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Abstract

For a smooth compact manifold M, any weak Riemannian metric
on the space of smooth positive densities which is invariant under
the right action of the diffeomorphism group Diff (M) is of the form

6.(0:8) = (M) [ %2 Cou(m) [ o [ 5

for smooth functions C;, C; of the total volume (M) = [, pi.

In this talk the result is extended to:

(0) Geometry of the Fisher-Rao metric: geodesics and curvature.
(1) manifolds with boundary, for manifolds with corner.

(2) to tensor fields of the form G, (a1, o, ..., ax) for any k which
are invariant under Diff(M).



The Fisher—Rao metric on the space Prob(M) of probability
densities is of importance in the field of information geometry.
Restricted to finite-dimensional submanifolds of Prob(M), so-called
statistical manifolds, it is called Fisher's information metric
[Amari: Differential-geometrical methods in statistics, 1985]. The
Fisher—Rao metric is invariant under the action of the
diffeomorphism group. A uniqueness result was established
[Cencov: Statistical decision rules and optimal inference, 1982, p.
156] for Fisher’s information metric on finite sample spaces and
[Ay, Jost, Le, Schwachhofer, 2014] extended it to infinite sample
spaces.

The Fisher—-Rao metric on the infinite-dimensional manifold of all
positive probability densities was studied in [Friedrich: Die
Fisher-Information und symplektische Strukturen, 1991], including
the computation of its curvature.



The space of densities

Let M™ be a smooth manifold. Let (U,, uy) be a smooth atlas for
it. The volume bundle (Vol(M), mp, M) of M is the 1-dimensional
vector bundle (line bundle) which is given by the following cocycle
of transition functions:

Yag : Uag = U, N Ug — R\ {0} = GL(].,R),

1
Yas(x) = | det d(ug o uz)(ua(x)) = = :
|det d(uq © uﬁl)(UB(x))\
Vol(M) is a trivial line bundle over M. But there is no natural
trivialization. There is a natural order on each fiber. Since Vol(M)
is a natural bundle of order 1 on M, there is a natural action of the
group Diff(M) on Vol(M), given by

e o
Vol (M) <7712y 01

i i

M L M




If M is orientable, then Vol(M) = A™T*M. If M is not orientable,
let M be the orientable double cover of M with its
deck-transformation 7 : M — M. Then T'(Vol(M)) is isomorphic to
the space {w € Q™(M) : 7*w = —w}. These are the ‘formes
impaires’ of de Rham. See [M 2008, 13.1] for this.

Sections of the line bundle Vol(M) are called densities. The space
I'(Vol(M)) of all smooth sections is a Fréchet space in its natural
topology; see [Kriegl-M, 1997]. For each section « of Vol(M) of
compact support the integral fM « is invariantly defined as follows:
Let (Uy, uq) be an atlas on M with associated trivialization

Yq : Vol(M)|y, — R, and let f, be a partition of unity with
supp(fy) C Uy. Then we put

— = ut . u~t .
/M =3 /U =) / o) BN )

The integral is independent of the choice of the atlas and the
partition of unity.



The Fisher—Rao metric

Let M™ be a smooth compact manifold without boundary. Let
Dens (M) be the space of smooth positive densities on M, i.e.,
Dens (M) = {u € T(Vol(M)) : pu(x) > 0Vx € M}.

Let Prob(M) be the subspace of positive densities with integral 1.
For pu € Dens (M) we have T, Dens; (M) = I'(Vol(M)) and for
i € Prob(M) we have

T, Prob(M) = {a € T(Vol(M)) : [,, & =0}.

The Fisher-Rao metric on Prob(/\/l) is defined as:

G (o, B) = /M Zﬁu

It is invariant for the action of Diff(M) on Prob(M):

(()76™) (@.8) = 6[F, (970 076) =

S



Theorem [BBM, 2016

Let M be a compact manifold without boundary of dimension > 2.
Let G be a smooth (equivalently, bounded) bilinear form on
Dens. (M) which is invariant under the action of Diff(M). Then

6.(0.8) = (M) [ 22k Cofuqm) [ a- [ 5

for smooth functions Cy, C, of the total volume u(M).

To see that this theorem implies the uniqueness of the Fisher—-Rao
metric, note that if G is a Diff(M)-invariant Riemannian metric on
Prob(M), then we can equivariantly extend it to Dens (M) via

= (o= (i~ U, i)



Relations to right-invariant metrics on diffeom. groups

Let o € Prob(M) be a fixed smooth probability density. In
[Khesin, Lenells, Misiolek, Preston, 2013] it has been shown, that
the degenerate, H!-metric 3 [iy divio(X). divio(X).po on X(M) is
invariant under the adjoint action of Diff(M, 1p). Thus the
induced degenerate right invariant metric on Diff(M) descends to
a metric on Prob(M) = Diff(M, uo)\ Diff(M) via

Diff(M) 3 ¢ — ¢* 119 € Prob(M)

which is invariant under the right action of Diff(M). This is the
Fisher—Rao metric on Prob(M). In [Modin, 2014], the H-metric
was extended to a non-degenerate metric on Diff(M), also
descending to the Fisher-Rao metric.



Corollary. Let dim(M) > 2. If a weak right-invariant (possibly
degenerate) Riemannian metric G on Diff(M) descends to a metric
G on Prob(M) via the right action, i.e., the mapping ¢ — ©* o

from (Diff(M), G) to (Prob(M), G) is a Riemannian submersion,
then G has to be a multiple of the Fisher—Rao metric.

Note that any right invariant metric G on Diff(M) descends to a
metric on Prob(M) via ¢ — @.po; but this is not
Diff(M)-invariant in general.



Invariant metrics on Dens, (S?).

Dens(St) = QL (S?), and Dens, (S?) is Diff(S')-equivariantly
isomorphic to the space of all Riemannian metrics on S* via

® = ( )2:Densy(St) — Met(S?), ®(fd0) = £2do>.

On Met(S?) there are many Diff(S!)-invariant metrics; see [Bauer,
Harms, M, 2013]. For example Sobolev-type metrics. Write

g€ Met(Sl) in the form g = d6? and h = hd6?, k = kd6? with
g, h, k € C>(S"). The following metrics are lef(Sl) invariant:

Gg’(h,k):/gg (1+ A8)" ( )[d@

here Ag is the Laplacian on S! with respect to the metric g. The
pullback by @ yields a Diff(S1)-invariant metric on Dens, (M):

Gu(a, B) = 4/51 % (1 +A"’(“))n (i) -

For n = 0 this is 4 times the Fisher—Rao metric. For n > 1 we get
different Diff(S!)-invariant metrics on Dens, (M) and on Prob(S%).



Main Theorem

Let M be a compact manifold, possibly with corners, of dimension
> 2. Let G be a smooth (equivalently, bounded) (g)—tensor field

on Dens;. (M) which is invariant under the action of Diff(M). If M
is not orientable or if n < dim(M) = m, then

Gular,...,an) = Go(u(M)) [ 2.2y

M M H
n —
a1 Q; «
+ZQMWV@K/W'W"M
i—1 M M H K 2
n — —
o O [0 (o) o (6]
+ 3 Cilu(my)y | Ly [ 2SS Sy,
= M H MM Heo p
+
«
+C12f7 / M ..... JM.
M M M

for some smooth functions Cy, ... of the total volume y(M).



Main Theorem, continued

If M is orientable and n > dim(M) = m, then each integral over
more than m functions «;/p has to be replaced by the following
expression which we write only for the first term:

a1 Qp
Colu(M)) [ &L % o
o(u(M)) T LM
£S5 k(M) | S S g Shamminy g (S
Zo(u( ) p p ( B ) (u)

Qk

where K = {kn—m+1,- .-, kn} runs through all subsets of
{1,..., n} containing exactly m elements.



Moser’s theorem for manifolds with corners
[BMPR16]

Let M be a compact smooth manifold with corners, possibly
non-orientable. Let g and 1 be two smooth positive densities in
Dens (M) with [,, 1o = [y, 111 Then there exists a
diffeomorphism ¢ : M — M such that u1 = ©*ug. If and only if
po(x) = pi(x) for each corner x € 322M of codimension > 2,
then ¢ can be chosen to be the identity on OM.

This result is highly desirable even for M a simplex. The proof is
essentially contained in [Banyagal974], who proved it for manifolds
with boundary.



Geometry of the Fisher-Rao metric

G0, B) = Ci(u(M)) /M ziquCz(u(M)) /M o /M 8

This metric will be studied in different representations.

Dens. (M) —= Co(M, Rog) —2= Rog x SN €5 5 (W_, W) x SN €.

We fix 19 € Prob(M) and consider the mapping

R : Dens, (M) — C>(M,Rso), R(M)_f_\/T‘
L

The map Ris a diffeomorphism and we will denote the induced
metric by G = (R‘l)* G; it is given by the formula

Gr(h, k) = 4CL([If1%){h, k) + 4Ca(|IFIP)(F, h)(F, k)

and this formula makes sense for f € C*°(M,R) \ {0}.

The map R is inspired by [B. Khesin, J. Lenells, G. Misiolek, S. C.
Preston: Geometry of diffeomorphism groups, complete integrability and
geometric statistics. Geom. Funct. Anal., 23(1):334-366, 2013.]



Remark on R~1

R~ : C®(M,R) — Iso(Vol(M)), £ — fug

makes sense on the whole space C*°(M,R) and its image is
stratified (loosely speaking) according to the rank of TR™1. The
image looks somewhat like the orbit space of a discrete reflection
group. Geodesics are mapped to curves which are geodesics in the
interior ['5o(Vol(M)), and they are reflected following Snell’s law
at some hyperplanes in the boundary.



Polar coordinates

on the pre-Hilbert space (C*°(M,R), (, );2(,,)). Let
S={p e (M,R) : [,,¢*uo =1} denote the L?-sphere. Then

& : C®(M,R)\0} = Rogx(SNC®),  &(f) = (r, ) = <||f||,”?||>

is a diffeomorphism. We set G = (Cb_l)* G; the metric has the
expression B

Grp = £1(r)(dp, dp) + g2(r)dr?,
with g1(r) = 4Ci(r?)r? and go(r) = 4 (CGi(r?) + Go(r?)r?). Finally
we change the coordinate r diffeomorphically to

s=w()=2 [ Vel dp.

Then, defining a(s) = 4C1(r(s)?)r(s)?, we have

Gs.p = a(s)(dp, dp) + ds?.




Let W_ = lim,— 04+ W(r) and Wy = lim,_oc W(r). Then
W :Rso — (W_, W) is a diffeomorphism.

This completes the first row in Fig. 1.

R ® wxId
Dens; (M) ———== C°°(M,R>0) —> R5ox SN CH —> (W_, W4 )xS5N CT,

T l

W xId
Dens(M)\ {0} — C%(M,R)\ {0} —> Rsox5N C® —— Rx5nC°

I T

1 (Vol(M)\ {0} Km0} —2 > Rogxs — 0 S mxs

FIgU €. Representations of Dens (M) and its completions. In the second and third rows we assume that
(W_, Wy) = (—o0, +00) and we note that R is a diffeomorphism only in the first row.

Geodesic equation:

V3.0t = 0 (log g1(r)) ¢

2 '(r
G &) )_;at(loggz(f))rt

fp = —F ———
T2 gi(r)2e(r




Since G induces the canonical metric on (W_, W), a necessary
condition for G to be complete is (W_, W,) = (—o0, +00).
Rewritten in terms of the functions C;, G this becomes

Wi =0 ([TrE/ama oo [T VGE =),

and similarly for W_ = —o0, with the limits of the integration
being 0 and 1.



Relation to hypersurfaces of revolution in the (pre-)
Hilbert space

We consider the metric on (W_, W) x SN C* in the form

Grp = a(s){dp, dp) + ds® where a(s) = 4Cy(r(s)?)r(s)?. Then

we consider the isometric embedding (remember (p, d¢) = 0 on
SNCx)

W (Wo, Wy) x SN C™®,6) — (R x C°(M,R), du? + (df, df))

U(s, ) /\/ 4/‘50 do Ftp

which defined and smooth only on the open subset
R:={(s,0) € (W_,W,) x SN C>®:3d(s)? < 4a(s)}.

Fix some g € SN C* and consider the generating curve

> R?.
o ([ gy, )

Then s is an arc-length parameterization of this curve!




Given any arc-length parameterized curve | 3 s +— (ci(s), c2(s)) in
R? and its generated hypersurface of rotation

{(ci(s),2(s)p) :sel,p e SNC>®} CR x C*(M,R),

the induced metric in the (s, p)-parameterization is
ds? + co(s)?(dy, dp).

This suggests that the moduli space of hypersurfaces of revolution
is naturally embedded in the moduli space of all metrics of the
form (b).



Theorem

If (W_, Wy) = (—o0,400), then any two points (sp, po) and
(s1,1) in R x S can be joined by a minimal geodesic. If oo and
1 lie in SN C, then the minimal geodesic lies in R x SN C™.

Proof. If ¢g and ¢ are linearly independent, we consider the
2-space V = V/(yg, 1) spanned by g and 7 in L2, Then

R x VNS is totally geodesic since it is the fixed point set of the
isometry (s, ) — (s,5v(p)) where sy is the orthogonal reflection
at V. Thus there is exists a minimizing geodesic between (sp, ¢0)
and (s1, 1) in the complete 3-dimensional Riemannian
submanifold R x V' N S. This geodesic is also length-minimizing in
the strong Hilbert manifold R x S by the following arguments:



Given any smooth curve ¢ = (s,¢) : [0,1] — R x S between these
two points, there is a subdivision 0 = tg < t; < --- < ty = 1 such
that the piecewise geodesic ¢; which first runs along a geodesic
from c(to) to c(t1), then to c(t2), ..., and finally to c(ty), has
length Len(c1) < Len(c). This piecewise geodesic now lies in the
totally geodesic (N + 2)-dimensional submanifold

R x V(e(to),---,o(tn)) N'S. Thus there exists a geodesic ¢
between the two points (sp, o) and si1, @1 which is length
minimizing in this (N + 2)-dimensional submanifold. Therefore
Len(c2) < Len(cy) < Len(c). Moreover, co = (s o 2, ¢ o ) lies
in R x V(go, (¢ o )'(0)) NS which also contains 1, thus ¢ lies
in R x V(gDo,gOl) ns.

If oo = 1, then R X {po} is a minimal geodesic. If o9 = —po we
choose a great circle between them which lies in a 2-space V and
proceed as above. []



Covariant derivative

On R x S (we assume that (W_, W) = R) with metric

G = ds? + a(s)(dy, dp) we consider smooth vector fields
f(s,p)0s + X(s, ) where X(s, ) € X(S) is a smooth vector field
on the Hilbert sphere S. We denote by V* the covariant derivative
on S and get

ds
Viox(g0s+ Y) = (f.gs + dg(X) — E<X’ Y))s

—l—%(W—i—gX)—i—st—i-V)S(Y

Curvature:

R(fOs + X,g0s + Y)(h0s + Z) =
2

= (2= _ %) (gX — Y, 2)0: + RS(X, ¥)Z
2 4a
2
S

_ ((%)s n :?)h(gx )+ %(<x,z>y — (Y, 2)X) .




Sectional Curvature

Let us take X, Y € T,S with (X, Y) =0 and

(X,X) = (Y,Y) = 1/a(s), then

Sec(Sw (span(X,Y)) =

SEC(S’LP) (Span(asa Y)) =

1

a

as

2327

aSS

2
as

23 | 432

are all the possible sectional curvatures.




Back to the Main Theorem

Let M be a compact manifold, possibly with corners, of dimension
> 2. Then the space of all Diff(M)-invariant purely covariant
tensor fields on Dens, (M) is generated as algebra with unit 1 over
the ring of of smooth functions f(u(M)), f € C*(R,R) by the
following generators, allowing for permutations of the entries

aj € T, Dens (M):

N % forallne Nsg, and by
M H ©

A Gnom d(a”—’"ﬂ)/\.../\d(%)
I I 1 [

for n > dim(M) and orientable M.



Manifolds with corners alias quadrantic (orthantic)
manifolds

For more information we refer to [DouadyHerault73], [Michor80],
[Melrose96], etc. Let @ = Q™ = RZ, be the positive orthant or
quadrant. By Whitney's extension theorem or Seeley's theorem,
restriction C*°(R™) — C*°(Q) is a surjective continuous linear
mapping which admits a continuous linear section (extension
mapping); so C*(Q) is a direct summand in C*°(R™). A point
x € Q is called a corner of codimension q > 0 if x lies in the
intersection of g distinct coordinate hyperplanes. Let 09Q denote
the set of all corners of codimension q.



A manifold with corners (recently also called a quadrantic
manifold) M is a smooth manifold modelled on open subsets of
Q™. We assume that it is connected and second countable; then it
is paracompact and for each open cover it admits a subordinated
smooth partition of unity. Any manifold with corners M is a
submanifold with corners of an open manifold M of the same dim.
Restriction C°(M) — C°°(M) is a surjective continuous linear
map which admits a continuous linear section. Thus C*>°(M) is a
topological direct summand in C>°(M) and the same holds for the
dual spaces: The space of distributions D’(M), which we identity

with C>°(M)’, is a direct summand in D'(M). It consists of all
distributions with support in M.

We do not assume that M is oriented, but eventually we will
assume that M is compact. Diffeomorphisms of M map the
boundary OM to itself and map the boundary 99M of corners of
codimension g to itself; 09M is a submanifold of codimension g in
M; in general 99M has finitely many connected components. We
shall consider M as stratified into the connected components of
all 99M for g > 0.



Beginning of the proof of the Main Theorem

Fix a basic probability density pg. By Moser’s theorem for
manifolds with corners, for each 1 € Dens (M) there exists a
diffeomorphism ¢, € Diff(M) with ¢} 1 = p(M)uo =: c.po where
c=pu(M)= [,,n>0. Then

((@Z)*G)H(ala cee 7an) = GSOZ/J«(SOZOZL oo ﬂozan) =
= Ge (P01, - - Py an) -
Thus it suffices to show that for any ¢ > 0 we have

Gepo(01, - rom) = Go(c). | 22 E0po+ ...
M Ho Ho
for some functions Cy, ... of the total volume ¢ = p(M). Since
¢ — c.uo is a smooth curve in Dens; (M), the functions Cp, ...
are then smooth in c. All k-linear forms are still invariant under
the action of the group

Diff(M, cpio) = Diff(M, p10) = {1p € Diff(M) : 9)* 10 = pio}-



The k-linear form

k « Qp
(T#O Dens+(/\/l)) > (alv s 7an) = GC,U«o (71”07 SRR 7“0)
Ho HO

can be viewed as a bounded k-linear form
CO(M)E 3 (f,...,f) = G(f,...,f).

Using the Schwartz kernel theorem, Gc has a kernel @C, which is a
distribution (generalized function) in

D'(M")=D'(M)&...5D (M

(C¥(M)&...& (M)’
= L(C“(Mk) (M7 ).
Note the defining relations

Ge(fiy oo F) = (Ge(Fi o ) g1 ® - @) = (G, AR - D Fy).

A

Gc is invariant under the diagonal action of Diff(M, 1i0) on M".



The infinitesimal version of this invariance is:
0= (LxansGe, fi @+ @ f) = —(Ge, Lxaig (A& - @ F))
:_i<é‘c’fl®...®[,xfi®...®fn)>
i=1
X928 = X x0x...x0+0xXX0x...x04....

for all X € X(M, uo).

We will consider various (permuted versions) of the associated
bounded mappings

Ge 1 CO(M)K — (C®(M)" )" = D/(M"=k).

We shall use the fixed density po € Dens (M) for the rest of this

section. So we identify distributions on M¥ with the dual space
C®(MK) =: D' (MK)



The Lie algebra of Diff(M, o)

For a fixed positive density 1p on M, the Lie algebra of Diff(M, po)
which we will denote by X(M, M, 1), is the subalgebra of vector
fields which are tangent to each boundary stratum and which are
divergence free: 0 = divio(X) := % These are exactly the
fields X such that for each good subset U (where each density can
be identified with an m-form) the form 7,,,(X) is a closed form in

Q™Y(U,0U), and 0 = divFo(X) := £k,

Denote by Xexact(M, OM, o) the set (not a vector space) of
‘exact’ divergence free vector fields X = Zﬁol(dw), where

w € QT2(U, 0U) for a good subset U C M. They are
automatically tangent to each boundary stratum since

dw € QT1(U, 0U).



Lemma /f for f € C*>°(M) and a good set U C M we have
(Lx)|U =0 for all X € Xexact(M,OM, p1p), then f|U is constant.

Lemma If for a distribution A € D'(M) = C>*°(M)’ and a
connected open set U C M we have LxA|U = 0 for all

X € Xexact(M,0M, o), then A|U = Cpuo|U for some constant C,
meaning (A, f) = C [,, fuo for all f € C(U).

This lemma proves the theorem for the case n = 1.
Lemma Each operator
Ge : C¥(M) — C=>(M™Y
firs (e Fioe o) = Gelfiy. o\ )

has the following property: If for f € C>°(M) and a connected
open U C M the restriction f|U is constant, then

L yaing(Ge(F))| U1 = 0 for each exact vector field

X € %exact(Mv 8M7 ,U/O)'



Lemma Let G be an invariant distribution in D'(M"). Then for
each 1 < i < n there exists an invariant distribution
G; € D'(M"1) such that the distribution

(fl,...,fn)e@(fl,...,fn)—GA,-(fl,...?,-...,f,,)~/ o
M
has support in the set

Di(M) = {(x1,...,%n) : xi = x; for some j # i} .

Lemma There exists a constant C = C(c) such that the
distribution G. — Cpo®" is supported on the union of all partial
diagonals

D :={(x1,...,xn) € M" : for at least one pair i # j

we have equality: x; = xj} .



Lemma Let G € D'(M") be a Diff(M, ug)-invariant distribution,
supported on the full diagonal

AM) ={(x1,...,x) EM" : xg =---=xp} C M". If

n < dim(M) or if M is not orientable, there exist some constant C
such that G(fi,...,f,) = C [, ... fapo.

If n > dim(M) and if M is orientable, then there exist constants
such that

(6% (6%
Co 71”.7nlu+
M H K
Qi Ak, Xy _my1 Qk
+y | | e g (e A A d (R
.G . (=) (=)
where K = {kn—m+1, .-, kn} runs through all subsets of

{1,...,n} containing exactly m elements.



Beginning of the proof of the lemma:

Let (U, u) be an oriented chart on M, diffeomorphic to Q7 with
coordinates u! > 0,...,uP > 0,uPT, ... u™, such that

po|U = du® A - A du™. The distribution G|y € D'(U") has
support contained in the full diagonal

A(U) ={(x,...,x) € U" : x € U} and is of finite order k since
M is compact. By Thm. 2.3.5 of Hormander 1983, the
corresponding multilinear form G can be written as

G(f,...,f) = > (Aas,san 1 O 0% o 1.F)
lar]4...+lan—1]<k

with multi-indices o = (¢ 1, .., ®jm) and unique distributions
Ao....an, € D'(U) of order k — o] — ... — |ap—1].



End of the proof of the Main Theorem

Let G be an invariant distribution in D'(M") and let k < n/2. Let
{1,...,n} ={i,..., ik} U{,-..,jn—k} be a partition into a
disjoint union.

Without loss, let {i1,..., ik} ={1,...,k}. Let (x1,...,x,) € M"
be such that no x; for 1 </ < k equals any of the x; with k < j.
Choose open neighborhoods Uy, of x; in M for all ¢ such that each
Uy, with i < k is disjoint from any Uixj with k < j. For smooth
functions f, with support in U, for all £, we have that for i < k all
functions f; vanish on ﬂjlle(M\ Uy;), thus

Lyans(G(f1, -, ) (N1 (M Uy))"™ = 0 for all
X e %diag(MaaMHMO)'



For k < j we have supp(f;) C Uy, C [y (M\ Uy,). Consider
fi,..., fx as fixed. Using induction on n and replacing M by the
submanifold (non-compact!) ﬂle(M\ Ux;) we may assume that
the main theorem is already true for
k
x —k
Ge(fi, - (M Uy))"
j=1

so that

Gvc(fh...,fk)(fk+1,...,fn) = Co(f17 , fk)/fk—H AT

+ Z Ci(f17"‘7fk)/,\/,ai'\/,Vlfk+1...?;...fn/j,0

i=k+1
+ZCU(f1”fk)/ ﬁfjuo/fk+1ﬁ;—;fnﬂ
k<i<j m M

4+ ...
+C12...n(f1,-..,fk)/ fk-}—l,UO""'/ an'
M M



Now all the expressions C(fi,..., fx) are again invariant, and we
can subject it also to the induction hypothesis. All the resulting
multilinear operators are defined on the whole of M. If we
substract them from the original Ge, the resulting distribution has
support in the set of all (xi,...,x,) € M" such that x;, = Xo(h for
an injective mapping ¢: {1,..., k} = {1,...,n— k}.

Finally we end up with a distribution with support on the full
diagonal {(x,...,x) : x € M} C M" whose form is determined by

the last lemma. O



Thank you for listening.



