x {0} and to ayo@
over X x {1}. As above we construct from H a smooth map H : X x I — GL(n, A) and
by construction H restricts f on X x {0} and to g - ¢ on X x {1} where ¢ is some constant
map. But then the map # : X x I — GL(n, A) defined by H(z,t) := f{(m,t) . (ﬁ](mo,t)_l)
is easily seen to be a smooth base point preserving homotopy between f and g. Thus each
map v, 1s bijective and so v is bijective.

Let us now show that v is a group homomorphism. Let f : X — GL(n,A) and g : X —
GL(m, A) be smooth maps. To compute the product we may without loss of generality
assume that n = m and then the product is represented by the map X — GL(2n, A)
defined by z — (f(z) - g(x)) ® IdA™. On the other hand one easily computes that the map
corresponding to the sum of the pairs (CX x A” ay) and (CX x A", o) is given by z —

’ . . f-9 0 _(F O g 0
f(z)®g(z). In matrix notation the maps correspond to < o ra)=Vo 14 0 TId

f o0y _(f O Id 0 . .
and <0 g)=\0 1 0 g) respectively. Now for any (z,t) € X x I the matrix

cos(t)g(z) sin(t)g(x .. . Ly - cos(t)g(z)~t —sin(t)Id
<_Si(n)(‘3)(lc)l coi(%];d)> is invertible with inverse <5ingtgzgmg_l cos(t())fd ) Thus

sutably reparametrized this formula defines a smooth homotopy between (‘g Iod) and

<—(}d ‘8) In the same way one constructs a smooth homotopy between <Iod 2) and

0 g
—Id 0

and multiplying with the pointwise inverse of the path of the base point under such a

. Consequently the maps corresponding to the two products are freely homotopic
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homotopy we get a base point preserving homotopy, so v is a group isomorphism. O
7.14. Corollary. There is a natural isomorphism of bifunctors K;'(X) = [X, GL(A)].

Proof. By defintion K;'(X) = K4(S(X1)), so by 7.13 we get K;'(X) = [Xt GL(A)].
Clearly the obvious isomorphisms [X*, GL(n, A)]o = [X, GL(n, A)] induce an isomorphism
[X+,GL(A)]o = [X,GL(A)] and the result follows. O

7.15. Corollary. For any convenient algebra A and any n > 0 there is an isomorphism

Kn(A) = [S"~1, GL(A)o.
Proof. This follows immediately from 7.13 and 6.24. O

7.16. Theorem (The long exact sequence of a smooth map). Let f : X — Y be
a smooth map between base spaces and let A be a convenient algebra. Then there is a long
exact sequence of abelian groups and group homomorphisms

o= KPHX) = K7™(EalS)) —

K3"(f)
——

— K" (Y) K;"(X)— ...

S KN (X) = K(Ea(f)) — KS(v) 249, ko (x)

which 1s natural in f and A.

Proof. For any k the space BGL(k, A) is smoothly path connected since it is the smooth
image of the contractible space FGL(k, A). Thus we can apply the Puppe sequence 3.43 to
the map f*: Xt — Y+ and BGL(k, A) to get an exact sequence of pointed sets

(1) ... = [S"FY(XH), BGL(k, A)] 29 (57 C s, BGL(E, A)] 225,
S [SP(YH), BGL(k, A)] D (57(X ), BGL(K, A)] — . ..
— [S(X*), BGL(k, A)] 5 [Cy+, BGL(k, A)] L
v, BGL(k, A) 2 [x, BAL(, A)]

Clearly the Puppe sequence is natural for maps in the second variable, so using the maps
BGL(k,A) —» BGL(k + 1, A) constructed in 6.11 we get a large commutative diagram
with exact rows. Thus passing to the direct limit we get an induced sequence as (1) with
BGL(k, A) replaced by BGL(A) and one easily checks that this sequence is again an ex-
act sequence of pointed sets. By 6.11 for any base space 7 there is a natural isomor-
phism [Z7, BGL(A)] = K (7) and by 6.8 for smoothly path connected base spaces we have
KY(7) = R’A(Z). Since the suspension over any smooth space is clearly smoothly path
connected we thus get the claimed sequence in all but the last three terms where we have:

= KL (CF) = KL (V) = KL (XH).
Now consider the sequence

4+
0= [Chy, K(A)]o = [VF, K (Ao L5 X+, K(A)]o.
Since the image of Y in C'y+ meets any path component this sequence is exact at [C’J’,+, K(A)o.

On the other hand the map X — C¢+ maps th whole space X7t to the path component
of the base point of Ct+, while a function Y+ — K(A) which composed with f* is the
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zero function can be extended by zero on C'(X*) to a function on C¢+ and thus the whole
sequence is exact. So we can add these three terms to the last three terms in the sequence
above without destroying the exactness. Using 6.20 we conclude the the last three terms
now look as

c o Ka(CF) = Ka(Y1) = Ka(XT),

so by 6.21 we get the claimed sequence. Naturality of the sequence follows immediately
from the obvious naturality properties of the Puppe sequence. 0O

7.17. Next we discuss the relative K—group associated to an algebra homomorphism. So
let X be a base space and let ¢ : A — D be a bounded homomorphism between convenient
algebras. Then ¢ induces an additive functor ¢, = £,(X) : £a(X) = Ep(X) (c.f. 5.14).
Thus by definition the elements of I'(£,(X)) are triples (E, F,a) where E and F are A-
bundles over X and a is an isomorphism of D-bundles between ¢, (E) and ¢, (F). To
such a triple we assign a locally constant function X — Ky(A) by assining to any point
the difference in Ky(A) of the classes of the fiber of E and the fiber of F' over this point.
Obviously this induces a group homomorphism r : K(£,(X)) — H"(X, Kq(A)). Now by
6.4 ¢ induces a group homomorphism Kg(¢) @ Ko(A) — Ko(D) and thus also a group
homomorphism Ko(p). : HY(X, Ko(A4)) = H°(X, Ko(D)). Since the bundles p.(FE) and
¢«(F) are by definition isomorphic the map r has in fact values in Ker(Kg(¢)«) and we
define K'(€,(X)) to be the kernel of r.

Now let f be an element of Ker(Ko(¢)«). Then we assign to f an element of K(&,(X))
as follows: Let X;,...X, be the path connected components of X on shich f is nonzero.
Then by 6.2 for any ¢ we can write f(X;) = [P;]—[Q:] € Ko(A), where P; and @Q; are finitely
generated projective right A-modules. Now let E be the A-bundle over X which is over X;
given by X; x P; and F the one given by X; x (); while over the components on which f
is zero both bundles are zero, i.e. the identitiy map. Then one immediately sees that this
defines a group homomorphism Ker(Ky(¢)«) = K(E,(X)), which is right inverse to r, so

0— K'(€,(X)) = K(€,(X)) = Ker(Ko(e)s) = 0

~

is a split short exact sequence of abelian groups and thus there is an isomorphism K (&, (X))

K'(&p(X)) @ Ker(Ko(p)«).

7.18. As before we next want to interpret the group K'(&,(X)) using homotopy theory
and this needs an intermediate step. Consider the set of all pairs (F,a), where E is an
A-bundle over X with fiber A" and a is an isomorphism of D-bundles between ¢, (F) and
X x D"™. Two such pairs (F, «) and (E’, ') are said to be equivalent if and only if there is
an isomorphism f : E — E’ such that a and o’ o ¢, f are homotopic as isomorphisms from
v« (E) to X x D™. By ®,(&,(X)) we denote the set of all equivalence classes.

Now (E,a) — (E & 61, a @ id), where 61 denotes the trivial ‘line’ bundle X x A over X
defines a map ®, (£, (X)) = Prnt1(Ep (X)) and we define ®(E,(X)) to be the direct limit
of the so obtained inductive system. Next ((E, a), (F,3)) = (E & F,a & ) defines a map
D, (E5(X)) X P (Ep(X)) = Prim(Ep(X)) and as in 6.9 one shows that this induces the
structure of a commutative monoid on ®(&,(X))

Now we define a map o, : ®,(E,(X)) = K'(E,(X)) by on(E,a) = d(E, X x A, a).
This is easily seen to be well defined and clearly it induces a monoid homomorphism o :

D(Ep (X)) = K'(Ep(X)).

7.19. Proposition. The homomorphism ¢ defined above is bijective. Thus ®(E,(X)) is
an abelian group.

Proof. Let (E, F,a) be an element of I'(£, (X)) and let us write 6y for the trivial A-bundle
X x AF over X. By 5.6 there is an A-bundle G over X, a natural number n and an
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isomorphism f : F @& G — 6, of A-bundles and clearly the tripel (E, F, «) is equivalent
to (E® G, F& G, adid,,e) which in turn is equivalent to (E & G, 0, ¢« f o (a @ id)).
Now let Xy,..., Xg be the connected components of X and let P; be the fiber of £ & G
over X; for any i. Then if the class of the above triple in K (£,(X)) lies in the subgroup
K'(£,(X)) then for any ¢ the modules P; and A" represent the same class in Ky(A). Thus
for any ¢ there is a finitely generated projective right A-module ); such that P; & Q; =
A" @ @Q;. Now for any ¢ we can choose a module R; such that Q; & R; = A™ for some
fixed m. Thus we get P; & A™ = A"+™ for each i. Now the above triple is equivalent to
(E®G®Om,0nim, (psf o (adid)) @ id) which by construction is in the image of o since
E ® G ® 0, has fiber At™  and thus o is surjective.

To prove that o is injective assume that F and F' are A-bundles over X with fiber A" and
A™ respectively, such that (F,0,,a) and (F, 0, 3) are equivalent. Then by 7.2 we have
d(E @ 0pm,0, ® F,a® B~t) =0, so there are elementary triples (G, G,+) and (L, L, A) such
that the triples (E @0, G, 0,5 F &G, a®B~1d5) and (L, L, \) are isomorphic. By 5.6 we
can find an A-bundle G’ over X, a natural number p and an isomorphism ¢ : G®G' — 6, of
A-bundles. Then clearly the triple (E® 0, GG, 0,8 F&Gd G ad ' dydidy, o)
is isomorphic to (L & G', L & G', A @ idy,, ). Thus by definiton there are isomorphisms
fiEFD0, GG - LG andg: 0, F® G DG — LG such that p.go(ad
Bl @y dids,g) = (A idy,a) o pxf. Since by construction v and A are homotopic
to identity mappings as isomorphisms we may conclude from this that ¢.(g71) o ¢. f and
(o ® B~! @ idgge) are homotopic as isomorphisms between ¢.(E & 6, & G & G') and
ei(0p ®F DG B G).

Now let h : E® b, ® 60, - F & 6, P 0, be the isomorphism defined by h := (7 @ ) o
g~ to fol(idrgs, ®v™1), where 7 : 0, ® F — F & 6, is the canonical isomorphism and
Y : G &G — 6, is the isomorphism from above. Then we have:

(B®id®id) o p.h =
=(id® B p«pp) 0 90*(9_1) o @xf o (id D id ® o ("/)_1)),

and this is homotopic as an isomorphism to

(1d @ B @ pab) o (a® B  @id) o (id @ id ® g (v™1)) =
=(a @ id & id).

Thus the pairs (E, ) and (F, ) represent the same element in ®(£,(X)) and hence o is
injective. O

7.20. Before we can proceed we have to discuss the functor &£,(X) in terms of principal
bundles and classifying spaces. Let G and H be smooth groups, ¢ : G — H a smooth
homomorphism and p : P — X a smooth principal G-bundle. Via 1) we define a smooth
left action of G on H by g-h := ¢(g)h and we form the associated bundle to P with fiber H
with respect to this action (c.f. 2.25). So we have to consider the space of orbits of the action
(z,h) -g=(z-g,97' -h) on P x H, where on P we have the principal right action. From
the proof of 2.26 we see that taking an atlas (U;, u;) of P with smooth transition functions
ui;j : Usj — G we get and atlas (U;, @;) for P[H] with the same transition functions, but by
definition of the action this atlas defines the structure of a smooth principal H-bundle on
P[H] and we denote this bundle by . P.

Now let P — X be a smooth principal G—bundle, @ — Y a smooth principal H-bundle.
We define a y-homomorphism f : P — @ to be a fiber respecting smooth map which is
equivariant over ¢ for the principal right actions, i.e. we have f(z - g) = f(z) - ¥(g). Note
that since f is fiber respecting it covers a smooth map f: X —Y
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In the construction of the associated bundle P[H] we have the natural map ¢ : P x
H — P[H] = ¥« P and we define a map ¢p : P — ¥.P by ¢¥p(z) = q(z,¢), where ¢
denotes the unit element of H. Clearly this map is smooth and fiber respecting and since
q(z-9,¢) = q(z,9 - ¢) = q(z,%(g)) we conclude that ¢p is a y~homomorphism covering the
identity. This ®y)~homomorphism is universal in the following sense:

7.21. Proposition. Let f: P — @ be a yp-homomorphism. Then there is a unique smooth

homomorphism of principal H-bundles f : . P — Q such that f = fo{p.

Proof. Consider the map P x H — @ defined by (z,h) — f(z)-h where the dot denotes the
principal right action. Since f is a y~homomorphism this map is immediately seen to be
invariant for the G—action on P x H and thus it factors to a smooth map f : P[H] — @ which
is by construction a smooth homomorphism of principal bundles and clearly f oyp = f.
Uniqueness of f immediately follows from the fact that the image of P under ¢¥p meets any

fiber of ¥, P. O

7.22. Using this universal property we can now extend . to a functor defined on the
category of principal G-bundles as follows: Let f : P; — P5 be a smooth homomorphism of
principal G-bundles. Then clearly ¢¥'p, o f : P — %, P2 is a $p)~homomorphism and thus it
induces a unique smooth homomorphism of principal H-bundles ¢, f : ¥« P1 — 1. P> and
obviously this defines a functor.

The smooth group homomorphism v induces a ¥»~homomorphism Evy : EG — EH which
covers a smooth map By : BG — BH. Now let f : X — BG be a smooth map. Then
the composition of Fi with the canonical map f* EG — EG together with the projection
*EG — X induce a —homomorphism f*EG — (By o f)* EH. Thus by 7.21 there is a
unique induced principal bundle homomorphism ¢, (f* EG) — (B o f)* BH which clearly
is an isomorphism, and we will identify these two bundles from now on. In particular this
shows that there is a natural isomorphism ¢, EG — (ByY)*EH.

Now let us return to the case of a bounded algebra homomorphism ¢ : A — D between
convenient algebras. The convenient functor P(¢) constructed in 4.35 induces for any finitely
generated projective right A-module P a smooth homomorphism between the automorphism
groups of P and P(¢)(P). In particular we get smooth homomorphisms ¢, : GL(n, A) —
GL(n, D) for any n. For an A-bundle of the form F = f*EGL(n, A)[A"] over X one
easily shows that there is a natural isomorphism &£, (X)(E) = (¢n)«(f*EGL(n, A))[D"].
Moreover let F' = ¢g*EGL(n, A)[A"] be another bundle of this form and let ¢ : £ —
F' be an isomorphism. Then i 1s induced by a homomorphism of principal bundles 1/; :
f*EGL(n,A) — g*EGL(n,A) and one easily checks that £,(X)(¢) is the isomorphism
induced by (gon)*l/;.

7.23. For any n > 0 the smooth group homomorphism ¢, : GL(n, A) = GL(n, D) induces

a smooth map B(y¢,) : BGL(n, A) = BGL(n, D). Let F,(¢) be the homotopy fiber of this
smooth map. Recall from 3.21 that F,(¢) is defined by the pullback

Fal¢) — P(BGL(n, D))

! !

BGL(n, A) 22 BGIL(n, D)

where P denotes the path fibration. Now we define a map u, : ®,(&,(X)) = [X, Fa(e)] as
follows: Asin 7.6 we may restrict to pairs determined by a smooth map f : X — BGL(n, A)
and an isomorphism a : ¢ (f*EGL(n, A)) = X x GL(n, D).

Recall from 7.22 the natural isomorphism

e« (f"EGL(n, A)) = (B(gn) o f)* EGL(n, D).
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Thus there is a homomorphism of principal bundles ¢ : . (f* EGL(n, A)) - EGL(n, D)
which covers the map B(pp) o f © X — BGL(n,D). Now define s : X — EGL(n, D)
as s(z) = (a"1(z,id)). Since EGL(n,D) is contractible the map s is smoothly ho-
motopic to the constant map (1,id,0,id,...), so there is a smooth map H : X x I —
EGL(n, D) such that H(z,0) = (1,id,0,4d,...) and H(z,1) = s(z). Then the map
h : X — C%(I,BGL(n,D)) which is associated via cartesian closedness to the map
poH : X x I — BGL(n,D) has values in the subspace P(BGL(n, D)) and is smooth
as a map to this space by definition of the smooth structure. Moreover by construction the
maps f and h induce a smooth map X — F,(y), the homotopy class of which we assign to
the pair determined by f and a.

7.24. Lemma. The map u, defined above s well defined.

Proof. Let us first fix f and a. Then we have to show that the definition is independent
of the choice of the nullhomotopy H. So let us assume that Ho, H1 : X x I — EGL(n, D)
are smooth maps such that H;(z,0) = (1,id,...) and H;(z,1) = s(z) for ¢ = 0,1. By
the first condition the maps factor to smooth mappings H; : CX — EGL(n, D). Then as
in the proof of lemma 7.7 we conclude that there is a smooth homotopy H : CX x [ —
EGL(n, D) between Ho and H; which restricts to s opry on X x I and maps the fiber over
the ‘peak’ of CX to the point (1,id,...). Now we define H : X x I x I - EGL(n, D)
by H(z,s,t) = 7-l(7r(:b,t),s), where m : X x I — CX is the canonical map. Then by
construction we have H(z,s,0) = (1,4d,...), H(z,s,1) = s(z) and H(z,i,1) = H;(z,1)
for ¢ = 0,1. Consequently the map X x I — C*°(I, BGL(n, D)) associated via cartesian
closedness to poH : X x I x I —» EGL(n, D) has values in the subspace P(BGL(n, D))
and together with the map fopr : X x I = BGL(n, A) it induces a smooth homotopy
between the maps constructed using Hg and H; as in 7.24.

So let us assume that (f,«) and (f, &) give rise to equivalent pairs. Then there is an
isomorphism g : f*EGL(n, A) — f*EGL(n, A) such that & o ¢.g and & are homotopic as
isomorphisms between ¢, f* EGL(n, A) and X x GL(n, D). Thus there is an isomorphism
U f*EGL(n,A) x I = X x I x GL(n, D) of principal bundles over X x I which restricts
toaon . f* EGL(n, A)x{0} and to @op.g on ¢. f*EGL(n, A)x{1}. On the other hand by
2.22 there is a smooth homomorphism of pricipal bundles f* EGL(n, A) x I — EGL(n, A)
which restricts to the canonical map f*EGL(n, A) > EGL(n, A) on f*EGL(n, A)x{0} and
to the composition of the canonical map f* EGL(n,A) - EGL(n, A) with the isomorphism
gon f*EGL(n,A) x {1}. By 7.22 there is an induced homomorphism of pricipal GL(n, D)~
bundles ¢.® : p.f*EGL(n, A) x I = ¢.EGL(n, A) = (Bpy)*EGL(n, D) and we denote
by h: X x I — BGL(n,A) the induced smooth map. Next let u : (B, )*EGL(n, D) —
EGL(n, D) be the canonical map and define ¢ : X x I — EGL(n, D) as o(z,t) := (uo
©s® o U~1)(z,t,id). Then one easily shows that o|xyj0} : X = FEGL(n, D) and o|xxi1}
are the maps constructed from (f, @) and (f, &) as in 7.23. Since EGL(n, D) is contractible
the map o is smoothly homotopic to the constant map (1, id, .. .), so there is a smooth map
H: X xIxI— EGL(n,D) such that H(z,¢0) = (1,4d,...) and H(z,t,1) = o(z,t).
Consequently the map X x I — C*° (I, BGL(n, D)) associated via cartesian closedness to
po H has values in the subspace P(BGL(n, D)) and by construction together with the map
h: X x I = BGL(n,A) it induces a smooth homotopy X x I — F,(¢) between the map
constructed from (f, a) and (f, &). O

7.25. Proposition. For any n > 0 the map u, : ®,(E,(X)) — [X, Fu(p)] is bijective.

Proof. Step 1: First we show that u, is surjective. Solet g : X — F,(¢) be a smooth map.
Let us denote by j : Fn(¢) = BGL(n, A) and k : F,(¢) — P(BGL(n, D)) the canonical
mappings. Next let v € C®(R,I) be a smooth increasing map such that y(¢) = 0 for all
t <eand~y(t) =1forallt > 1—¢, where ¢ is some small positive number. Clearly the map
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¥ X x I > BGL(n, D) defined by ¢(z,t) := k(g9(z))(y(t)) is smooth. On the other hand
let P be the smooth principal GL(n, A)-bundle (jog)* EGL(n, A) over X. By construction
P(z,1) = (Ben 0 jo g)(x) and thus we can identify ¢, P = (By, 0 j o g)* EGL(n, D) with
a subbundle of ¢* EGL(n, D). Moreover by construction i satisfies the conditions of 2.11
and thus there is an isomorphism ® : ¢, P x I — ¢* EGL(n, D) of principal bundles over
X x I which restricts to the natural inclusion on ¢, P x {1}. Next consider the natural
map p*¢ : Y*EGL(n,D) — EGL(n,D). Since by definition we have ¥(z,0) = *, the
base point in BGL(n, D), for every 2 € X we see that (p*¢ o ®)[,, pxfo} has values in
the fiber over x which is canonically diffeomorphic to GL(n, D). Thus together with the
bundle projection ¢, P — X this map induces an isomorphism a : 9. P - X x GL(n, D) of
principal bundles. Now define H : XxI — EGL(n, D) by H(z,t) := (p*¢o®)(a™(z,id),t).
Then by definition of a we have H(z,0) = (1,id,...) while by construction of ® the map
H|xx{1} : X = EGL(n, D) is the map associated to a as in 7.23. Thus H can be used for the
construction of the map associated to the pair (P, a) which shows that the homotopy class
associated to this pair contains the map X — F, (¢) induced by jog : X — BGL(n, A) and
the map X — P(BGL(n, D)) associated via cartesian closedness to ¢ : X xI — BGL(n, D).
Clearly this map is homotopic to g and thus u, is surjective.

Step 2: Let f: X — BGL(n, A) be asmooth map, o : ¢, f*EGL(n, A) > X x GL(n, D)
an isomorphism, g : X — F,(¢) the smooth map constructed from the pair (f, @) as in 7.23
and & : ¢ f*EGL(n, A) = X x GL(n, D) the isomorphism constructed from g as in step 1.
Then as in the proof of 7.8 one shows the the pairs corresponding to (f,a) and (f, &) are
equivalent.

Step 3: To complete the proof it remains to show that two pairs which give rise to
homotopic maps are equivalent. So let H : X x I — F,(¢) be a smooth map such that
H|x {0} is a map associated to a pair (f,a) and H|xq1} is associated to a pair (g, ).
Without loss of generality we may assume that H can be constantly extended to X x R.
Then let P be the smooth principal GL(n, A)-bundle (jo H)* EGL(n, A) over X xI. By 2.11
there is an isomorphism ® : f* EGL(n, A) x I — P which restricts to the natural inclusion
on f*EGL(n, A) x {0} and we can define an isomorphismw : f*EGL(n, A) = g* EGL(n, A)
of principal bundles by w := ®[s. pgr(n,a)x{1}. Next let v € C* (R, I) be the map used in
step 1 and define ¥ : X x I x I — BGL(n, D) by ¢(x,t,s) := k(H(z,t))(y(s)). Clearly
this defines a smooth map. By construction we have ¢(z,t,1) = (Bg, oj o H)(z,t) and
thus we may identify . P = (Bpy o jo H)* EGL(n, D) with a subbundle of ¢* EGL(n, D).
Moreover the map i satifies the conditions of 2.11 and thus there i1s an isomorphism ¥ :
@« P x I = ¢* EGL(n, D) which restricts to the natural inclusion on . P x {1}.

Next by 7.22 the isomorphism ® induces an isomorphism ¢, ® : ¢, f*EGL(n, A) x I —
@« P and we consider the composition p*1) o W|,, pyjo} © @@ @ @u f*EGL(n,A) x I —
EGL(n,D). Since 9(z,t,0) is the base point of BGL(n, D) for all  and ¢ this map has
values in the fiber over the base point which is canonically diffeomorphic to GL(n, D) and
thus together with the bundle projection of ¢, f* EGL(n, A) x I it induces an isomorphism
of smooth principal bundles ¢, f*EGL(n, A) x I — X x I x GL(n,D). Now one easily
sees that restricted to ¢.f* EGL(n, A) x {0} this isomorphism equals & while restricted to
e f*EGL(n, A) x {1} it equals 3 o p.w, where & : . f*EGL(n, A) = X x GL(n, D) and
R e«g*EGL(n, A) = X x GL(n, D) are the isomorphisms constructed from H|x {0} and

H|xx{1} as in step 1. Thus we see that the pairs (f,a&) and (g,B) are equivalent and in
view of step 2 this completes the proof. O

7.26. Recall from 6.11 that there are smooth maps BGL(n, A) - BGL(n+1, A) induced by
the natural inclusion GL(n, A) - GL(n+ 1, A). For the algebra D the corresponding maps
also induce smooth maps P(BGL(n, D)) — P(BGL(n+1, D)). Composing with the natural
maps from F,(¢) we get smooth maps {,(¢) = BGL(n + 1, A) and F,(¢) = P(BGL(n+
1, D)) and one immediately verifies that these maps induce smooth maps F,, (¢) = Fn41(¢)
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for any n € N. Consequently for any base space X there are induced (set) maps [X, Fp(¢)] =
[X, Fnt1(p)] and we define [X, F(p)] to be the direct limit of the so obtained inductive
system. Next one immediately verifies that for any n € N the diagram

Un

0, (Ep(X)) —— [X, Falp)]

! !

q>n+1(gw(X)) uné [van+1(30)]

is commutative and consequently the maps u, induce a bijection u : ®(&, (X)) — [X, F(p)]
and we define the structure of an abelian group on [X, F(¢)] by requiering that u is a group
homomorphism. Thus from 7.19 we conclude that K'(£,(X)) = [X, F(¢)].

7.27. Let us next study the functorial properties of the relative K—group associated to a
bounded algebra homomorphism. First let X and Y be base spaces and let f : X - YV
be a smooth map. Then we get induced set maps f* : [V, F,(¢)] — [X,Fn(¢)]. From
the proof of 7.25 one concludes that the map u, ' o f* o u, : ®,(E,(Y)) = ®,(E,)(X)
is given by mapping the class of a pair (F,a) to the class of (f*FE, f*a), and from this
description it is clear that there is an induced map [V, F(¢)] — [X,F(¢)] which is a
group homomorphism. Next f induces a group homomorphism f* : H°(Y, Ko(A)) —
HO(X, Kqo(A)) and H°(X, Ko(p)) o f* = f* o HY(Y, Ko(p)), so f* restricts to a homo-
morphism Ker(H®(Y, Ko(p))) — Ker(H°(X, Ko(g))). In view of 7.17 this shows that f
induces a group homomorphism K (&,(Y)) = K(&,(X)).

On the other hand assume that A, D, A and D are convenient algebras and that we have
a commutative diagram of bounded algebra homomorphisms:

A—23D

(1) o] |v

A—25D

Passing to the groups GL(n, ) and further to their classifying spaces we get a commutative
diagram

BGL(n, A) —£25 BGL(n, D)

By, | B

BGL(n,A) —2%*5 BGL(n, D)
Moreover using the map P(By,) : P(BGL(n, D)) — P(BGL(n, D)) we get an induced map
Fnlp) = Fu(¢) and thus an induced map (), 9)« : [X, Fn(p)] = [X, Fu(@)]. Again from
the proof of 7.25 One concludes that the map uy ' o (1, 1)x 0 un : B, (E,(X)) = ®n(E5(X))
is induced by mapping the class of a pair (F, @) to the class of (¢. F, ¢¥«a) and from this

description it is clear that there is an induced map [X, F(¢)] — [X, F($)] which is a group
homomorphism. Next the commutative diagram (1) leads to a commutative diagram

H (X, Ko(¢))

HY(X, Kq(A)) HY(X, Kqo(D))

H”(XyKo(w))l lHD(X,Ku(Jf))

HO(X, Fo(A)) 22K, o x fey (D))

and this implies that H°(X, Ko(3)) induces a group homomorphism
Ker(H°(X, Ko(p))) = Ker(H°(X, Ko())).

Using 7.17 we see that the diagram (1) induces group homomorphisms K (£, (X)) = K (E3(X))
for any base space X.
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7.28. Our next task is to construct homomorphisms between absolute and relative K-
groups. The first part of this is very easy: For any n there is the natural map F,(¢) —
BGL(n, A) and thus an induced map [X, F,,(¢)] = [X, BGL(n, A)]. On the level of bundles
this map is given by mapping the class of a pair (E, @) to the isomorphism class of F and
thus there is an induced map [X, F(¢)] = [X, BGL(A)] which is a group homomorphism.
Moreover the inclusion of Ker(H%(X, Kq(¢))) into H(X, Kq(A)) is a group homomorphism
and thus in view of 7.17, 6.11 and6.8 we get a group homomorphism

K(£,(X)) 2 [X, F(p)] ® Ker(H (X, Ko(p))) —
— [X, BGL(A) @ H°(X, Ko(A)) = K$(X)

On the other hand we have to construct a homomorphism K;'(X) — K(&,(X)). For
this we proceed as follows: Consider a base point preserving smooth map f : $'(X*) —
BGL(k,D) for some k € N. Then there is the canonically associated smooth map f:
X+ — Q(BGL(k, D)), the loop space of BGL(k, D) which is also smooth and base point
preserving (c.f. 3.50). The space Q(BGL(k, D)) is just the fiber over the base point of the
path fibration P(BGL(k, D)) — BGL(k, D), so we can view f as a map to P(BGL(k, D))
and together with the constant map to the base point of BGL(k, A) it induces a smooth
base point preserving map Xt — F,(¢). Now one easily checks that this construction
defines a map [S'(X %), BGL(k, D)]o = [XT, Fu(®)]o-

Next recall the constructions of the connecting maps [S'(Xt), BGL(k, D)]o — [S'(X 1), BGL(k+
1, D))o and [X+, Fy(¢)]o = [X T, Frti1(p)]o. In the first case this map is given by mapping
the homotopy class of f to the class of Bil o f, where Bi’ : BGL(k, D) — BGL(k +1,D)
is the map induced by the natural inclusion i : GL(k,D) — GL(k + 1, D), while the
second map is induced by composition with the map F,(¢) = Fnt1(y) which is induced
by Bift : BGL(k,A) — BGL(k + 1, A) and P(BiP) : P(BGL(k, D)) — P(BGL(k + 1, D)).
Next one immediately verifies that (Bi o f)V = Q(Bi) o f and since Q(BiP) is just the
restriction to Q(BGL(k, D)) of the map P(Bi) this easily implies that the maps con-
structed above induce a map [S'(X*), BGL(D)]o — [X*,F(¢)]o. Now from 6.11 and
6.19 we see that [S'(X*), BGL(D)]o = Kp(S'(X*)) and there is an obvious isomorphism
(X, F(p)lo = (£4(X)). On the other hand using 6.15 we see that there is a natural group
isomorphism KBl(X) = IN&’D(S(X"')) — Kp (S’(X*)). Thus it remains to show that the
map Kp(S'(X1)) = K(E,(X)) constructed above is a group homomorphism. In order
to do this we have to express the map in the language of bundles where we have a better
description of the group structures.

By 6.10 and 6.19 every element of f(D(S’(X"')) can be written as [f*EGL(n,D)] —
[S"(X*) x D"] where f : S'(X*) — BGL(n, D) is a base point preserving smooth map.
From the proof of 7.25 and from 7.18 we see that this element is mapped to the class of a
tripel (X x A", X x A" ¢), where ¢ : X x D® — X x D" is an isomorphism which can
be described as follows: Let v € ¢ (R, I) be an increasing function such that v(¢) = 0 for
all t < e and 4(t) = 1 for all t > 1 — £ where ¢ is some small positive number and define
7: Xt xT— S (XYt by 7(z,t) := n(z,y(t)) where 7 : Xt x [ — S’X* is the canonical
map. Now consider the bundle (fo#@)* EGL(n, D). Since f is base point preserving the map
f o @ maps the subspaces Xt x {0} and Xt x {1} to the base point of BGL(n, D) so there
are canonical trivializations of the restrictions of (f o 7)* EGL(n, D) to these subspaces. By
2.11 we thus get an isomorphism ¥ : X x [ x D" — (f o @)*EGL(n, D) which restricts to
the natural inclusion on X x {0} x D™ and ¥ is just the restriction of such an isomorphism
to X x {1} x D™.

Now having given two elements [f*EGL(n, D)] — [S"(X*) x D] and [f*EGL(m, D)] —
[S/(X*) x D™] and corresponding isomorphisms ¥ : X x [ x D™ — (f o7)* EGL(n, D) and
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U:X xIxD"— (fo T)* EGL(m, D) we see that
Gd: X xIx D"t 5 (for)*EGL(n, D) ® (f o #)* EGL(m, D)

restricts to the identity over X x {0} x D"*™ and from this we conclude that the sum of
the two elements is mapped to the class of the tripel (X x A™*™ X x A"*T™ 4 @ 1) and
thus the map is indeed a group homomorphism.

7.29. Definition. Let ¢ : A — D be a bounded algebra homomorphism and let X be a
base space. For any n € N the unique smooth map S™(X*) — pt induces by 7.28 above
a group homomorphism K (&, (pt)) = K (&, (S™(X1))) which is obviously injective and we
define the group K~ "(€,(X)) to be the cokernel of this homomorphism. Thus for any n
there is a short exact sequence

0= K(E,(pt)) = K(E,(S" (X)) = K™ (E,(X)) = 0

This sequence even splits canonically via the homomorphism induced by the inclusion of
the base point (of X*) into S™(X ).

7.30.. Obviously the higher relative K—groups have functorial properties: If f: X — Y
is a smooth map between base spaces then there is the induced map S™(f*t) : S™(X+) —
S™(Y*) which by 7.28 induces a group homomorphism K (£,(S™(Y1))) = K(&,(S™(XT)))

and clearly we have a commutative diagram
K(& () ——= K(&pt))

! !

K(£,(S"(Y))) —— K(&(S"(XT))

and thus an induced homomorphism K=" (&£,(Y)) — K" (£, (X)).
Similarly one shows that a commutative diagram of bounded algebra homomorphisms

A—2+D

o] |9

A—<£-5D
like in 7.26 induces group homomorphisms K =" (&,(X)) — K" (£s(X)) for any base space
X and any n € N.

7.31. Next we construct homomorphisms between higher absolute and relative K—groups.
First we need a homomorphism K~"(€,(X)) — K;"(X). Consider the diagram

0 — K(E,(pt)) — K(E,(S"(XH))) — K~"(E,(X)) — 0

l !

0 —— Ko(4d) —— FKa(S(X*t) —— K;"(X) ——0

The rows in this diagram are exact by definition and the two vertical homomorphisms were
constructed in 7.28 and one immediately concludes that the diagram is commutative. Thus
there is a unique groups homomorphism K=" (€,(X)) — K" (X) fitting into the diagram.
On the other hand we have to construct homomorphisms K"~ (X) — K=" (£,(X)). This
needs one more result:
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7.32. Lemma. Let Y be a base space, A a convenient algebra. Then there is an exact
sequence of abelian groups and group homomorphisms

Ki(A) = Ka(S(Y*)) = Ka(S(Y)) = 0

which s natural in Y.

Proof. Let i : Y — YT be the natural mapping, which is obviously a smooth cofibration
and apply the Puppe sequence 3.43 for this map to BGL(n, A). Then the third up to the
sixth term of this sequence read as:

[S(Cy), BGL(n, A)] — [S(Y+), BGL(n, A)] —
— [SY, BGL(n, A)] — [Ci, BGL(n, A)].

Since 7 is a smooth cofibration it follows from 3.14 the the homotopy cofiber C; of ¢ is
smoothly homotopy equivalent to the cofiber of ¢ which is just ptt, the two point space.
Thus we get an exact sequence if in the sequence above we replace C; by ptt. Moreover
since BGL(n, A) is smoothly path connected it follows that [pt*, BGL(n, A)] = 0, and so
we get an exact sequence

[S(pt*), BGL(n, A)] = [S(Y*), BGL(n, A)] — [SY, BGL(n, A)] — 0.

Clearly this sequence is natural for maps in the second variable, so we can pass to the direct
limit to get the same sequence with BGL(n, A) replaced by BGL(A). Then in this sequence
all sets are abelian groups, namely since suspensions are always smoothly path connected
the IN{A( ) groups of the spaces, and all maps are group homomorphisms since they are
induced by smooth maps between the spaces. So we only have to use the identification
IN(A(S(pt‘*‘)) = K;l(pt) = K;(A) to get the claimed exact sequence. The naturality of the
sequence in Y 1s obvious from the construction. 0O

7.33. Now consider the diagram

Ki(D) —— Ka(S(S"(XT)t)) —— K" '(X) —— 0

! !

0 —— K(E,(pt)) —— K(E,(S*(XH))) —— K~ "(Ep(X)) — 0

The top row in this diagram is exact by 7.32 applied to D and Y = S™(X*), while the
bottom row is exact by definition. The two vertical homomorphisms were constructed in
7.28 and one immediately verifies that the diagram is commutative. Thus there is a unique
homomorphism K"~ (X) — K~"(£,(X)) fitting into the diagram.

7.34. Proposition. Let ¢ : A — D be a bounded homomorphism between convenient
algebras. Then for any base space X there is an eract sequence of abelian groups and group
homomorphisms

Ka(S(XT)) = Kp(S(XT)) = K(£,(X)) = Ka(X) = Kp(X)

which is natural in X.

Proof. For n € N consider the last five terms of the Puppe sequence 3.53 for X associated
to the smooth map By, : BGL(n,A) — BGL(n, D) induced by ¢. These read as

[X,Q(BGL(n, A))] = [X,QBGL(n, D))] — [X, Fale)] —
— [X, BGL(n, A)] = [X, BGL(n, D)].
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Since all maps in this sequence are induced by base point preserving smooth maps this
sequence remains exact if we replace X by X+t and free homotopy classes by pointed homo-
topy classes in the first two terms. Using the canonical isomorphism between [ ,Q( )]o
and [S'( ), ] (c.f.3.50) we get an exact sequence of pointed sets

[S'(X*), BGL(n, A)]o — [S'(X1), BGL(n, D)o = [X, Fu(p)] =
— [X, BGL(n, A)] = [X, BGL(n, D)].

Next consider the diagram

[S'(X+), BGL(n, A))y —— [S"(X*), BGL(n+1,A)]o

! !

[S'(X+), BGL(n, D))o — [S'(X*), BGL(n + 1, D)]o

! !

[X, Fale)] — [X, Fryar(p)]

! !

[X,BGL(n,A)] ——  [X,BGL(n+1,A4)]

! !

[X, BGL(n, D)] — [X,BGL(n+1,D))

We claim that this is commutative. For the top and the bottom square this is quite obvious
while for the second sqaure from below it follows immediately from the definition of the
connecting map F,(¢) = Fpy1(¢). So let us consider the second square from above. The
way [S'(Xt), BGL(n, D)]o — [X, Fa(®)] = [X, Fnt1(p)] can be described as follows: Given
f:5(Xt) = BGL(n, D) take the associated map f : Xt — Q(BGL(n, D)), restrict it to
X and compose it with the natural maps Q(BGL(n, D)) = F,(¢) = Fnti1(p). But from
the construction of the map F,(¢) = Fn41(p) one immediately sees that this last map is
the same as the natural map Q(BGL(n, D)) = Q(BGL(n+1,D)) = Fnt1(e). This and
the fact that (go f)¥ = Q(g) o f implies that the square uncer consideration is commutative
even on the level of maps and not only on the level of homotopy classes.
Now we can pass to the direct limit to get an exact sequence

[S"(XT), BGL(A)]o — [S"(XT), BGL(D)]o —
= [X,F(¢)] = [X, BGL(A)] — [X, BGL(D)].

But now all sets are abelian groups and all maps are group homomorphisms (c.f. 6.12 and
7.28). So finally we only have to add the obvious exact sequence

0 = Ker(H°(X, Ko(g))) = H(X, Ko(A)) -0,

H°(X, Ko(D))

to the last three terms and use the natural isomorphism [S’(X+), BGL(A)]o = K4(S(X™))
discussed in 7.28 for A and D to get the claimed exact sequence. Finally the naturality in
X is obvious from the construction. O
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7.35. Theorem (The long exact sequence of a bounded algebra homomor-
phism). Let ¢ : A — D be a bounded homomorphism between convenient algebras. Then
for any base space X there is a long exact sequence of abelian groups and group homomor-
phisms

= KpPHX) = K7(6,(X)) —

- Ko"(X)
— K"(X) ——= K;"(X) > ...

K (X)

— K5'(X) = K(£,(X)) = K§(X) —2— K)(X)

which is natural in X.

Proof. We show that for any n > 0 there is an exact sequence
K" UX) = K" N X) = KT (£,(X)) = K™ (X) = Kp™(X).

For n = 0 this is just the sequence constructed in 7.34. For n > 0 consider the following
diagram:

Ki(A) —— Ka(S(S"(Xt)1) —— K" '(X) —— 0
Ki(D) —— Kp(S(s"(Xxt)t)) —— K" '(X) —— 0

0 — K(E(pt)) —— K(E,(ST(XF)) —— K "(E,(X)) — 0

0 —— Ko(d) ——  Kao(5"(X*t) —— K;"(X) ——0

0 —— Ko(D) —— Kp(S"(X*t) —— Kp"(X) ——0

By 7.32 the two top rows are exact and the two top squares are commutative. All other
rows are exact by definition and the rest of the diagram is commutative by definition. Next
the leftmost colum is just the exact sequence 7.34 for a single point, while the middle colum
is the exact sequence 7.34 for the space S™(X*). Thus from a standard diagram chase
one concludes that the rightmost colum is exact at K5" ' (X) and at K=" (£,(X)). Next
note that the inclusion of the base point (of X*) into S”(X*) induces homomorphisms
Ka(S(X1)) — Ko(A) and Kp(S(X*)) — Ko(D) which are right inverse to the maps
ocurring in the diagram above and clearly the diagram

Ka(S(XH)) —— Ko(A)

!

Kp(S(X*)) —— Ko(D)

commutes. Using this fact one shows again by a diagram chase that the rightmost colum
in the above diagram is also exact at K ;" (X). Finally the naturality in X is obvious from
the construction. 0O
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