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Abstract

On a closed manifold of dimension greater than one, every smooth
weak Riemannian metric on the space of smooth positive
probability densities, that is invariant under the action of the
diffeomorphism group, is a multiple of the Fisher—Rao metric.



The Fisher—-Rao metric on the space Prob(M) of probability
densities is of importance in the field of information geometry.
Restricted to finite-dimensional submanifolds of Prob(M), so-called
statistical manifolds, it is called Fisher's information metric
[Amari: Differential-geometrical methods in statistics, 1985]. The
Fisher—Rao metric is invariant under the action of the
diffeomorphism group. Is it the unique metric possessing this
invariance property? A uniqueness result was established [éencov:
Statistical decision rules and optimal inference, 1982, p. 156] for
Fisher's information metric on finite sample spaces and [Ay, Jost,
Le, Schwachhofer, 2014] extended it to infinite sample spaces.

The Fisher—-Rao metric on the infinite-dimensional manifold of all
positive probability densities was studied in [Friedrich: Die
Fisher-Information und symplektische Strukturen, 1991], including
the computation of its curvature. A consequence of our main
theorem in this talk is the infinite-dimensional analogue of the
result in [Cencov, 1982].



The space of densities

Let M™ be a smooth manifold without boundary. Let (Ua, u,) be
a smooth atlas for it. The volume bundle (Vol(M), mp, M) of M is
the 1-dimensional vector bundle (line bundle) which is given by the
following cocycle of transition functions:

Yag : Uag = U, N Ug — R\ {0} = GL(].,R),

1
Yas(x) = | det d(ug o uz)(ua(x)) = = :
|det d(uq © uﬁl)(UB(x))\
Vol(M) is a trivial line bundle over M. But there is no natural
trivialization. There is a natural order on each fiber. Since Vol(M)
is a natural bundle of order 1 on M, there is a natural action of the
group Diff(M) on Vol(M), given by
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Vol (M) <7712y 01
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If M is orientable, then Vol(M) = A™T*M. If M is not orientable,
let M be the orientable double cover of M with its
deck-transformation 7 : M — M. Then I'(Vol(M)) is isomorphic to
the space {w € Q™(M) : 7*w = —w}. These are the ‘formes
impaires’ of de Rham. See [M 2008, 13.1] for this.

Sections of the line bundle Vol(M) are called densities. The space
I'(Vol(M)) of all smooth sections is a Fréchet space in its natural
topology; see [Kriegl-M, 1997]. For each section « of Vol(M) of
compact support the integral fM « is invariantly defined as follows:
Let (Uy, uq) be an atlas on M with associated trivialization

Yq : Vol(M)|y, — R, and let f, be a partition of unity with
supp(fy) C Uy. Then we put

— = ut . u~t .
/M =3 /U =) / o) BN )

The integral is independent of the choice of the atlas and the
partition of unity.



The Fisher—Rao metric

Let M™ be a smooth compact manifold without boundary. Let
Dens (M) be the space of smooth positive densities on M, i.e.,
Dens (M) = {u € T(Vol(M)) : pu(x) > 0Vx € M}.

Let Prob(M) be the subspace of positive densities with integral 1.
For p € Dens (M) we have T, Dens; (M) = I'(Vol(M)) and for
i € Prob(M) we have

T, Prob(M) = {a € T(Vol(M)) : [,, & =0}.

The Fisher-Rao metric on Prob(/\/l) is defined as:

G (o, B) = /M Zﬁu

It is invariant for the action of Diff(M) on Prob(M):

(()76™) (@.8) = 6[F, (970 076) =

S



Main Theorem

Let M be a compact manifold without boundary of dimension > 2.
Let G be a smooth (equivalently, bounded) bilinear form on
Dens. (M) which is invariant under the action of Diff(M). Then

6.(0.8) = (M) [ 220k Cou(m) [ a- [ 5

for smooth functions Cy, C, of the total volume u(M).

To see that this theorem implies the uniqueness of the Fisher—-Rao
metric, note that if G is a Diff(M)-invariant Riemannian metric on
Prob(M), then we can equivariantly extend it to Dens (M) via

= (o= (i~ i)



Relations to right-invariant metrics on diffeom. groups

Let o € Prob(M) be a fixed smooth probability density. In
[Khesin, Lenells, Misiolek, Preston, 2013] it has been shown, that
the degenerate, H!-metric 3 [iy divio(X). divio(X).po on X(M) is
invariant under the adjoint action of Diff(M, 1p). Thus the
induced degenerate right invariant metric on Diff(M) descends to
a metric on Prob(M) = Diff(M, uo)\ Diff(M) via

Diff(M) 3 ¢ — ¢* 119 € Prob(M)

which is invariant under the right action of Diff(M). This is the
Fisher—Rao metric on Prob(M). In [Modin, 2014], the H-metric
was extended to a non-degenerate metric on Diff(M), also
descending to the Fisher-Rao metric.



Corollary. Let dim(M) > 2. If a weak right-invariant (possibly
degenerate) Riemannian metric G on Diff(M) descends to a metric
G on Prob(M) via the right action, i.e., the mapping ¢ — ©* o

from (Diff(M), G) to (Prob(M), G) is a Riemannian submersion,
then G has to be a multiple of the Fisher—Rao metric.

Note that any right invariant metric G on Diff(M) descends to a
metric on Prob(M) via ¢ — @.po; but this is not
Diff(M)-invariant in general.



Invariant metrics on Dens, (S?).

Dens(St) = QL (S?), and Dens, (S?) is Diff(S')-equivariantly
isomorphic to the space of all Riemannian metrics on S* via

® = ( )2:Densy(St) — Met(S?), ®(fd0) = £2do>.

On Met(S?) there are many Diff(S!)-invariant metrics; see [Bauer,
Harms, M, 2013]. For example Sobolev-type metrics. Write

g€ Met(Sl) in the form g = d6? and h = hd6?, k = kd6? with
g, h, k € C>(S"). The following metrics are lef(Sl) invariant:

Gg’(h,k):/gg (1+ A8)" ( )[d@

here Ag is the Laplacian on S! with respect to the metric g. The
pullback by @ yields a Diff(S1)-invariant metric on Dens, (M):

Gu(a, B) = 4/51 % (1 +A"’(“))n (i) -

For n = 0 this is 4 times the Fisher—Rao metric. For n > 1 we get
different Diff(S!)-invariant metrics on Dens, (M) and on Prob(S%).



Proof of the Main Theorem

If M is non-orientable, let M be the orientable double cover and
7 : M — M the deck-transformation. We can decompose

QM) = {T*w = —w} & {Tw = w},

and Dens_ (M) is isomorphic to the first summand. Any bilinear
form G on Dens (M) can be extended to a bilinear form G on
Dens, (M) which is invariant for {¢ € Diff(M):7 0 p=¢ o T}.
This suffices to prove uniqueness. We choose a more direct way.

Let us fix a basic probability density pp. By the Moser trick
[Moser, 1965], see [M, 2008, 31.13] or the proof of [Kriegl, M,
1997, 43.7] for proofs in the notation used here, there exists for
each p1 € Dens; (M) a diffeomorphism ¢,, € Diff(M) with

@ = p(M)po =: c.pio where ¢ = (M) = [, 1 > 0. Then

((03)7G) (e, B) = Gyl 01.8) = Gepuo (9, £7,) -



Thus it suffices to show that for any ¢ > 0 we have

Gey(ar, B) = Ci(c). M%WHCQ / /B

for some functions Cy, G, of the total volume ¢ = u(M). Both
bilinear forms are still invariant under the action of the group

Diff(M, cuo) = Diff(M, o) = {vb € Diff(M) : ¥*up = po}. The
bilinear form

(6
T,, Dens (M) x T, Dens (M) > (a, ) — Gcm)(—uo, ﬁ,uo)
Ho Ho
can be viewed as a bilinear form
C*(M) x C*(M) > (f, g) — Gc(f,8)-
We will consider now the associated bounded linear mapping

Ge : C°(M) — C>®(M) =D'(M).



(1) The Lie algebra X(M, ug) of Diff(M, po) consists of vector

fields X with

0 =divi(X) := LXMO.
Ho

On an oriented open subset U C M, each density is an m-form,
m = dim(M), and divF°(X) = dixpo.

The mapping 7,,, : X(U) — Q™ 1(U) given by X — ixpig is an
isomorphism. The Lie subalgebra X(U, 1) of divergence free
vector fields corresponds to the space of closed (m — 1)-forms.

Denote by Xexact(M, o) the set (not a vector space) of ‘exact’
divergence free vector fields X = Zgol(dw), where w € QT=2(U) for
an oriented open subset U C M.



(2) If for f € C*°(M) and a connected open set U C M we have
(Lxf)|U =0 for all X € Xexact(M, po), then U is constant.

Since we shall need some details later on, we prove this well-known
fact.

Let x € U. For every tangent vector X, € T, M we can find a
vector field X € Xexact(M, o) such that X(x) = Xy; to see this,
choose a chart (Uy, u) near x such that jo|Uyx = dul A -+ A du™,
and choose g € C2°(Uy), such that g =1 near x.

Then X := leold(g.u2.du3 Ao ANdu™) € Xesact(M, o) and
X = 0,1 near x. So we can produce a basis for T,M and even a
local frame near x.

Thus Lxf|U = 0 for all X € Xexact(M, o) implies df = 0 and
hence f is constant.



(3) If for a distribution A € D'(M) and a connected open set

U C M we have LxA|U =0 for all X € Xexact(M, 110), then
A|U = Cpo|U for some constant C, meaning (A, f) = C [, f o
for all f € C2°(U).

Because (LxA, f) = —(A, Lxf), the invariance property

LxA|U = 0 implies (A, Lxf) =0 for all f € C°(U). Clearly,
Ji(L£xf)uo = 0. For each x € U let U, C U be an open oriented
chart which is diffeomorphic to R™. Let g € C2°(Uy) satisfy

[y &0 = 0; we will show that (A, g) = 0. Because the integral
over guyg is zero, the compact cohomology class

[guo] € HM(Ux) = R vanishes; thus there exists

a € QT YU, € Q™Y (M) with da = gpg. Since Uy is
diffeomorphic to R™, we can write o = EJ- f;dj3; with

B; € Qm2(Uy) and f; € C2°(Uy). Choose h € C°(Uy) with h =1
on |J; supp(f;), so that a =Y fid(hB;) and hB; € Q"3(M). In
particular the vector fields X; = ”ild(hﬁj) lie in Xexact(M, o) and
we have the identity ZJ- fi.ix; o = cv.



This means 3°,(Lx,f)1io = X3, Lx;(fitio) = 5, dix (o) =
d(Zj zj-.ixj,uo) =da =gug or )_; Lx;f; = g, leading to

(Ag) =) (A Lxf)==> (LxAFf)
J J

So (A,g) =0 for all g € C°(Ux) with [, guo = 0. Finally,
choose a function ¢ with support in Uy and [}, oo = 1. Then for
any f € C°(Uy), the function defined by g = f — ([}, fu0)-¢ in
C>®(M) satisfies [,, gp0 = 0 and so

<Aﬂ=%gﬁ4A@A/m=cA/m,

with C, = (A, ¢). Thus AUy = Cypo|Ux. Since U is connected,
the constants C, are all equal: Choose ¢ € C2°(U, N U,) with
[ o = 1. Thus (3) is proved.



(4) The operator G, : C>°(M) — D'(M) has the following
property: If for f € C°°(M) and a connected open U C M the
restriction f|U is constant, then we have G(f)|U = Cy(f)uo|U for
some constant Cy(f).

For x € U choose g € C*°(M) with g =1 near M\ U and g =0
on a neighborhood V of x. Then for any X € Xexact(M, o), that
is X = 1,1(dw) for some w € QI 3(W) where W C M is an
oriented open set, let Y =7, '(d(gw)). The vector field

Y € Xexact(M, o) equals X near M\ U and vanishes on V. Since
f is constant on U, Lxf = Lyf. For all h € C>°(M) we have
<£Xéc(f)a h> = <éc(f)v _LXh> = _Gc(waXh) = Gc(EXfa h) =

v

(Ge(Lxf), ), since G is invariant. Thus also
LxGo(f) = Ge(Lxf) = Go(Lyf) = Ly Ge(F).

Now Y vanishes on V and therefore so does Lx G.(f). By (3) we
have G.(f)|V = Cy(f)uo|V for some Cy(f) € R. Since U is
connected, all the constants Cy(f) have to agree, giving a
constant Cy(f), depending only on U and f. Thus (4) follows.



By the Schwartz kernel theorem, éc has a kernel @C, which is a
distribution (generalized function) in

D'(M x M) = D(M)&D'(M) =
= (C¥(M)EBC>(M)) = L(C>(M),D'(M)).

Note the defining relations

GC(fag) = <Gvc(f)7g> = <éof®g>'

A

Moreover, G is invariant under the diagonal action of Diff(M, o)
on M x M. In view of the tensor product in the defining relations,
the infinitesimal version of this invariance is: Lxx0+0xx Ge = 0 for
all X € X(M, po).



(5) There exists a constant C; = Cy(c) such that the distribution
Ge — Gopg ® g is supported on the diagonal of M x M.

Namely, if (x,y) € M x M is not on the diagonal, then there exist
open neighborhoods Uy of x and U, of y in M such that U, x Fy
is disjoint to the diagonal, or Uy N U, = 0. Choose any functions
f,g € C>(M) with supp(f) C Uy and supp(g) C U,. Then

fI(M\ Ux) =0, s0 by (4), Ge(f)|(M\ Uy) = M\u(f)uo
Therefore,

Ge(f.8) = (Ge, f ® g) = (Gc(f), &)
= (Gvc(f)\(l\/l\ Uy), g|(M\ Uy)), since supp(g) C U, C M\ Uy,

= (1) [ eno
M

By applying the argument for the transposed bilinear form
G/l (g,f) = G(f,g), which is also Diff(M, ug)-invariant, we arrive
at

6:(F.8) = 61 (&:F) = Clpr (@) [ .



Fix two functions fy, go with the same properties as f, g and
additionally [, fopo =1 and [}, gopo = 1. Then we get
CM\E(f) = Cl’w\w(go) flvl fuo, and so

G(fg I\/I\U gO / fNO /gﬂo

= M\UX(fU)/ fMO'/gMo~
M M

Since dim(M) > 2 and M is connected, the complement of the
diagonal in M x M is also connected, and thus the constants
Cunz(fo) and CM\U (g0) cannot depend on the functions fy, go or
the open sets Uy and U, as long as the latter are disjoint. Thus
there exists a constant Cz(c) such that for all f,g € C*°(M) with

disjoint supports we have

Ge(f,8) = Cz(C)/Mfuo-/Mguo

Since C°(Uyx x Uy) = C°(Uy)RCZ°(U, ), this implies claim (5).



Now we can finish the proof. We may replace G, € D'(M x M) by
@C — G @ pp and thus assume without loss that the constant G
in (5) is 0. Let (U, u) be an oriented chart on M such that

pio|U = dut A --- A du™. The distribution G.|U x U € D'(U x U)
has support contained in the diagonal and is of finite order k. By
[Hormander I, 1983, Theorem 5.2.3], the corresponding operator
Ge : C°(U) = D/(U) is of the form Ge(f) = 3, < Aa-0°F for
A, € D'(U), so that G(f,g) = (Gc(f), &) = 3., (Aa, (0%F).g).
Moreover, the A, in this representation are uniquely given, as is
seen by a look at [Hormander I, 1983, Theorem 2.3.5].



For x € U choose an open set Uy with x € Uy, C Uy, C U, and
choose X € Xexact(M, o) with X|Uy = 9,i, as in the proof of (2).
For functions f, g € C2°(Uy) we then have, by the invariance of
GCy

0= Ge(Lxf.g) + Ge(f,Lxg) = (Gc|U x U, Lxf ® g+ ® Lxg)
= (A, (070,:F).8 + (0°F)(D,8))

= (Aa,0,((0°F).8)) = > (~0,iAa, (0°F).8).

«

Since the corresponding operator has again a kernel distribution
which is supported on the diagonal, and since the distributions in
the representation are unique, we can conclude that 9,iA,|Ux =0
for each «, and each .



To see that this implies that A, |Ux = Copo| Uy, let £ € C°(Ux)
with [\, fuo = 0. Then, as in (3), there exists w € QI 1(Uy) with
dw = fug. In coordinates we have

w=>wi.dut Ao Adu' Adu™, and so f =3 (—1)T10,w;
with w; € C°(Uy). Thus

(Aq, ) = Z(—l)i+1(Aa,8u;w;> = Z(—1)f<aqua,w,> =0.

Hence (A, f) =0 for all f € C2°(Uy) with zero integral and as in
the proof of (3) we can conclude that A, |Ux = Capo| Us.



But then G.(f,g) = fUX(Lf).g,uo for the differential operator
L= ngk C,0% with constant coefficients on U,. Now we
choose g € C2°(Uy) such that g = 1 on the support of f. By the
invariance of G, we have again

0= Gu(Lxf,g)+Gelf, Lxg) — / L(LxF)-gho+ / L(F).Lxg-110

Ux Ux

:/ L(Lxf)po +0
Ux

for each X € X(M, po). Thus the distribution f — fUX L(f)uo
vanishes on all functions of the form Lxf, and by (3) we conclude
that L( ).uo = Cx.po in D'(Uy), or L = Ci Id. By covering M
with open sets Uy, we see that all the constants C, are the same.
This concludes the proof of the Main Theorem. O



Thank you for listening.



