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The notion of C*-algebra goes back to Lawvere [8], although the main examples
appear much earlier in differential topology, singularity theory, and counter-
examples can be found in harmonic analysis. Recently the notion of C*-algebra
became important for the foundations of synthetic differential geometry: Kock [5],
Dubuc [1], and the forthcoming book of Moerdijk and Reyes [10].

In this paper we put a ‘natural’ locally-m-convex topology on each C*-algebra,
using the framework of convenient vector spaces of Kriegl [6,7].

For important examples this topology is non-Hausdorff (germs of flat functions
are always cluster points of 0), but if it is Hausdorff, we are able to derive nice
results:

The C*-homomorphisms are exactly the continuous algebra homomorphisms,
countably generated Hausdorff C®-algebras are nuclear, the action of smooth
functions on Hausdorff C~-algebras is smooth and continuous, and the coproduct
equals the bornological tensor product in the most important cases. We also con-
sider C%-modules.

Working on this paper we came to believe that the notion of C*-algebra is ade-
quate as long as it is finitely generated. Infinitely generated algebras should at least
be product preserving functors on convenient vector spaces, say. Then the free ones
would be the ‘usual’ spaces of smooth functions on products of factors .

The most important open question seems to be whether the C®-algebra structure
is already determined by the algebra structure. See 6.7 for a partial result.

There is an obvious generalisation of the notion of C®-algebra: C -algebra
(0=r=o or r=w for real analytic), Note that each commutative C*-algebra is a
CPalgebra. The spectral theorems of C*-algebras now indicate how to define a
non-commutative C?-algebra: one can apply fe C°(R",R) only to n commuting
elements of the algebra. This in turn shows that non-commutative C~-algebras
could be algebras, where each (finitely generated?) commutative subalgebra is a
C*-algebra.
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1. C”-algebras and C~-modules

1.1. A commutative real algebra 4 can be looked at as follows. Let Pol be the
category of all finite-dimensional real vector spaces and polynomial mappings be-
tween them. A real commutative algebra is then a product preserving functor
A :Pol— Set. We will identify A(R) with the algebra itself. The multiplication is
given by A(m): A(R?)=ARXxAR— AR, where m:RxR~—R is the usual multi-
plication. Note that .4 (R")=A(point) = point and the unit 1, of AR is given by
A :point— R): point—> AR. If 1,=04, then 4 =0.

1.2. Now a C®-algebra A is a product preserving functor A from the category C*
of all finite-dimensional real vector spaces and C®-mappings, into Set. So a C*-
algebra is roughly speaking, a commutative real algebra, in which one may not only
evaluate polynomials but also C®-functions. See [10] for a thorough introduction
to C*-algebras.

1.3. A module M over a commutative real algebra A is now defined in the setting
of 1.1 as follows: For a real vector space M let Pol(-, M) : Pol°? — Set be the func-
tor, where Pol(R", M) is the space of all polynomial mappings R" — M, Pol(R",M) =
Pol(R" R)®p M.

An A-module structure # on M is then a dinatural transformation (see MacLane
[8a]) from the bifunctor Pol(-,M)x A(--): Pol°? x Pol— Set into the constant bi-
functor M, which is linear in the first variable. Thus for any p e Pol(R",R"™) we
have the following commutative diagram

Pol(R™, M) x A(R™)

Idx(;y‘ \n,‘,
)

Pol(R™, M) x A(R" M

p*XA /f],:

Pol(R", M) x A(R")

and 7, (—,a) : Pol(R", M)— M is linear for all e A(R")= A", where Pol(R", M) has
the pointwise linear structure.

1.4. So what should be a C”-module over a C®-algebra 4?7 It should be an A-
module M, such that not only polynomials with values in M may be evaluated at
elements of A, but also C*-mappings f: R"->M. To specify these we need a local-
ly convex topology on M.

Definition. Let A be a C™-algebra. A C*-module M over A is a (Hausdorff) local-
ly convex vector space M and a dinatural transformation # from the bifunctor
C”(-,M)xA(--):(C*)PxC”—Set into the constant bifunctor M such that
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e (—,a): CT(R",M)—M is linear. M is called a continuous C~-module if
Hen(—,a) 1s also continuous.

This definition is tentative and does not catch some examples which should be
C”-modules: germs of smooth section of vector bundles should form a C*-module
over the C®-algebra of germs of smooth functions; but what is C*(R", M) then?

Also the space ©’ of distributions on R is not a continuous C*-module over
C”(R, R), and we believe that it is not a C*-module at all (see 4.6).

If M is complete, we will give a simpler characterisation of continuous C-

modules below (4.5).
Remark. If we are contend with a dinatural transformation
e (CT(RN@M)XA->M

(on the algebraic tensorproduct only), then any algebraic module over a C*-
algebra A4 becomes a C™-module in this sense.

2. The natural topology on a C*-algebra

2.1. Let A be a C%-algebra. For a=(ay,...,a,)€ A" consider the mapping
£,: CT(R, R)=C*(R")— A, ¢,(f/y=A(f)a,, ... ,a,). Then ¢, is a homomorphism
of C%-algebras for each ae A".

2.2. We equip each C*(R") with the compact C™-topology. In detail we use the
following family of seminorms:

|/ :=2* max sup [39F(x)],

el =k xekK
where @ € N{ is a multiindex, || =|(¢;, ..., a,)|=a;+ - +a,, K is compact in R”"
and
(23] o
C{: a cne a ’
axy xS

Then it turns out that |f-g|k=<|f|%- |g]& for all ke N,, K compact in R". So
C=(R") is a locally-m-convex algebra in the sense of Michael [9]; see also Husain
[2]. It is well known that C*(R") is a nuclear Fréchet space ((NF)-space), and
hence bornological.

2.3. Definition. The natural topology on a C*-algebra A is the finest locally con-
vex topology on A such that all mappings ¢,: C*(R")— A, e A", neN, are con-
tinuous, where C%(RR") bears the compact C*-topology of 2.2. The natural
topology will be denoted n4 or n. It is non-Hausdorff in important cases.
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2.4, Theorem. (1) Let ¢: A— B be a C*-homomorphism between C-algebras.
Then ¢ :(A,n,)— (B,ng) is continuous for the natural topologies.

(2) Let ¢ : A— B be a surjective algebra homomorphism (¢ is then automatically
a C*-homomorphism). Then ¢:(A,n,)— (B,ng) is a quotient mapping for the
natural topologies.

(3) Let ¢ : A— B be an algebra homomorphism, where A, B are C*-algebras. If
¢ is continuous for the natural topologies and ng is Hausdorff, then ¢ is a C*-
homomorphism.

Proof. (1) and (2): Let a;,...,a,€ A. Then

£

C”(R™) A

Ep@h....ola,) 4

B

commutes, since ¢ is a C*-homomorphism. Consequently ¢ is continuous and (1)

is proved.
If ¢ is surjective, then by Moerdijk and Reyes it is a C”-homomorphism. Any

b;e B is of the form ¢(a;) for some a;€ A4, so

8b|,...,b,, = Ew(ﬂl),.--.(ﬂ(an) = ‘pogal,---)au

and thus @ is a quotient mapping.
(3) For polynomials p € Pol(R", R)C C*(R") we have

ot o (D)=0A(PNay, ..., a,)) =B(p)e(a,), ..., a,))

=), ..., w(an)(p)'

Thus the continuous mappings @o&, . a,€pa@),....e@-C  (R")— B coincide on
the dense subspace Pol(R",R), and (B, ng) is Hausdorff, so they coincide on the
whole of C®(R"), thus ¢ is a C”-homomorphism. [

2.5. Lemma. Let {A,} be a directed family of C”-subalgebras of a C”-algebra A
with A =UaAa. Then (A,nA):li_rpa(Aa,nAﬂ) in the category of locally convex
spaces.

Proof. Let T,,:(A,,n, )~ F be continuous and linear and 7, | A= Ty for A;C A,.
Then T:A—F is well defined and linear. For continuity we have to show
Toell: C*(R")—>A—F is continuous for all a=(ay,...,a,)€A". Since {A4,} is
directed there is some S such that all ;€ A4. But then el =iogM:C®(R") A~ A
and Tog) = Tﬂoe;’” is continuous. U]
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3. The topological structure of free C~-algebras
3.1. Free C*-algebras. Let us denote by Cf (R, R) = Cia(R1) the free C*-algebra
on /1 generators. It equals the inductive limit (in Set) of the system
{C®(RF)—> C=(R"): F,CF, finite subsets of A},
where the mapping is induced by the projection R*2— RH,

3.2. Lemma. If A=k is finite, then (C5(R), n) equals C*(R¥) with the compact
C>-topology.

Proof. 8(f|,u.,f,,1) : Coo(ﬂem)_)cm(”%k)’ j}e Cm(lpk)a is given by g_'gO(.fl: ,fm)’
and this mapping is continuous for the compact C*-topologies, so n is finer, On
the other hand

. g k 3 k
E(prh N C (ﬁe )_‘)(C (”_\) )a‘")
is continuous by construction of n and equals the identity, so # is coarser than the

compact C*-topology. [

3.3. Theorem. (Cf?,’,(ﬂ?/l ), n) is the regular strict inductive limit of the direct sum-
mands (C”(RT), compact C*-topology) for all finite subsets F of A. (Regular
means, that each bounded set is contained and bounded in some C*(R").)

Hence (Cf?:]([EA ), n) is Hausdorff and a conuclear bornological Montel space.
(CE(R™), n) is a complete webbed nuclear strict (LF)-space.

Proof. The diagram

er'siRFxoc—i—> RA = RF x pA\F

SN
PF

commutes, and induces a commuting diagram

restriction =7%*

Cfm([RA)

NS

C>(RF)

COO(HQF

of C*-homomorphisms, which are continuous by 2.5. Therefore each C*(RY) is a
direct summand in (Cf(R1),n). By 2.4, we have (CS (R, n) =limp C>(RF),
where F runs over all finite subsets of /1 and the limit is in the category of locally
convex spaces. So this limit is strict; and if it were not regular, then there were a
bounded subset B of (C(R™), n), which is not contained in any C=(R") for finite
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F. So we can find an increasing sequence F, of finite subsets of A and b,eB
with bneC“(fRE'*')\C”([RF"). Put AD:zUn F,, a countable subset of /1. Then
{b,} CB, so {b,} is bounded, and {b,} is contained in the direct summand
(CE (R, n), but b, ¢ C* (R, R). Since (Cf(R™), n) is the strict inductive limit of
the Fréchet spaces C*(R%"), it is a regular inductive limit (see Jarchow [3, p. 84]),
and {b,} C C*(R"") for some m, a contradiction.

So C(R™1) is Montel (since every bounded B is bounded in some Montel space
C>(RT) and thus pre-compact), is bornological (as inductive limit of bornological
spaces), and is conuclear (the dual space C (R1), with the strong topology is the
projective limit of the nuclear spaces C™(RF), = ©'(R¥) by the regularity of the in-
ductive limit, so the dual is nuclear).

If A is countable, CS.(R7) is a strict (LF)-space, hence webbed, complete and
nuclear (see Jarchow [3, p. 92, p. 86, p. 481]). [J

3.4. Remark. If A is uncountable, then Cgo(R“') is not webbed and not a Schwartz
space, hence not nuclear.

For CS(R*) contains the direct sum R“Y of A copies of R as a direct summand
and we may invoke Jarchow [3, p. 202, p. 98].

3.5. Corollary. (1) Every smooth curve c¢:R— Ci(R1) is locally a smooth curve
into some C=(RFY for finite F.

(2) For any fe C*(R¥) the induced mapping fy: Co (R = Ci(R™) is smooth
in the sense of Frolicher-Kriegl, and is also continuous.

(3) The multiplication on CE{,’]([RA) is continuous, and Cfﬁ,(IRA) is even a locally-
m-convex algebra.

Proof. (1) For a compact interval I the set ¢(f) is bounded and hence lies in some
C*(R"), so ¢|I is a smooth curve there.

(2) Smoothness follows immediately from (1), since fy: C*(RT)¥ = C*(RF) is
smooth. Continuity (which does not follow automatically from smoothness in the
Frolicher-Kriegl calculus) is much more difficult. Let first /i =N be finite.

Then C*(RM¥=C*(RY RY). Let fe C*(R¥), ge C™(R", R¥). We claim that
for every closed disked 0-neighbourhood ¥ in C*(R") there is another one U in
C>(R™, R¥y such that

felg+ AU C fu(@+ AV for all |A| <.

The map (fx)": C™(RY, R¥)?—= C*(R")} is smooth, so continuous since all spaces
are Fréchet (Kriegl [7]); thus we may choose U with (fx) ((g+ U)x U)C V. Then

Jalg+Ah) —filg) =4 ‘](f*)’(g0+t/1h)(h) dtedV for hel.
Jo

Now let A be arbitrary. Then Co (R = Ca (R4, R¥) is a (locally convex hence
topological) quotient of the direct sum @Fﬁnite C”(RF, R¥). It remains to show
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that (fi)r: @p C*(RT,RY)> @, C*(RF) is continuous. Let (gx) € P, C™(R*, R¥)
and let V be a closed disked 0O-neighbourhood in @FC“(PF ). Then V.=
VNC®(R") is a closed disked O-neighbourhood in C*(RF) and by the special
case there are O-neighbourhoods U in C* (R, R*) with Je@r+AUp) C fo(gp)+ A Ve
for |A|<1.

Now the disked hull U of [ J,. Ur is a 0-neighbourhood in @, C*(R¥, R¥) (see
Jarchow [3, p. 111]) and fu((gr+ Arhp)r) € (f«(8F) + ApVE)r C fu(gp) + V for hpe Uy
and ¥ [Ag|=<1.

(3) Multiplication is given by my: Co(R1)?— CZ(R™), where m(x, y)=x-y is
in C*(R?), so multiplication is continuous by (2). We will show directly now
that C5(R7, R) is locally-m-convex. Since Ci(R?) is a Hausdorff quotient of
B finie C7(RT) it suffices to use the following two lemmas. [

3.6. Lemma. The locally convex direct sum @aAa of locally-m-convex algebras is
locally-m-convex.

Proof. Let (|- |’)ic 1) b€ a generating system of seminorms on A, consisting of
submultiplicative seminorms: |ab;, <|a|q|b|;. For (a,)e®, A, put |(@)|u ;)=
¥, M,la, |3, where M=(M,>1) and j=(j(e) € [(@)). Then clearly each || ;
is a submultiplicative seminorm, and these seminorms generate the topology on
®,A,. O

3.7. Lemma. A Hausdorff quotient of a locaily m convex algebra is locally-m-
convex.

Proof. Let 7:.4— B be the quotient mapping. Let (|-|/) be a generating system of
submultiplicative seminorms on A. Then |b|2:=inf{|a|}: n(a)=b} is a system of
submultiplicative seminorms on B generating the topology., O

4. The topological structure of C*-algebras

4.1. Let us consider an arbitrary C”-algebra 4. Then A is a quotient of a free C*-
algebra Ci;(R™) for some A, and by 2.5 the mapping CS,(R")— A is a quotient
mapping for the natural topologies. Hence n, is Hausdorff if and only if the cor-
responding ideal in C(R*) is closed in the natural topology.

4.2. Theorem. Let A be a Hausdorff C”-algebra. Then we have:
(1) A is an ultrabornological locally convex space.
(2) If A is countably generated, then A is a webbed nuclear (LF)-space.
(3) If A is finitely generated, then A is a nuclear Fréchet space.
(4) A is a locally-m-convex algebra.
(5) If fe CZ(R™), then A(f): A" — A is smooth and continuous as well as all its
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derivatives (of class C.° of Keller [4]).

(6) If M is any locally convex space (or subset of such), then C*(M, A) is again
a Hausdorff C-algebra.

(7) C*(R", ﬂ?)—A—> C*(A", A) is a (continuous) homomorphism of C”-algebras.

Proof. (1)-(3): A Hausdorff quotient of a nuclear Fréchet space is a nuclear Fréchet
space, that of a webbed nuclear (LF)-space is a webbed nuclear (LF)-space (Jarchov
[3, p. 481, p. 90]).

Cﬁ;(ﬂi’/‘) is Montel bornological by 3.3, hence ultrabornological and its quotient
A is again ultrabornological.

(4) follows from 3.7 and 3.5(3).

1
%) A(fY (@)b) = lim —(A(fNa+ D) - A(f)a), abeA"

-0t

1
= 3213 % (fe(x+1y)) — A(fox))a, D)

3 ( fo(X+ty)—fox>
=&qp

lim

=0 4
=&, p((f'0x)- ¥)=A((fox)- y)a, b)
=A(f")a)- b

Now let A be the quotient of a free C™-algebra. Then

fu
Co (R, Ry ——— CH(RY, R™)

A
A" ) A

commutes, fy is continuous by (3.5)(2), so A(f) is continuous, and A(f*’) is con-
tinuous for all k. Thus all derivatives A(/)X): 4" x (4"} > A" are continuous, so
A(N) is C.

(6) Let M be a locally convex vector space (the argument for subsets is the
same). Let fe C*(R"). Then A(f):A"—A is smooth, so A(f)s:C~(M,A)" =
C®(M,A")— C*(M, A) is well defined and gives C*(M, A) the structure of a C*-
algebra. Now for ge C™(M,A)" the mapping ¢,:C™(R")—>C”(M, A), &,(f)=
A(f)og, is smooth and linear in the sense of Kriegl, where C*(M, A) bears the
Hausdorff bornological topology of Kriegl, so ¢, is continuous. So the natural
topology on C*(M, A) is finer than the bornological structure, and thus Hausdorff,

(7) follows from 2.5(1). []

4.3. Remark. A Hausdorff C*-algebra A might not be complete, not even C*-



C*-algebras from the functional analytic view point 97

complete in the sense of Kriegl [6]: see the counterexample below. We do not know
whether some completion of A is then again a C®-algebra.

4.4. Corollary. The natural topology n, on a C®-algebra A is the Jfinest locally
convex topology on A which makes A into a semitopological algebra and for which
all the mappings Cm(fR)—Eﬁ-»A, a€ A, are continuous. (The same holds for locally-
m-convex topologies.)

Proof. Step i: The compact C*-topology CO® on C®(R) is the finest among all
locall_y convex topologies 7 such that multiplication is separately continuous and all
£r: (C%(R),CO™)~(C*(R), 7) are continuous, for then

£ =1d : (C*(R), CO™)— (C™(R), 7)

is continuous.

Step 2: The compact C®-topology on C*(R”") is the finest among all locally con-
vex topologies, which make multiplication separately continuous and all mappings
er: CZ(R)=(C™(R"), 1), fe C*(R"), continuous.

Induction on n. For n=1 see Step 1. Suppose this is true for n. Consider such
a topology 7 on C*(R"*',[R), and the following diagram

i

(C™(R"H,CO*)=C*(R")Y &, C*(R) C®(R")x C*(R)

Id J k

(C*(R™ 1), 1)

where i(f,g) =/ ® g is the canonical bilinear mapping, ; is induced by the identity,
and k(/,8)(xt)=f(x)-g(f). We also used the fact that (C®(R"™!),CO™)=
C”(R"Y®, C*(R) for the (completed) projective tensor product, since both spaces
are nuclear.

In order to show that j is continuous we have to check that k is jointly continuous,
and for that it suffices that k is separately continuous, since both spaces are Fréchet
spaces (Jarchov [3, p. 89]). But g~ k(f,g) equals g~ &r,(8) = (fopr)) - &y, (2)s
where pr;:R"*'=R", pr,: R""'>R!. The first mapping Epr, : (CT(R),CO%) —
(C*(R"*1, 1) is continuous by requirement, the second mapping A+ (fopr,)-h is
continuous since multiplication is separately continuous in (C*(R"*1), 7).

INow we consider the diagram

£y

C*(R) (C*(R"),CO%)
E(fopry) (pry)*

(C=(R"™ 1), 7).
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pr{f is an algebra homomorphism. It pulls back 7 to a topology 7’ on C”(R"),
for which multiplication is separately continuous and for which af:C“(fR)—*
(C=(R™), 1) is continuous for each fe C*{R"), since (pr))*o&, =& upr: C* (R}~
(C®(R"™1),7) is continuous. By induction CO® is the finest such topology on
C®(R™), so (pr))*: (C=(R"), CO®)—(CZ(R"*'),7) is continuous. Now f—~k(f,g)
equals the composition f— (pr)*(f)— (pry)*(f) - (go pry) of continuous mappings.

Step 3: Proof of the general result. Consider a semitopological algebra locally
convex topology 7 on A such that all ¢, are continuous.

£
C*(R) —~— (C™(R"), CO™)
Ealay, - a,) €q,, ....a,

(A4,7)

£, ....a, Is an algebra homomorphism, so it pulls back 7 to a locally convex 7’ on
C*(R") making all &, continuous, since the diagram commutes. By step 2, g,,
is continuous for all a;e 4, neN. So n, is finer than 7, and by 2.12(4), n, is seml—
topological. [

4.5. Now comes the simple characterisation of some C*-modules promised in 1.4.

Theorem. Let M be a Hausdorff complete locally convex vector space. Let A be a
C*-algebra and suppose that M is a module over the underlying algebra A of A.
Then this module structure extends (uniquely) to a continuous C*-module struc-
ture of M over A if and only if the A-module structure mult : (A, n ) XM—M is
continuous.

Proof. Let us suppose first that mult is a C*-algebra structure., For each ae A"
consider the following commutative diagram

£, x1dy, mult

C®(R"YX M AXM——M

R % @

C*(R", M)

where ¢, is from 2.1, fp~(-,a) is from 1.4, is continuous and linear, and where
a(f,m)(x)=f(x)- m, so ¢ is bilinear and continuous. Thus multo (g, X 1Id,,) is bi-
linear and continuous, thus mult is continuous.

Let us suppose conversely that mult : (4, n,4) X M— M is continuous. Then

multo(e,®1d,,): C* (RN @, M=C*(R")Q, M- AR, MM

is also continuous, where ), is the (not completed) inductive tensor product, &,
is the projective tensor product, and these tensor products agree since C~(R")
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is nuclear. Consequently the continuous linear extension to the completion
C*(R")®, M (which coincides with C*(IR", M) by Treves [17, p. 449]) is a map
net{(+,a). This is the looked for dinatural transformation of 1.4. [J

Remark. The first part of the theorem is true without completeness assumptions.
The second part is true if M is assumed to be C®-complete only, one then has to
consider the Mackey-completion of C*(R")®, M in the proof.

- 4.6. Important counterexample. The space D’ of distributions (on the real line for
simplicity’s sake) is a module over C*(R) but not a continuous C%-module,
because the multiplication is not jointly continuous. If 6 is the n-th derivative of
the d-distribution at 0 and fe C*(R, R), we have

IR <"><5<"*“,f>-(s<’<>.
k

k=0

Consider the embedding @, R=R™->D’, ()= ¥ ¢;6”, which is an isomor-
phism onto a closed submodule, and the multiplication C*(R)x®,, R~>@®, R
factors to the quotient algebra [], R= R™ of Taylor series at 0 of smooth func-
tions on R, and the coefficient of & is then the duality pairing (up to signs) of R™
and R™) which is not jointly continuous.

The same argument works for any space of distribution sections of a vector
bundle, with or without compact support.

We have not been able to find a non-continuous (but linear) # in the sense of 1.4.
This seems to indicate that the operators u— f-u, A’— A’, do not admit spectral
theorems for C”-functions.

5. The coproduct of C”-algebras

5.1. If A, B are C”-algebras, then the coproduct AU B is a C*-algebra with the
following universal property:

AHB
|((ou1) B

\./

There are C*-algebra homomorphisms i4, iz such that for all C*-algebra homo-
morphisms ¢:A4—-C, w:B—C there is a unique C%-algebra homomorphism
(9, w): AUB—C with (g, w)cis =0, (p,w)oiz=w. For free algebras we have

CR(RM) 1 (R = C (R U 4,
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where A, LI A, is the disjoint union. See [10] for that. Using the universal property
above one may easily check that Al - commutes with inductive limits (in Set) of
C~-algebras.

5.2. In Kriegl [6] it is shown that the category of C”-complete (i.e., bornologically
complete) bornological vector spaces (also called convenient vector spaces) and
bounded linear mappings is a closed monoidal category, with the C*-completed
bornological tensor product &, as product.

So we have the general exponential law L(E ®y, F, G) = L(E, L(F, G)), hence E Xy -
is a left adjoint internal functor and therefore commutes with inductive limits (and
quotients) in the category of convenient vector spaces.

Let us denote in this section (4, n4) by A,,- Then A — A, gives a functor from
the category of C*-algebras to that of locally convex spaces with continuous linear
mappings. We are going to prove now, that in the most important cases these two
functors coincide. First two lemmas on the formation of limits.

5.3. Lemma. Let {A®} be a directed family of C™-subalgebras of a C™-algebra A
with A= Ua A% and such that all A%, A have Hausdorff and c*-complete natural
topologies. Then

A= (CVS)-]i_ﬂ)la Ar?at .

Proof. By 2.5, A, = (Ics)-li_qlaA,‘fa[ and since by assumption A, is Hausdorff and
c¢®-complete this is the cvs-limit. [}

Next the corresponding statement for quotients. However, since an ideal 7 is in
general not a C*-algebra (1 ¢ ') we have to formulate it in a somewhat more com-

plicated way.

5.4. Lemma. Let B-5 A be a surjective algebra homomorphism, where A and B
have Hausdorff and c®-complete natural topologies, and let

n:Co(RM—Bx, B={(x;,x5) € BXB: e(x;) =e(x)}

be a surjection. Then B, — A,, is the (cvs)-coequalizer of (pr|om, pryom).

Proof. It is obvious, that B—5 A4 is the coequalizer of pr;: Bx 4, B—Bfori=1,2in
the category of C*-algebras and vector spaces, and since 7 is onto, it is also the
coequalizer of pr;=n:Ch(R")-+B in both categories. By 2.4, By — Apy is @
quotient mapping, hence it is the coequalizer in the category of not necessarily
Hausdorff Ics. But since A,,, is Hausdorff and ¢®-complete, it is the coequalizer
in cvs as well. [

5.5. Theorem. Let A and B be C%-algebras, which carry as well as their coproduct
AU B Hausdorff ¢c”-complete natural topologies. Then
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(Al B)nat = Anat ®b Bnat'

Proof. We will show this in several steps.
First for free, finitely generated C*-algebras, which have automatically Haus-
dorff and complete natural topologies as has their coproduct.

On the other hand
C=(RVM Ry=C*(RN,C*(RM,R))  (by cartesian closedness)

=C*(RN,R)&®, C=(RM,R)  (by Treves [17] since
C”(RM) is Frechet)

=C*(RM)®, C*(RYM)  (since C*(R") is nuclear)

=C*(RM)®, C*(RM)  (since both factors are
Frechet-spaces, hence the
bounded bilinear maps are
continuous).

And the ¢®-completion &, of the algebraic tensor product is the completion, since
C”(RVYM) is Frechet.

Next for free, arbitrarily generated C*-algebras. Since Cq(R“) is the union of
the finitely generated subalgebras C“(IRN) with NC A4, and Cf‘i";,(iR”) I Cf‘f;,(!RB) of
C*(RMyu C®(R™) with NC A, MCB finite and all occuring spaces have Haus-
dorff and ¢”-complete natural topologies, we can apply the above lemmas and the
fact that I preserves colimits of C*-algebras and &, colimits of cvs.

Now for finitely generated C*-algebras 4 and B. Then A and B are quotients of
C*(R™) and C*(R™). And by 5.4,

A= cvs-coequ(f,, fZ) and B, = cvs-coequ(gy, £2)
with

£t CP(RMY=>C™(R") and g;: C*(RM)—C>(R™).
Since iU preserves colimits of C%-algebras and ®b colimits of cvs and since
(CZRM U C=(RMY), = CZ(RY) 0 ®p CT(RM),., (similar for # and m), we ob-
tain (AU B),, = A, Xy By, provided that (Al B),, is Hausdorff (it is ¢*-
complete then).

Finally the general case. Since every C%-algebra A is union of its finitely
generated subalgebras A’, which are Hausdorff (and hence ¢*-complete) if A4 is so,
Apa = cvs-li_rJ'n(A’)nat by (5.3). Hence AUB= C""—alg-li_r}nA,,B,A’ I B’. Consequently,
(AU B}y =cvs-limy, g (A" U B")y, provided (AUB),, is Hausdorff and c®-
complete, and furthermore

. . ’ = 4
cvs-lim 4 g (A" U B’) = cvs-lim 4. g Ao Oy B
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= (cvs-lim Arllal) ®b (cvs-lim Bxllal) = Anat ®b Bnat . U

Remark. We do not know wether (4 Il B),,, is Hausdorff (resp. ¢”-complete) pro-
vided A, and B, are (even in case of finitely generated C~-algebras).

For countably generated C-algebras it is enough to assume Hausdorffness
(then they are c¢™-complete automatically (4.2.2)).

On the other hand there are Hausdorff C*-algebras which are not ¢*-complete,
see Example 6.10.

In general A li B might turn out to be a suitably completed tensor product of 4
and B. For this the exact degree of completeness of Hausdorff C*”-algebras has to
be determined. They are ultrabornological in general!

6. Examples and counterexamples

6.1. Let C5°(R) be the C™-algebra of germs at 0 of smooth functions R—[R. Let
7: C®(R)— Cy°(R) be the quotient mapping. By 2.5(2) it is a quotient mapping for
the natural topologies. Let fe C*(R) be a function which is infinitely flat at 0.
Define g:R*—R by

X if y=0,

B X+y lfySO and X=—y

gl y)= 0 if y<0 and y<x=<-y,
x—y ify=s0 and x=y.

Since f is flat at 0, the mapping x— f(g(x, »)) =: f,(x) is smooth for each y, and
y— [, is a continuous curve in C*(RR). But the germ at 0 of f, equals 7(f) for y=0
and equals 0 for y<0. So the continuous curve y—~7(f,) in Cy (R) has only two
values, #(f) and 0. So n(f) is a cluster point of 0.

Clearly this proof may be generalized to show the following:

Proposition. Let M be a (finite-dimensional second-countable) manifold, let
CF (M) be the C*-algebra of germs at x€ M of smooth functions on M. Then any
germ which is flat at x is in the closure of 0 in the natural topology. The Hausdorff
C™-algebra associated to CT (M) is the C%-algebra of formal power series in
dim M variables.

Remark. This proposition is also an immediate consequence of Whitney’s spectral
theorem (see Whitney [14] or Tougeron [16]) which reads as follows:

Theorem. Let M be a (finite-dimensional second-countable) manifold and let I be
an ideal in C®(M)=C™(M, R). Then the closure I of I in the compact C™-topology
(which equals the natural topology) consists of all functions f such that the co-jet
JZf(x) at x lies in the ideal j=(I){x) for all xe M.
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6.2. Now let B be a Hausdorff locally-m-convex algebra, which we assume to be
C*-complete (this is weaker than sequentially complete). We want to determine if
there is a C*-algebra-structure on B such that the natural topology is finer than the
given one. Suppose that this is the case. Then for any #n € N and b € B” the mapping
C*(R™)DPol(RR", ﬂQ)iB is continuous in the topology induced on Pol(R", R),
and this in turn suffices to extend &, by continuity to the whole of C*(R"). In the
following we want to characterize this continuity.

6.3. Theorem (of Markov, Duffin, Shaffer, see Rivlin [14, p. 119]). If p is a poly-

nomial in one variable of degree n and sup{lp(x)|: |x| <1} <1, then for —1=<x=<1,

1<k=n we have for the k-th derivative of p:

n*(n?=1)@n*=2%) - (n* - (k- 1))
1-3-5--2k-1)

with equality holding only if p=+T,, the n-th Chebyshev polynomial T, (x)=

cos(n arccos x), and x==x1,

PP < = T¥(1),

6.4. Corollary. For any polynomial p in one variable we have

sup max |p‘i)(y)|ST(§f;p(1)' sup [p()|
¥|=M i<k =M

Jor M=0, ke N, where deg p is the degree of p.
Note that 7¥)(1) is increasing with respect to & and 7.

6.5. Definition. A C®-complete commutative locally-m-convex algebra B with unit

is called a Chebyschev algebra if the following holds:
For each be B and submultiplicative seminorm ¢ on B there are ke N, M>0,

d>0 such that

pePOl(R,R), sup |p(y)|= implies g(p(b))<1.

7]
=M TH (1)
6.6. Theorem. Any Chebyshev algebra is a C™-algebra such that the natural topo-
logy is finer than the given one.

Proof. ¢,: Pol(R,R)— B is linear and continuous for the topology induced by the
embedding Pol(R, R)C C*(R) onto a dense subspace. Since B is C*-complete, ¢,
may be extended to a continuous algebra homomorphism &,: C*(R)— B. Then for
b,, b, € B the bilinear continuous mapping C”(R) X C*(R) = B, (f,8) - &p,(f) - £,,(8)
extends to a continuous linear mapping

- b, b,
C*(R)=C*(R)®Q, C*(R)— B
and in turn to &,: C*(R",R)~ B for any be B". On the dense subset Pol(R", [R)
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these mappings have the required properties, so they make B into a C*-algebra,
whose natural topology is finer than the given one. []

6.7. It is not yet clear in general wether a commutative algebra may carry several
different C~-algebra structures. Some of them may not:

Lemma. Let A be a C”-algebra consisting of functions on some set S with point-
wise multiplication. Then the action of fe C*(R) on ae A is by composition,
AfNa)=foa (i.e., A is a sub-C-algebra of some RS provided A is a subalgebra
of R®).

Proof. If p e Pol{[R,R), then clearly p(a)=poa. Let s€S. Then ev,:A—R is a
multiplicative linear functional. So for @€ A the mapping

&, eV
C°(RR)~—A—R
is a multiplicative linear functional on C”(R, R), so it is of the form ev, for some
xe R (‘Milnor’s exercise’).
Testing with the identity in Pol(RR, R) we see that x =a(s), so (ev;0&,)(f) = eVy5(f),
i.e., (AN )@)(s)=f(a(s)) or (Af)a)=foa. U

6.8. Example. Let 7 be a compactly generated topological space, let C(T) be the
algebra of continuous functions on 7, with the topology of uniform convergence
on compact subsets. Then C(T) is a Chebyschev algebra: For compact KC T and
feC(T) let f(K)C[-M,M]. If pePol(R, R) and

PO < —2
sup (py) =
=M Tdegp(l)

then |p(f(x))| <1 for all xe K.

<1,

6.9. Example. Let S(R”) be the nuclear Fréchet space of rapidly decreasing (in all
derivatives separately) functions on R”. We equip S(R") with a unit, so we consider
R @ S(R"), the algebra of all functions which decrease rapidly to a constant func-
tion. Then R@ S(R") is a C™-algebra and even a Chebyshev algebra.

Proof. By 6.6, it suffices to show that foge R®S(R") for fe C*(R) and
geR®S(R™). Then g(x)=A+Z(x) for ge S(R"), AeR, and f(#)=f(A)+h(t—1),
where A(0)=0. Then f(g(x))=f(1)+ Ah(g(x)) and it remains to show that Aoge
S(R"), that is,

lim 3%heg))- (1 +|x>)*=0 for all keN.

x| =0
Using the following result we see that this is really the case and that A —/og is con-
tinuous, {he C®(R): h(0)=0} = S(R"), so R@®S(R") is a Chebyshev algebra.
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Theorem. Let fe C*(R,R), ge C*(R",R). Then for xe R" and each multiindex
yeMNg we have

1\
V(o= T f”"(g(x)) )) ;L—, 1 (1) +9%()
reV acNj \O!
a>0

Ao
= Z f‘““’(g(x)) = H (a ) 3%g(x)

Al a>0

where

= {i:iz(la)en\lg‘lg\(’, Y A=k ¥ )La-a=y}
a o

[/1 A=(1,) e NYAL, Zla-azy}

The one-dimensional analogue of this formula is folklore under the name Faa di
Bruno formula.

6.10. Example (of a Hausdorff C*-algebra which is not C”-complete). Let E,
be the space of all sequences x=(x,),-; in R such that the support supp(x)=
{neN: x,#0} has density 0 in Ny, where

cardinality(AN | O, n
density(A4) = lim ¥ r —I)

n— e n

We equip E, with a unit, so we consider E; = R® E,, the space of all sequences
x € R™ which differ from a constant on a set of density 0. This is an algebra of
functions, a subalgebra of R™. For fe C*(R") and x!, ..., x"€E, we easily see
that

fo(xl""’xn):(.f(xé’ ""x(;’)’f(xll’ ""xln)’f(le""’xzn)"")

differs from the constant f(c(x'), ..., c(x")) at most on the set Ule {k: xt#c(x)},
where c(x') is the constant of the sequence x'. This set is again of density 0, so E;
is a C”-algebra.

We equip £, with the trace topology from R™N, Then for any set A of density 0
in N, the algebra RA@R is a C=-subalgebra of E| (cven an ideal), so by 2.5, we
see that (£, n) -lxm 4+ RA@ R in the category ics, where A runs through all subsets
of density 0 on No and R“ @ R has the product topology which coincides with the
natural topology. Valdivia [18] showed that (£, trace topology)-hm 4 R4. So the
natural topology on E, equals the trace topology from R™ and we have the fol-
lowing consequences of Valdivia [18].

(1) (E;,n) is a Hausdorff locally convex space but not C”-complete, since the
Mackey closure of E,| is just RMe,

(2) (E}, n) is the locally convex inductive limit of all its finitely generated sub-
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algebras, but this limit is not regular, i.e., bounded sets are not bounded in some
step, because these subalgebras are nuclear Fréchet spaces (4.2(3)) and E, would be
complete if the limit were regular.

(3) The mapping ¢ : E,—~ R, defined by p(x) = w(x—c(x)), w(»)= L7 "Y1+ Y,
is not smooth, although ¢ | RA@ R is smooth for any set A of density 0. Further-
more ¢om: CE}’,(HQA)HELﬂ R is smooth for any quotient mapping 7.

Proof. If density 4 =0, then there is some ke MNy\A, such that for ye R4,
w(y)= Zﬁ;i n”y,---y,, which is obviously smooth. But

I 1
x”=<—,..., —,0,0,...>EEO,
n n

x"— 0 in the sense of Mackey, but ¢(x")=1»0=¢(0). So ¢: E,— R is not smooth.

Now g=gon:CSa(R1)—E,—R is smooth iff ¢|C°°([R’F) is smooth for finite
FC A. But then C*(RT)/C®(R¥YNker m=: Apis a finitely generated subalgebra of
E,, so is contained in some RZ with density B=0, so @|C®(R", R) is smooth. [

6.11. Example. Let R[a, &] be the space of real functions on the interval [a, b] which
are Riemann integrable. These are exactly the functions g which are bounded, and
continuous almost everywhere in the Lebesgue sense. Thus

fol(gy,...,8,) €R[a,b] for fe C*(R",R), g;€ Rla,b],

and RJa, b] is a C™-algebra with pointwise multiplication.

6.12. Example. Let C“[a, b] be the algebra of real analytic functions on [g, b].
Then by 6.7, C%|a, b] is not a C~-algebra.

6.13. Example. Let 7=S' be the torus. Consider the algebra A(T)={f, fel'(2)}
of functions on T whose Fourier coefficients are in /', with pointwise multipli-
cation.

Theorem. (Rudin [15, Chapter 6]). If F: [~ 1,1} R and Fo fe A(T) for all fe A(T)
with —1<f<1, then F is real analytic in {—1,1].

So A(T) is not a C™-algebra with pointwise multiplication by 6.7, so / l(Z) 1s not
a C™-algebra with convolution.

Likewise the multiplier algebra CyM,(G) for the group G = R™ Z", T" is not a
C~-algebra with the pointwise multiplication. This follows in an analogous way
from Zafran [20].
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