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Abstract

The following notion of duality is studied: If G is a contravariant functor
on Ban, then @* (X)=Nat(G,(X8&.)’). We derive the following results:
The X-reflexive functors are exactly the maximal subfunctors of H(.,4)
with reflexive 4, @% is *-reflexive if and only if G (7) is a reflexive Banach
space, GX = (Ge)*, and G* (X’) = @, (X)’ if X’ has the metric approximation
property. The last result has the consequence that for the tensor product
of functors GB® (X’8.)= @.(X) holds, if X’ has the m. A, P,

an

In this article a notion of duality for contravariant functors
on Banach spaces is studied, which is based on the class of integral
operators in the sense of BucawaLTer ([1], [2]): 1(X,Y')=
=(X &® Y). We employ the technique of constructing certain
normed right ideals to functors, here called subfunctors; this
technique was developed in [12].

We are able to derive the following conclusions on the duality
G G : The *reflexive functors are exactly the maximal sub-
functors of H(., A) with reflexive A, G* is *-reflexive if and only if
G(I) is a reflexive Banach space, G* = (G)* and G* (X') =Ge(X)’
if X' satisfies the metric approximation condition. This last result
implies that under the same restrictions we have ¢ B@n(X'@ )=

= @,(X), a result that was known until now only for reflexive X
with the metric approximation property. There is some connection
of this notion of duality to the concept of the adjoint ideal in
the theory of Banach operator ideals, which can be found in
PrerscH [14].
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In [11] we studied the notion of A-duality, formulated in the
language of Waelbroeck spaces ([1], [2]) and their projective tensor
product. If we suppose, that all Banach spaces in our category
fulfil the metric approximation condition, then the A-duality
coincides with our notion by duality of categories. Here we need
neither this hypothesis nor the theory of Waelbroeck spaces.

A similar concept of duality for covariant functors was studied
by CiGLER [4]; our methods could be used to get rid of the metric
approximation property, which he uses heavily throughout the
paper.

We use the notation and the basic result of [3], [10], [9] with
the only exception that we write Nat(G1,G2) for the space of all
natural transformations between admissible functors. For infor-
mation on tensorproducts see [6], [7]. We write ||.||r for the norm
on all spaces of the form (X &® Yy, I for integral.

All functors @, G1,... are admissible contravariant functors
defined on a small full subcategory B of the category Ban of all
Banach spaces, which contains all finite dimensional spaces.

1. Definition: If G is a functor then its dual functor G* is
defined by G@*(X)=Nat(Q, (X@.)’) with the obvious action on
morphisms.

The equation Nat(Gi1, G5 )=Nat(Gs, Gy) holds and is natural
in G4 and G2 and is thus an adjointness relation for the contra-
variant functor G'— G*. This follows from

Nat (G4, GY) = Nat A (.),Nat (G2 (h(®.)))=

-—Nat(Gl()Nat(( ), Gz(..))) =

_Nat(G1( ®(® ), Ge(.)) =
()eB

*Nat(Gz( )(Gl((®B( L)) =

__Na,t(G'g (), Nat (G1(.), (- ®..)) =
(..) @)
= Nat (Ga, GY).

Specializing we have for every G: Nat(@, G**)=Nat (G*, G*) and
the natural map ¢¢: G- G** corresponding to the identity on G*
is called the canonical injection. G is called *-reflexive, if ¢ is
a natural equivalence.
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Let us consider the map ¢%:G(X)—H (X, G (I)), defined by
#%(9)(x) = G(2)g, ze X, ge G(X), where 2: I >X, 2(1) = (I is the
one dimensional Banach space). It is easily seen that ¢% is a linear
contraction and natural in G and X. The quotient functor of G
by ¢¢ happens to be in the following class of functors:

2. Definition: Let A be a Banach space. A subfunctor A(.,4)
of H(.,4) is a functor X—A(X,A) together with an injective
contractive natural transformation A(.,4)—>H (.,A)—we will con-
sider A(.,A) to be an algebraic subfunctor of H(.,4)—such that
A(I,A)=A via d<»>a. We can derive the following properties:

a) lfoglla<ilfilaligll, feA(X,A), geH (Y, X), because A(.,4) is
an admissible functor.

b) A(X,4)2X'®A, i.e. the space of all finite-dimensional
maps X - A4, because

Ydiox; =) A(x;,A)d and A=A(I,A4).

¢) ldoa’||la= |lallll="|| by
lalliz’ | =lldoz’|<ldox’|la<||dllallz’| = lla]/l|="]|.

3. Proposition: The gquotient functor Glkerg® of G by ¢% is a
subfunctor A (., G(I)) of H(.,G(I)).

Proof: Let A(X, G (I)) be the image of ¢% with quotient norm.
As ¢% is natural in X and contractive and ¢ is the map g—4,
G(I)~>H(I,G(I)), all properties of a subfunctor are trivially
satisfied.

4. Definstion: If A(.,A) is a subfunctor we define 4*(X,A4") to
be the space of all heH(X,A’) such that h‘ofe(XCi)Y)’ for all
feA(Y,A), Y eB and moreover

Al px = sup {|[k* o fllr:feA(Y,A), YeB,||flla<1} <oo

and we equip A*(X,A’) with this norm. We shall show that
A%(.,4') is again a subfunctor and that it is the dual functor of
A(.,A) via some identifications.

5. Lemma: G*(I)= G(I)'.

Proof: G*(I)=Nat(G,(.))=Nat(Id, ') =Nat(H;, ') =G (I)
and the correspondence is given by transposition, followed by the
Yoneda map, i. e.:

Be @ ()~ (B (1) eG(I)
9'eGI) —p(g)eG* (1), (= p(9)x(9x)) = (G (&)9z.9"),

12+
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where zeX, gxeG(X) and *:H(Z,Y')>H(Y,Z') is the natural
isomorphism f—>(f'oty: YY" > Z').

6. Lemma: For fe G*(X), zeX and ge G(I) we have

@ (¥ B (@))7 (1)) = (, b1 ()

Proof:

@ (¢% B (x)' (1 ) =(L (9% (8) (x)l(!J)—(l (G (2) ﬂ)l(g
This result shows that ¢§X:Gx (X)—)H (X, Gx (I)) has the form
B—>(Br)! modulo the identification G*(I)= G(I)’ of Lemma 4.

Tt is easily seen that f§->(Br)¢ is injective, therefore G* coincides
with the subfunctor A€ (., @ (I))=A¢*(., G(I)).

7. Proposition: A& (., G(I))=(A¢)*(., G(I)").
For G@=A(.,A) it follows that 4*(., 4’) is again a subfunctor.
Proof. By 5. every heA® (X, G (I)) has the form (Br)¢ for an

unique pe @ (X). If fede(Y,G(I)) for an arbitrary YeB, then
f=9¢5%(g) for geG(Y) with ||lg|| <[ fll;¢+ ¢ Let be yeY:
htof(y)=pto e (9)(y) =H1G(9)g=
=(X®9)'Br@)=(Br@)®
thus Atof = fr (g e(X@ Y) and
IRt o fllr = l1Br @)l <IBl gl <Al 1o (Ifll 40 + 2)
i e. he (A% (X, G(I)) and ||h|| e <[] ex-
If on the other hand we have he(A¢)*(X,Q(I)), then we
define feNat (G, (X ®.)) by
By (gv) =t o (¢% (g¥) e (X ® Y') for gre G (V).
1By (g2) lIr = &% o (¢% (@) Ir < [|B]l 40y 19% (g2) lla <
<liAllaex llgell, thus (|1 <121l 46 -

Tt is easily seen that § is natural and therefore ge G* (X). For
geG(I) and zeX we have

ﬂl )“(IC,ﬂI >—<x htO(pI( )>=<x:ht(§)>=<g’h(x)>)
i.e. h=(fr)t is indeed of the form of lemma 5 and therefore

he(A¢)*(X,G(I)) and |&|ex=|Bl<|kll4¢x. This ends the
proof.
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8. Lemma: Let A(.,4) be a subfunctor and heA*(X,A'). Then
|h|lax =sup|tr(htovou)|, where u: X'~ Z runs through all weak*-
continuous quotient maps onto finite dimensional Banach spaces Z
and veA(Z,A),||v||a< 1. Every h: X ~>A’', for which that supremum
18 finite, belongs to A (X, A4’).

Proof: |[hllax =sup {|htoflr,feA(Y,4), Ye B, |fla<1} =

=sup {|tr(htofow)|:feA(Y,A),YeB,
Ifla<l,weX®Y, A(w)<1}.

We now fix f and w and consider the canonical factorization of w:
w=imwo@docoimw: X' > X'[w1(0)»w((X')>Y. Z=X'[w"1(0)
is then a finite dimensional Banach space, v =coimw: X'>Z
a weak*-continuous quotient map and v=foimwoweA(Z,A4),
lv]la <1 and we have tr (hfofow)=tr(htovou). The rest is clear.

This result shows that 4™ (X, A’) depends only on the spaces
A(Z,A) for finite dimensional Z, thus by 7 G (X)= G;(X).

9. Theorem: If G is a functor and X' satisfies the metric
approximation condition, then G (X')= G,(X)'.

Proof: Since G (X)= G, (X) we may suppose that G is
essential.

G, (X) is the completion of G(I)® X’ in a reasonable norm
«: A<a<y (see [10]). In [6] it was shown, that G,(X) is a linear
subspace of H (X', G(I)), consisting of all f: X'—>@Q(I), which
fulfil

Iflle, xy: =sup {| Y. gs,f(@))]: Y. 9: Rz e G (I)® X',
2 (Y gi®x;) <1} <.

On the other hand we have G*(X')=A¢(X',G(I))=
=(A¢(X',G(I)) by 6 and 7. It remains to show that
(A (X', G(I))=(G(I)®«X")" and for that it is enough to show
Iflle, &y =11fl 46)x for feH (X', G(I)’), because f is an element of
the respective space, if the respective norm of f is finite.

Let ussuppose f: X' >G(I) and ||f||¢x) <. If heA¢(Y, G(I)),
then there exists ge G(Y) with

h=g% (), gl <llpll o+
Iftohlly=sup {| ¥ @} f oh @u)|: L7, @ueX' @Y,
ALz ®y) <1}
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But we have
Y@ roby)) =Y ky).f (@)=Y &% (9) ). f (@) =
=Y AG(#)9.f (=)
and } G () (9)®x; e G (X',
2 (Y G (9 ®z) =Y G (%) G (@) glecr =G (L g0 %) (9) locn <
<A gioz) llgllemy <L. (ko +¢).
Therefore we can compute as follows:
Iftohllr <sup{| Y gs,.f@)]: L@ G (R X',
(Y g:®) < bl o+ 2} <
<lflle, @ (12l 46 + ),
oy =sup{llfto klrsheA(Y,@(D), Y B, [hla<1}<

<|flle,@y (1 +¢).

Since £>0 is arbitrary, we have |f|| ,¢)x <||flle -
If on the other hand fe(A%)* (X', G(I)"), we proceed as follows:

Iflle,cxy: = sup{| ¥ {g,f @) |: Y. g:e®@x; e ()R X',
2 (Le®x;) <1} =
=sup {| Trace (fto h)|: he X'Q G (I)cA%(X,Q(I]), ||k e <1},

because @ is essential and thus ¢%: G (X)= Go(X)—>A¢(X, G(I))
is a quotient map and maps the dense subset G(I)Q X' N {ge G.(X):
llgl| <1} of the unit ball of G¢(X)= G(X) injectively onto a dense
subset of the unit ball of A¢(X,G(I)). It is easily seen that ¢%
induces the identity on G(I)® X', if we consider G(I[)®X’ in
G.(X) and A¢(X,G(I)) respectively. Thus the above equation
holds. Now ftoheX'®@ X" and since X’ has the metric approxima-
tion property we have ||ftoh|x g x-=|ftch|r and we can proceed
as follows:

Iflle, <sup{lftoblr:heX'®G(I)c A¢(X, G (D), |kl e<1}<
<sup {[|ftohlr:hed¢(Y, G (), Y € B} = |fll 46)% -
This ends the proof.
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10. Lemma: Let G be a functor and let (¢: G—G** be the
canonical injection (1.). Then

P 016 = ko gf: G > AT (., G(I)"),

where kx:A¢(X, G (1)) > A9 (X, G(I)")
is given by
kx(f)y=tof, ©:G(I)->GI)

the canonical embedding.

Proof: i%(9)r(B) =Bx(9)e(XR YY), ge G(X), B G*(Y) by defi-
nition.

@3 (@) = (ar)t, ae P (X)
modulo the identification
@ (I)= (" (I)y .

Let be zeX, ¢g'e G(I), geG(X); then g'=(yr)t(1) for a uniquely
determined ye G (I).
@95 o g @ (@) =, (F (@) (@) =z, G @ ()=

— (@O Iy (1),yx(@) =1, @O IV oyx(g) = (1,y10 G (&) (9)) =

= (G @)g, (yn)* (1)) = (9% (9) (),9") =", i 0 (9% () (=) =

=g, lkx 9% (9] (2)) .
This Lemma shows that A%(.,4’) is indeed the dual functor of
A(.,A) modulo some natural identifications—the notions of reflex-
ivity coincide.

11. Definition: Let A(., A) be a subfunctor and let Am (X, A) be
the space of all fe H(X, 4), for which

I fllym =sup{|foh|ls:heYRX,A(h)<1,YeB} <o,

equipped with that norm. It is a routine matter to prove that
Am(.,A) is again a subfunctor, which contains A(.,4), but not
necessarily isometrically. We call A(.,4) maximal, if A(.,A)=
= Am(., A). It is easily seen that Am(., 4) and A*(.,A’") are maximal.

12. Lemma: If A(.,A) is a subfunctor, then
A (X, Ay={feH(X,A):i0fec A (X, A"},
where i: A->A" is the canonical embedding, and

”f“Am =||¢ Of”AXX .
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Proof: If feAm(X, A) then |[iof|laxx =sup|tr ((tof)tovou)| by
Lemma 8. We fix veA™ (Z,4"), ||v]lax <1 and u =) ziQ;.

[tr (iof)tovou)|=|tr((fof)tovo(} diow, )| =
= | Y wi, (o f)tov (2| = | L {f (@), v (20))| =
= [tr (vt o fo (Y} 2i(z,.))| < ~
<llvtofo (X8 (a, )z 82,

since Z is finite dimensional and therefore (Z’@ ZY=Z&®Z and
trace is a contractive linear functional on Z& Z’. But then we can
continue

<||vllax If o (X 84 21, N a<
<l.sup{||fohls,heYRX,A(h)<1}=|fll m-

That is true for the supremum too and so we have

e ofllaxx <IIfll g -

To derive the inverse inequality, we need first the fact that
kz: A(Z,A)>A"*(Z,A") (Lemma 10) is an isometry for finite
dimensional Z. Since trivially |kz||<1 we have to show
1Ez(f)laxx = |Iflla for all feA(Z,A4). As Z fulfils the condition in
Theorem 9, we have

A(Z,A)Y =A(Z,4) = A" (Z',A")

and for feA(Z,A) we can find heA*(Z’, A’) such that |tr (htof)| =
= |Iflla and ||k|l4x =1. Now we have:

Iflla= [tr (Rt o f) [ <A o fllz8 2y <[[hlax [Iflla=Ilflla,

because Z is finite dimensional (see the same argument used in
the first part of the proof), and

Iflla = [1B¢ o fllr =[|(Bf o f)é |y = |0 f) 0 hllr <
<lleofllaxx |hllax = ¢ o fllaxx .

We consider now feH(X,A) with sofedA**(X,A”). We factor
heY®RX, A(h)<1 as h=imhoh: Y'>h(¥Y)->X. Then

Ifohlla=|lfoimhoh|a<|foimh|allk]|<|foimhlla.
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But since foimheA(h(Y'),A) and h(Y’) is finite dimensional we
can apply the above result:
|Ifoimh|la=|liofoimhllaxx <[|t o fllaxx limA|l <|i o fllaxx,

thus || f|| ;m <J|iofllaxx and we are done.
Now the dirty work is done and we can harvest theorems, the
first being Theorem 9.

13. Theorem: The *-reflexive contravariant functors B-Ban
are exactly the maximal subfunctors of H(.,A) with A a reflexive
Banach space. Especially G* s reflexive if and only if G(I) is
reflexive.

Proof: Use Lemmas 5 and 6 for the reflexivity of G(I) (or 4)
and Lemma 12 and the last sentence in 11 for the rest.

14. Theorem: If there exists a natural transformation n: Gy — G
such that n, is an isometry onto for all finite dimensional Z, then
Gy =G5

Especially G = G*, the remark after 8.

Proof: By Lemma 8 G =(A%)*(., G(I)’) depends only on the
spaces A¢(Z, G(I)) for finite dimensional Z.

15. Theorem: Let G: B—>Ban be a functor. If X' has the metric
approximation property, then

G?(X’@.):Ge(X).

Proof: We have a linear contraction with dense image z:
G?(X'®-)+Ge(X),
defined by
©(g20f2) = 0 (f2)9z, 920fzG(2)® (X' & 2)
(see [3], [4], [10]). We consider

T Gy »(G@(x'*.))'=Nat(a,(x'®.)')=GX(X'),

given by
(f2,7(9)2(92)) = (G (f2)92.9) 92€G(Z),fze X' ® Z,9'€ G (X)'.
To reach the space G*(X')=A*(X’, G(I)") we have to investigate

(¥’ (¢')1)* (see Lemma 5). Let be
geG(I),z'e¢X’, g €@ (X)":

g, (79} @) =& 7 (g hng) =G )99
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Since the right-hand-side is the duality pairing (G.(X), G.(X)"

and G.(X)' can be considered as a linear subspace of H (X', G(I)’),

we arrived at the identification G, (X) = G*(X') of theorem 9.
Thus 7’ is an isometry onto and so is 7.

Added in Proof: V. LoserT and H. SPITzZER have both given
more direct proofs of theorem 15.
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