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Abstract. We prove in a uniform way that all Denjoy–Carleman differen-
tiable function classes of Beurling type C(M) and of Roumieu type C{M},

admit a convenient setting if the weight sequence M = (Mk) is log-convex and

of moderate growth: For C denoting either C(M) or C{M}, the category of
C-mappings is cartesian closed in the sense that C(E, C(F,G)) ∼= C(E × F,G)

for convenient vector spaces. Applications to manifolds of mappings are given:

The group of C-diffeomorphisms is a regular C-Lie group if C ⊇ Cω , but not
better.

1. Introduction

Denjoy–Carleman differentiable functions form classes of smooth functions that
are described by growth conditions on the Taylor expansion. The growth is pre-
scribed in terms of a sequence M = (Mk) of positive real numbers which serves as
a weight for the iterated derivatives: for each compact K the set{ f (k)(x)

ρk k!Mk
: x ∈ K, k ∈ N

}
is required to be bounded. The positive real number ρ is subject to either a universal
or an existential quantifier, thereby dividing the Denjoy–Carleman classes into those
of Beurling type, denoted by C(M), and those of Roumieu type, denoted by C{M},
respectively. For the constant sequence M = (Mk) = (1), as Beurling type we
recover the real and imaginary parts of all entire functions on the one hand, and as
Roumieu type the real analytic functions on the other hand, where 1/ρ plays the
role of a radius of convergence. Moreover, Denjoy–Carleman classes are divided into
quasianalytic and non-quasianalytic classes, depending on whether the mapping to
infinite Taylor expansions is injective on the class or not.

That a class of mappings C admits a convenient setting means essentially that
we can extend the class to mappings between admissible infinite dimensional spaces
E,F, . . . so that C(E,F ) is again admissible and we have C(E × F,G) canonically
C-diffeomorphic to C(E, C(F,G)). This property is called the exponential law ; it
includes the basic assumption of variational calculus. Usually the exponential law
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comes hand in hand with (partially nonlinear) uniform boundedness theorems which
are easy C-detection principles.

The class C∞ of smooth mappings admits a convenient setting. This is due
originally to [8], [9], and [19], [20]. For the C∞ convenient setting one can test
smoothness along smooth curves. Also real analytic (Cω) mappings admit a conve-
nient setting, due to [21]: A mapping is Cω if and only if it is C∞ and in addition
is weakly Cω along weakly Cω-curves (i.e., curves whose compositions with any
bounded linear functional are Cω); indeed, it suffices to test along affine lines in-
stead of weakly Cω-curves. See the book [22] for a comprehensive treatment, or
the three appendices in [24] for a short overview of the C∞ and Cω cases. We shall
use convenient calculus of C∞-mappings in this paper, and we shall reprove that
Cω admits a convenient calculus.

We now describe what was known about convenient settings for Denjoy-Carleman
classes before: In [24] we developed the convenient setting for non-quasianalytic log-
convex Denjoy–Carleman classes of Roumieu type C{M} having moderate growth,
and we showed that log-convexity and moderate growth are necessary. There a
mapping is C{M} if and only if it is weakly C{M} along all weakly C{M}-curves.
The method of proof relies on the existence of C{M} partitions of unity.

We succeeded in [25] to prove that some quasianalytic log-convex Denjoy–
Carleman classes of Roumieu type C{M} having moderate growth admit a con-
venient setting. The method consisted of representing C{M} as the intersection of
all larger non-quasianalytic log-convex classes C{L}. A mapping is C{M} if and
only if it is weakly C{L} along each weakly C{L}-curve for each non-quasianalytic
log-convex L ≥M . We constructed countably many classes which satisfy all these
requirements, but many reasonable quasianalytic classes C{M}, like the real ana-
lytic class, are not covered by this approach.

In this paper we prove that all log-convex Denjoy–Carleman classes of moderate
growth admit a convenient setting. This is achieved through a change of philosophy:
instead of testing along curves as in our previous approaches [24] and [25] we test
along Banach plots, i.e., mappings of the respective weak class defined in open
subsets of Banach spaces. By ‘weak’ we mean: the mapping is in the class after
composing it with any bounded linear functional. In this way we are able to treat all
Denjoy–Carleman classes uniformly, no matter if quasianalytic, non-quasianalytic,
of Beurling, or of Roumieu type, including Cω and real and imaginary parts of
entire functions. Furthermore, it makes the proofs shorter and more transparent.

Smooth mappings between Banach spaces are C(M) or C{M} if their derivatives
satisfy the boundedness conditions alluded to above. A smooth mapping between
admissible locally convex vector spaces is C(M) or C{M} if and only if it maps
Banach plots of the respective class to Banach plots of the same class. This implies
stability under composition, see 4.11.

We equip the spaces of C(M) or C{M} mappings between Banach spaces with
natural locally convex topologies which are just the usual ones if the involved Ba-
nach spaces are finite dimensional, see 4.1. In order to show completeness we need
to work with Whitney jets on compact subsets of Banach spaces satisfying growth
conditions of Denjoy–Carleman type, see 4.2. Having found nothing in the literature
we introduce Whitney jets on Banach spaces in Section 3.
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In 7.2 we show that the structure of the Roumieu type classes of Denjoy–
Carleman differentiable mappings studied in the present paper coincide bornologi-
cally with the classes considered previously in [24] and [25] and, most notably, with
the structure Cω of real analytic mappings introduced in [21] (see also [22]). We
want to stress that thereby we provide a considerably simpler proof for the real
analytic convenient setting. But for the results that testing along curves suffices
one still has to rely on [21], [24], and [25].

For a class of mappings C that admits a convenient setting one can hope that
the space C(A,B) of all C-mappings between finite dimensional C-manifolds (with
A compact for simplicity) is again a C-manifold, that composition is C, and that

the group DiffC(A) of all C-diffeomorphisms of A is a regular infinite dimensional
C-Lie group. In Section 9 this is proved for all log-convex Denjoy–Carleman classes
of moderate growth C{M} and for the classes C(M) containing Cω.

A further area of application is the perturbation theory for linear unbounded
operators. This will be explained in [26] and [29].

Notation. We use N = N>0 ∪ {0}. For each multi-index α = (α1, . . . , αn) ∈ Nn,
we write α! = α1! · · ·αn!, |α| = α1 + · · ·+ αn, and ∂α = ∂|α|/∂xα1

1 · · · ∂xαnn .
A sequence r = (rk) of reals is called increasing if rk ≤ rk+1 for all k.
We write f (k)(x) = dkf(x) for the k-th order Fréchet derivative of f at x; by dkv

we mean k times iterated directional derivatives in direction v.
For a convenient vector space E and a closed absolutely convex bounded subset

B ⊆ E, we denote by EB the linear span of B equipped with the Minkowski
functional ‖x‖B = inf{λ > 0 : x ∈ λB}. Then EB is a Banach space. If U ⊆ E
then UB := i−1

B (U), where iB : EB → E is the inclusion of EB in E.
We denote by E∗ (resp. E′) the dual space of continuous (resp. bounded) linear

functionals. L(E1, . . . , Ek;F ) is the space of k-linear bounded mappings E1×· · ·×
Ek → F ; if Ei = E for all i, we also write Lk(E,F ). If E and F are Banach spaces,
then ‖ ‖Lk(E,F ) denotes the operator norm on Lk(E,F ). By Lksym(E,F ) we denote
the subspace of symmetric k-linear bounded mappings. We write oE for the open
unit ball in a Banach space E.

The notation C [M ] stands locally constantly for either C(M) or C{M}; this means:
Statements that involve more than one C [M ] symbol must not be interpreted by
mixing C(M) and C{M}.

From 2.6 on, if not specified otherwise, a positive sequence M = (Mk) is assumed
to satisfy M0 = 1 ≤M1. In Section 9 we also assume that M = (Mk) is log-convex
and has moderate growth, and in the Beurling case C [M ] = C(M) we additionally
require Cω ⊆ C(M).

2. Denjoy–Carleman differentiable functions in finite dimensions

2.1. Denjoy–Carleman differentiable functions of Beurling and Roumieu
type in finite dimensions. Let M = (Mk)k∈N be a sequence of positive real
numbers. Let U ⊆ Rn be open, K ⊆ U compact, and ρ > 0. Consider the set

(1)
{ ∂αf(x)

ρ|α| |α|!M|α|
: x ∈ K,α ∈ Nn

}
.

We define the Denjoy–Carleman classes

C(M)(U) := {f ∈ C∞(U) : ∀ compact K ⊆ U ∀ρ > 0 : (1) is bounded},
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C{M}(U) := {f ∈ C∞(U) : ∀ compact K ⊆ U ∃ρ > 0 : (1) is bounded}.

The elements of C(M)(U) are said to be of Beurling type; those of C{M}(U) of
Roumieu type. If Mk = 1, for all k, then C(M)(U) consists of the restrictions to
U of the real and imaginary parts of all entire functions, while C{M}(U) coincides
with the ring Cω(U) of real analytic functions on U . We shall also write C [M ] and
thereby mean that C [M ] stands for either C(M) or C{M}.

A sequence M = (Mk) is log-convex if k 7→ log(Mk) is convex, i.e.,

(2) M2
k ≤Mk−1Mk+1 for all k.

If M = (Mk) is log-convex, then k 7→ (Mk/M0)1/k is increasing and

(3) MlMk ≤M0Ml+k for all l, k ∈ N.

Let us assume M0 = 1 from now on. Furthermore, we have that k 7→ k!Mk is
log-convex (since Euler’s Γ-function is so), and we call this weaker condition weakly
log-convex. If M = (Mk) is weakly log-convex, then C [M ](U,R) is a ring, for all
open subsets U ⊆ Rn.

If M = (Mk) is log-convex, then (see the proof of [24, 2.9]) we have

(4) M j
1 Mk ≥MjMα1 · · ·Mαj for all αi ∈ N>0 with α1 + · · ·+ αj = k.

This implies that the class of C [M ]-mappings is stable under composition (in the
Roumieu case by [31], see also [6] or [1, 4.7]; the same proof works in the Beurling
case; it also follows from 4.11; compare also with 2.5).

If M = (Mk) is log-convex, then the inverse function theorem for C{M} holds
([16]; see also [1, 4.10]), and C{M} is closed under solving ODEs (due to [17]). If
additionally we have Mk+1/Mk → ∞, then also C(M) is closed under taking the
inverse and solving ODEs (again by [16] and [17]). See [36], [37], and 9.2 for Banach
space versions of these results.

Suppose that M = (Mk) and N = (Nk) are such that supk(Mk/Nk)1/k < ∞,
i.e. there exist constants C, ρ > 0 so that

(5) Mk ≤ CρkNk for all k.

Then C(M)(U) ⊆ C(N)(U) and C{M}(U) ⊆ C{N}(U). The converse is true in the
Roumieu case if M = (Mk) is weakly log-convex: C{M}(U) ⊆ C{N}(U) implies that
(5) holds for some C, ρ. Namely, there exists f ∈ C{M}(R) such that |f (k)(0)| ≥
k!Mk for all k (see [35, Thm. 1]; and also 2.3). As a consequence Cω(U) is contained

in C{M}(U) if and only if limM
1/k
k > 0.

C [M ] is stable under derivations (alias derivation closed) if

(6) sup
k∈N>0

(Mk+1

Mk

) 1
k

<∞.

The converse is true in the Roumieu case if M = (Mk) is weakly log-convex: C{M}

is stable under derivations if and only if (6) holds.
A sequence M = (Mk) is said to have moderate growth if

(7) sup
j,k∈N>0

( Mj+k

MjMk

) 1
j+k

<∞.
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Moderate growth implies (6) and thus stability under derivations. If M = (Mk) is
weakly log-convex and has moderate growth, then C [M ](U) is stable under ultra-
differential operators. An operator of the form P (D) =

∑
α aαD

α, aα ∈ C, is an

ultradifferential operator of class C(M) (resp. C{M}) if there are constants C, ρ > 0

(resp. for each ρ > 0 there exists C > 0) such that |aα| ≤ Cρ|α|

|α|!M|α|
for all α, see [14,

2.11 and 2.12].
For sequences M = (Mk) and N = (Nk) of positive real numbers we define

M �N :⇔ ∀ρ > 0 ∃C > 0 : Mk ≤ CρkNk ∀k ∈ N

⇔ lim
k→∞

(Mk

Nk

) 1
k

= 0.

If M �N , then we have C{M}(U) ⊆ C(N)(U). If M = (Mk) is weakly log-convex,
also the converse is true: C{M}(U) ⊆ C(N)(U) implies M�N . This follows from the
existence of a function f ∈ C{M}(R) with |f (k)(0)| ≥ k!Mk for all k (see [35, Thm.

1]). As a consequence Cω(U) is contained in C(M)(U) if and only if M
1/k
k →∞.

2.2. Theorem (Denjoy–Carleman [5], [2]). For a sequence M = (Mk) of positive
real numbers the following statements are equivalent:

(1) C [M ] is quasianalytic, i.e., for open connected U ⊆ Rn and each x ∈ U , the
Taylor series homomorphism centered at x from C [M ](U,R) into the space
of formal power series is injective.

(2)
∑∞
k=1

1

m
[(i)
k

= ∞ where m
[(i)
k := inf{(j!Mj)

1/j : j ≥ k} is the increasing

minorant of (k!Mk)1/k.

(3)
∑∞
k=1( 1

M
[(lc)
k

)1/k = ∞ where M
[(lc)
k is the log-convex minorant of k!Mk,

given by M
[(lc)
k := inf{(j!Mj)

l−k
l−j (l!Ml)

k−j
l−j : j ≤ k ≤ l, j < l}.

(4)
∑∞
k=0

M
[(lc)
k

M
[(lc)
k+1

=∞.

For contemporary proofs (of the equivalence of (1)–(4)) in the Roumieu case see
for instance [13, 1.3.8] or [32, 19.11]. For the equivalence to the Beurling case see
[14, 4.2].

2.3. Sequence spaces. Let M = (Mk)k∈N be a sequence of positive real numbers,
and ρ > 0. We consider (where F stands for ‘formal power series’)

FMρ :=
{

(fk)k∈N ∈ RN : ∃C > 0∀k ∈ N : |fk| ≤ Cρkk!Mk

}
,

F (M) :=
⋂
ρ>0

FMρ , and F{M} :=
⋃
ρ>0

FMρ .

Lemma. Consider the following conditions for two positive sequences M i = (M i
k),

i = 1, 2, and 0 < σ <∞:

(1) supk(M1
k/M

2
k )1/k = σ.

(2) For all ρ > 0 we have FM1

ρ ⊆ FM2

ρσ .

(3) F{M1} ⊆ F{M2}.

(4) F (M1) ⊆ F (M2).
(5) M1 �M2.

(6) F{M1} ⊆ F (M2).
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Then we have (1) ⇔ (2) ⇔ (3) ⇒ (4) and (5) ⇔ (6).

Proof. (1) ⇒ (2) Let f = (fk) ∈ FM1

ρ , i.e., there is a C > 0 such that |fk| ≤
Cρkk!M1

k ≤ C(ρσ)kk!M2
k , for all k. So f ∈ FM2

ρσ .
(2) ⇒ (3) and (2) ⇒ (4) follow by definition.

(3) ⇒ (1) Let fk := k!M1
k . Then f = (fk) ∈ F{M1} ⊆ F{M2}, so there exists

ρ > 0 such that k!M1
k ≤ ρk+1k!M2

k for all k.

(5) ⇒ (6) Let f = (fk) ∈ FM1

ρ . As M1 �M2, for each σ > 0 there exists C > 0

such that |fk| ≤ C(σρ )kk!Mk for all k. So f ∈ FM2

σ
ρ

for all σ.

(6) ⇒ (5) Since (k!Mk) ∈ F{M1} ⊆ F (M2), for each ρ > 0 there is C > 0 such
that k!M1

k ≤ Cρkk!M2
k for all k, i.e., M1 �M2. �

2.4. Theorem. Let M = (Mk) be a (weakly) log-convex sequence of positive real
numbers. Then we have

(1) F{M} =
⋂
L

F (L) =
⋂
L

F{L},

where the intersections are taken over all (weakly) log-convex L = (Lk) with M�L.

Proof. The inclusions F{M} ⊆
⋂
L F (L) ⊆

⋂
L F{L} follow from Lemma 2.3. So it

remains to prove that F{M} ⊇
⋂
L F{L}. Let f = (fk) /∈ F{M}, i.e.,

(2) lim
( |fk|
k!Mk

) 1
k

=∞.

We must show that there exists a (weakly) log-convex L = (Lk) with M � L such
that f /∈ F{L}.

Choose aj , bj > 0 with aj ↗ ∞, bj ↘ 0, and ajbj → ∞. Now (2) implies that
there exists a strictly increasing sequence kj ∈ N such that( |fkj |

(kj)!Mkj

) 1
kj ≥ aj .

Passing to a subsequence we may assume that k0 > 0 and that

1 < βj := bj

( |fkj |
(kj)!Mkj

) 1
kj ↗∞.

Passing to a subsequence again we may also get

(3) βj+1 ≥ (βj)
kj .

We define a piecewise affine function φ by

φ(k) :=


0 if k = 0,

kj log βj if k = kj ,

cj + djk for the minimal j with k ≤ kj ,

where cj and dj are chosen such that φ is well defined and φ(kj−1) = cj + djkj−1,
i.e., for j ≥ 1,

cj + djkj = kj log βj ,

cj + djkj−1 = kj−1 log βj−1, and

c0 = 0,
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d0 = log β0.

This implies first that cj ≤ 0 and then

log βj ≤ dj =
kj log βj − kj−1 log βj−1

kj − kj−1
≤ kj
kj − kj−1

log βj

(3)
≤ log βj+1

kj − kj−1
≤ log βj+1.

Thus j 7→ dj is increasing and so φ is convex. The fact that all cj ≤ 0 implies that
φ(k)/k is increasing.

Now let

Lk := eφ(k) ·Mk.

Then L = (Lk) is (weakly) log-convex, since so is M = (Mk). As φ(k)/k is
increasing and eφ(kj)/kj = βj → ∞, we find M � L. Finally, f /∈ F{L}, since we
have( |fkj |

(kj)!Lkj

) 1
kj

=
( |fkj |

(kj)!Mkj

) 1
kj · e−φ(kj)/kj =

( |fkj |
(kj)!Mkj

) 1
kj · β−1

j = b−1
j →∞.

The proof is complete. �

Remark. (4) If M0 = 1 ≤M1 we also have L0 = 1 ≤ L1.
(5) The proof also shows that, if M = (Mk) is just a positive sequence, then (1)

still holds if the intersections are taken over all positive sequences L = (Lk) with
M � L.

2.5. Lemma. Let M = (Mk) and L = (Lk) be sequences of positive real numbers.
Then for the composition of formal power series we have

(1) F [M ] ◦F [L]
>0 ⊆ F [M ◦L],

where (M ◦L)k := max{MjLα1
. . . Lαj : αi ∈ N>0, α1 + · · ·+ αj = k}.

Here F [L]
>0 is the space of formal power series in F [L] with vanishing constant

term.

Proof. Let f ∈ F (M) and g ∈ F (L) (resp. f ∈ F{M} and g ∈ F{L}). For k > 0 we
have (inspired by [7])

(f ◦ g)k
k!

: =

k∑
j=1

fj
j!

∑
α∈Nj>0

α1+···+αj=k

gα1

α1!
. . .

gαj
αj !

,

|(f ◦ g)k|
k!(M ◦L)k

≤
k∑
j=1

|fj |
j!Mj

∑
α∈Nj>0

α1+···+αj=k

|gα1 |
α1!Lα1

. . .
|gαj |
αj !Lαj

≤
k∑
j=1

ρjfCf
∑
α∈Nj>0

α1+···+αj=k

ρkgC
j
g ≤

k∑
j=1

ρjfCf

(
k − 1

j − 1

)
ρkgC

j
g

= ρkgρfCfCg

k∑
j=1

(ρfCg)
j−1

(
k − 1

j − 1

)
= ρkgρfCfCg(1 + ρfCg)

k−1
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= (ρg(1 + ρfCg))
k ρfCfCg

1 + ρfCg
.

This implies (1) in the Roumieu case. For the Beurling case, let τ > 0 be arbitrary,
and choose σ > 0 such that τ =

√
σ+ σ. If we set ρg =

√
σ and ρf =

√
σ/Cg, then

f ◦ g ∈ FM ◦Lτ . �

2.6. Convention. For a positive sequence M = (Mk) ∈ (R>0)N consider the fol-
lowing properties:

(0) M0 = 1 ≤M1.
(1) M = (Mk) is weakly log-convex, i.e., k 7→ log(k!Mk) is convex.
(2) M = (Mk) is log-convex, i.e., k 7→ log(Mk) is convex.

(3) M = (Mk) is derivation closed, i.e., k 7→ (Mk+1

Mk
)

1
k is bounded.

(4) M = (Mk) has moderate growth, i.e., (j, k) 7→ (
Mj+k

MjMk
)

1
j+k is bounded.

(5) Mk+1

Mk
→∞.

(6) M
1/k
k →∞, or equivalently, Cω ⊆ C(M).

Henceforth, if not specified otherwise, we assume that M = (Mk), N = (Nk),
L = (Lk), etc., satisfy condition (0). It will be explicitly stated when some of the
other properties (1)–(6) are assumed.

Remarks. Let M = (Mk) be a positive sequence. We may replace (Mk)k by
(CρkMk)k with C, ρ > 0 without changing F [M ] (see 2.3). In particular, it is no
loss of generality to assume that M1 > 1 (put Cρ > 1/M1) and M0 = 1 (put
C := 1/M0). Each one of the properties (1)–(6) is preserved by this modification.
Furthermore M = (Mk) is quasianalytic if and only if the modified sequence is so,

since (M
[(lc)
k )k (see 2.2) is modified in the same way.

Condition (0) and (1) together imply that k 7→ k!Mk is monotone increasing,
while (0) and (2) together imply that k 7→Mk is monotone increasing.

3. Whitney jets on Banach spaces

3.1. Whitney jets. Let E and F be Banach spaces. For open U ⊆ E consider the
space C∞(U,F ) of arbitrarily often Fréchet differentiable mappings f : U → F . For
such f we have the derivatives f (k) : U → Lksym(E,F ), where Lksym(E,F ) denotes
the space of symmetric k-linear bounded mappings E×· · ·×E → F . We also have
the iterated uni-directional derivatives dkvf(x) ∈ F defined by

dkvf(x) :=

(
d

dt

)k
f(x+ t v)|t=0.

Let j∞ : C∞(U,F ) → J∞(U,F ) :=
∏
k∈N C(U,Lksym(E,F )) be the jet mapping

f 7→ (f (k))k∈N. On Lksym(E,F ) we consider the operator norm

‖`‖Lksym(E,F ) := sup
{
‖`(v1, . . . , vk)‖F : ‖vj‖E ≤ 1 for all j ∈ {1, . . . , k}

}
.

Note that by the polarization equality (see [22, 7.13.1])

sup{‖`(v, . . . , v)‖F : ‖v‖E ≤ 1} ≤ ‖`‖Lksym(E,F )

≤ (2e)k sup{‖`(v, . . . , v)‖F : ‖v‖E ≤ 1}



DENJOY–CARLEMAN MAPPINGS OF BEURLING AND ROUMIEU TYPE 9

For an infinite jet f = (fk)k∈N ∈
∏
k∈N L

k
sym(E,F )X on a subset X ⊆ E let the

Taylor polynomial (Tny f)k : X → Lksym(E,F ) of order n at y be

(Tny f)k(x)(v1, . . . , vk) :=

n∑
j=0

1

j!
f j+k(y)(x− y, . . . , x− y, v1, . . . vk)

and the remainder

(Rnyf)k(x) := fk(x)− (Tny f)k(x) = (Tnx f)k(x)− (Tny f)k(x) ∈ Lksym(E,F ).

Let

‖f‖k := sup{‖fk(x)‖Lksym(E,F ) : x ∈ X} ∈ [0,+∞] and

|||f |||n,k := sup
{

(n+ 1)!
‖(Rnyf)k(x)‖Lksym(E,F )

‖x− y‖n+1
: x, y ∈ X,x 6= y

}
∈ [0,+∞]

By Taylor’s theorem,for f ∈ C∞(U,F ) and [x, y] ⊆ U we have

(Rnyf)k(x) = f (k)(x)−
∑
j≤n

f (k+j)(y)(x− y)j

j!

=

∫ 1

0

(1− t)n

n!
f (k+n+1)(y + t(x− y))(x− y)n+1 dt

and hence for convex X ⊆ U :

|||j∞f |X |||n,k :=

= sup
{

(n+ 1)!
‖(Rnyf)k(x)(v1, . . . , vk)‖F

‖x− y‖n+1
: ‖vj‖E ≤ 1, x, y ∈ X,x 6= y

}
≤ sup

{‖f (k+n+1)(x)(v1, . . . , vk, x− y, . . . , x− y)‖F
‖x− y‖n+1

: ‖vj‖E ≤ 1, x 6= y
}

≤ ‖j∞f |X‖n+k+1.(1)

We supply C∞(U,F ) with the semi-norms

f 7→ ‖j∞f |K‖n for all compact K ⊆ U and all n ∈ N.
For compact convex K ⊆ E the space C∞(E ⊇ K,F ) of Whitney jets on K is
defined by

C∞(E ⊇ K,F ) :=

=
{
f = (fk)k∈N ∈

∏
k∈N

C(K,Lksym(E,F )) : |||f |||n,k <∞ for all n, k ∈ N
}

and is supplied with the seminorms ‖ ‖n for n ∈ N together with ||| |||n,k for
n, k ∈ N.

3.2. Lemma. For Banach spaces E and F and compact convex K ⊆ E the space
C∞(E ⊇ K,F ) is a Fréchet space.

Proof. The injection of C∞(E ⊇ K,F ) into
∏
k∈N C(K,Lksym(E,F )) is continuous

by definition and C(K,Lksym(E,F )) is a Banach space, so a Cauchy sequence (fp)p
in C∞(E ⊇ K,F ) has an infinite jet f∞ = (fk∞)k as component-wise limit in∏
k∈N C(K,Lksym(E,F )) with respect to the seminorms ‖ ‖n. This is the limit also

with respect to the finer structure of C∞(E ⊇ K,F ) with the additional seminorms
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||| |||n,k as follows: For given n, k ∈ N and ε > 0 there exists by the Cauchy condition
a p0 such that |||fp − fq|||n,k < ε/3 for all p, q ≥ p0. By the convergence fq → f∞
in
∏
k∈N C(K,Lksym(E,F )) there exists for given x, y ∈ K with x 6= y a q ≥ p0 such

that for all m ≤ k + n

‖fq − f∞‖m ≤
‖x− y‖n+1

(n+ 1)!

ε

3
min{1, e−‖x−y‖}

and hence

‖(Tny fq)k(x)− (Tny f∞)k(x)‖Lksym(E,F ) ≤

≤
n∑
j=0

‖fk+j
q (y)− fk+j

∞ (y)‖Lk+jsym (E,F )

‖x− y‖j

j!

≤
n∑
j=0

‖fq − f∞‖k+j
‖x− y‖j

j!

≤ ‖x− y‖
n+1

(n+ 1)!

ε

3
e−‖x−y‖

n∑
j=0

‖x− y‖j

j!
≤ ‖x− y‖

n+1

(n+ 1)!

ε

3
.

So

(n+ 1)!
‖(Rnyfp)k(x)− (Rnyf∞)k(x)‖Lksym(E,F )

‖x− y‖n+1
≤

≤ |||fp − fq|||n,k + (n+ 1)!
‖(Rnyfq)k(x)− (Rnyf∞)k(x)‖Lksym(E,F )

‖x− y‖n+1

≤ ε

3
+ (n+ 1)!

‖fkq (x)− fk∞(x)‖Lksym(E,F )

‖x− y‖n+1

+ (n+ 1)!
‖(Tny fq)k(x)− (Tny f∞)k(x)‖Lksym(E,F )

‖x− y‖n+1

≤ 3
ε

3
= ε

and finally

|||fp − f∞|||n,k ≤ ε for all p ≥ p0.

Consequently,
|||f∞|||n,k ≤ |||f∞ − fp|||n,k + |||fp|||n,k <∞,

i.e., f∞ ∈ C∞(E ⊇ K,F ) �

4. The category of Denjoy–Carleman differentiable mappings

4.1. Spaces of Denjoy–Carleman jets or mappings between Banach
spaces. Let E and F Banach spaces, K ⊆ E compact, and ρ > 0. Let

CMρ (E ⊇ K,F ) : =
{

(fm)m ∈
∏
m∈N

C(K,Lmsym(E,F )) : ‖f‖ρ <∞
}
,

where ‖f‖ρ : = max

{
sup
{ ‖f‖m
m!ρmMm

: m ∈ N
}
,

sup
{ |||f |||n,k

(n+ k + 1)! ρn+k+1Mn+k+1
: k, n ∈ N

}}
,
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cf. [34, 3], [4, 11] and [3, 11], and, for an open neighborhood U of K in E, let

CMK,ρ(U,F ) : =
{
f ∈ C∞(U,F ) : j∞f |K ∈ CMρ (E ⊇ K,F )

}
supplied with the semi-norm f 7→ ‖j∞f |K‖ρ. This space is not Hausdorff and for
infinite dimensional E it(s Hausdorff quotient) will not always be complete. This
is the reason for considering the jet spaces CMρ (E ⊇ K,F ) instead. Note that
for convex K we have |||j∞f |K |||n,k ≤ ‖j∞f |K‖n+k+1 by (3.1.1) and hence the
seminorm f 7→ ‖j∞f |K‖ρ on CMK,ρ(U,F ) coincides with

f 7→ sup
{‖f (n)(x)‖Lnsym(E,F )

n!ρnMn
: x ∈ K,n ∈ N

}
=: ‖f‖K,ρ.

Thus

CMK,ρ(U,F ) =
{
f ∈ C∞(U,F ) : (‖j∞f |K‖m)m ∈ FMρ

}
and the bounded subsets B ⊆ CMK,ρ(U,F ) are exactly those B ⊆ C∞(U,F ) for which

(bm)m ∈ FMρ , where bm := sup{‖j∞f |K‖m : f ∈ B}.
For open convex U ⊆ E and compact convex K ⊆ U let

C(M)(E ⊇ K,F ) : =
⋂
ρ>0

CMρ (E ⊇ K,F ),

C{M}(E ⊇ K,F ) : =
⋃
ρ>0

CMρ (E ⊇ K,F ), and

C [M ](U,F ) : =
{
f ∈ C∞(U,F ) : ∀K : (f (k)|K) ∈ C [M ](E ⊇ K,F )

}
.

I.e., we consider the projective limit

C(M)(E ⊇ K,F ) := lim←−
ρ>0

CMρ (E ⊇ K,F ),

the inductive limit

C{M}(E ⊇ K,F ) := lim−→
ρ>0

CMρ (E ⊇ K,F ),

and the projective limits

C [M ](U,F ) := lim←−
K⊆U

C [M ](E ⊇ K,F ),

where K runs through all compact convex subsets of U .
Furthermore, we consider the projective limit

C
(M)
K (U,F ) := lim←−

ρ>0

CMK,ρ(U,F ),

and the inductive limit

C
{M}
K (U,F ) := lim−→

ρ>0

CMK,ρ(U,F ).

Thus
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C
[M ]
K (U,F ) =

{
f ∈ C∞(U,F ) : (‖j∞f |K‖m)m ∈ F [M ]

}
.

Furthermore, the bounded subsets B ⊆ C(M)
K (U,F ) are exactly those B ⊆ C∞(U,F )

for which (bm)m ∈ F (M), where bm := sup{‖j∞f |K‖m : f ∈ B}, and subsets
B ⊆ C∞(U,F ) for which (bm)m ∈ F{M}, where bm := sup{‖j∞f |K‖m : f ∈ B},
are bounded in C

{M}
K (U,F ).

Finally, the projective limits

lim←−
K⊆U

C
[M ]
K (U,F ) =

{
f ∈ C∞(U,F ) : ∀K : (‖j∞f |K‖m)m ∈ F [M ]

}
,

where K runs through all compact convex subsets of U , are for E = Rn and F = R
the same vector spaces as in 2.1 and the topology is the usual one.

For the inductive limits with respect to ρ > 0 it suffices to take ρ ∈ N only.

4.2. Proposition. We have the following completeness properties:

(1) The spaces CMρ (E ⊇ K,F ) are Banach spaces.

(2) The spaces C(M)(E ⊇ K,F ) are Fréchet spaces.
(3) The spaces C{M}(E ⊇ K,F ) are compactly regular (i.e., compact subsets

are contained and compact in some step) (LB)-spaces hence (c∞-)complete,
webbed and (ultra-)bornological.

(4) The spaces C [M ](U,F ) are complete spaces.
(5) As locally convex spaces

C [M ](U,F ) := lim←−
K⊆U

C [M ](E ⊇ K,F ) = lim←−
K⊆U

C
[M ]
K (U,F ).

Proof. (1) The injection CMρ (E ⊇ K,F ) →
∏
k∈N C(K,Lksym(E,F )) is by defi-

nition continuous and C(K,Lksym(E,F )) is a Banach space, so a Cauchy sequence

(fp)p in CMρ (E ⊇ K,F ) has an infinite jet f∞ = (fk∞)k as component-wise limit in∏
k∈N C(K,Lksym(E,F )). This is the limit also with respect to the finer structure of

CMρ (E ⊇ K,F ) as follows: For fixed n, k and x 6= y we have that (Rnyfp)
k(x) con-

verges to (Rnyf∞)k(x). So we choose for ε > 0 a p0 ∈ N such that ‖fp − fq‖ρ < ε/2
for all p, q ≥ p0 and given x, y, n, and k we can choose q > p0 such that

(n+ 1)!
‖(Rnyfq)k(x)− (Rnyf∞)k(x)‖Lksym(E,F )

(n+ k + 1)!ρn+k+1Mn+k+1‖x− y‖n+1
<
ε

2

and

‖fnq (x)− fn∞(x)‖Lnsym(E,F )

n! ρnMn
<
ε

2
.

Thus

(n+ 1)!
‖(Rnyfp)k(x)− (Rnyf∞)k(x)‖Lksym(E,F )

(n+ k + 1)!ρn+k+1Mn+k+1‖x− y‖n+1
<

‖fp − fq‖ρ + (n+ 1)!
‖(Rnyfq)k(x)− (Rnyf∞)k(x)‖Lksym(E,F )

(n+ k + 1)!ρn+k+1Mn+k+1‖x− y‖n+1
< ε
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and hence
|||fp − f∞|||n,k

(n+ k + 1)!ρn+k+1Mn+k+1
≤ ε

and similarly for
‖fp−f∞‖n
n! ρnMn

. Thus ‖fp − f∞‖ρ ≤ ε for all p ≥ p0.

(2) This is obvious; they are countable projective limits of Banach spaces.
(3) For finite dimensional E and F it is shown in [34] that the connect-

ing mappings are nuclear. For infinite dimensional E the connecting map-
pings in C{M}(E ⊇ K,F ) = lim−→ρ>0

CMρ (E ⊇ K,F ) cannot be compact, since

{` ∈ E′ : ‖`‖ ≤ 1} is bounded in CMρ (E ⊇ K,R) for each ρ ≥ 1. In fact
‖`‖0 = sup{|`(x)| : x ∈ K} ≤ sup{‖x‖ : x ∈ K}, ‖`‖1 = ‖`‖ ≤ 1 and ‖`‖m = 0 for
m ≥ 2. Moreover, (Rny `)

k = 0 for n + k ≥ 1 and (R0
y`)

0(x) = `(x − y). It is not
relatively compact in these spaces, since it is not even pointwise relatively compact
in C(K,L(E,R)).

In order to show that the (LB)-space in (3) is compactly regular it suffices by
[28, Satz 1] to verify condition (M) of [30]: There exists a sequence of increasing
0-neighborhoods Un ⊆ CMn (E ⊇ K,F ), such that for each n there exists an m ≥ n
for which the topologies of CMk (E ⊇ K,F ) and of CMm (E ⊇ K,F ) coincide on Un
for all k ≥ m.
For ρ′ ≥ ρ we have ‖f‖ρ′ ≤ ‖f‖ρ. So consider the ε-balls Uρε (f) := {g : ‖g−f‖ρ ≤ ε}
in CMρ (E ⊇ K,F ).

It suffices to show that for ρ > 0, ρ1 := 2ρ, ρ2 > ρ1, ε > 0, and f ∈ Uρ1 := Uρ1 (0)
there exists a δ > 0 such that Uρ2δ (f) ∩ Uρ1 ⊆ Uρ1ε (f). Since f ∈ Uρ1 we have

‖f‖n ≤ n!ρnMn and |||f |||n,k ≤ (n+ k + 1)!ρn+k+1Mn+k+1 for all n, k.

Let 1
2N

< ε
2 and δ := ε

(
ρ1
ρ2

)N−1

. Let g ∈ Uρ2δ (f) ∩ Uρ1 , i.e.,

‖g‖n ≤ n!ρnMn for all n,

‖g − f‖n ≤ δ n!ρn2Mn for all n,

|||g|||n,k ≤ (n+ k + 1)!ρn+k+1Mn+k+1 for all n, k,

|||g − f |||n,k ≤ δ (n+ k + 1)!ρn+k+1
2 Mn+k+1 for all n, k.

Then

‖g − f‖n ≤ ‖g‖n + ‖f‖n ≤ 2n!ρnMn = 2n!ρn1Mn
1

2n

< εn!ρn1Mn for n ≥ N

and

‖g − f‖n ≤ δ n!ρn2Mn ≤ ε n!ρn1Mn for n < N.

Moreover,

|||g − f |||n,k ≤ |||g|||n,k + |||f |||n,k ≤ 2 (n+ k + 1)!ρn+k+1Mn+k+1

= 2 (n+ k + 1)!ρn+k+1
1 Mn+k+1

1

2n+k+1

< ε (n+ k + 1)!ρn+k+1
1 Mn+k+1 for n+ k + 1 ≥ N
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and

|||g − f |||n,k ≤ δ (n+ k + 1)!ρn+k+1
2 Mn+k+1

≤ ε (n+ k + 1)!ρn+k+1
1 Mn+k+1 for n+ k + 1 < N.

(4) This is obvious; they are projective limits of complete spaces.
(5) Since j∞|K : CMK,ρ(U,F ) → CMρ (E ⊇ K,F ) is by definition a well-defined

continuous linear mapping, it induces such mappings C
[M ]
K (U,F ) → C [M ](E ⊇

K,F ) and lim←−K C
[M ]
K (U,F ) → lim←−K C

[M ](E ⊇ K,F ). The last mapping is obvi-

ously injective (use K := {x} for the points x ∈ U).
Conversely, let fkK ∈ C(K,Lksym(E,F )) be given, such that for each K there

exists ρ > 0 (each ρ > 0) we have (fkK)k∈N ∈ CMρ (E ⊇ K,F ) and such that

fkK |K′ = fkK′ . They define an infinite jet (fk)k∈N ∈ J∞(U,F ) by fk(x) := fk{x}(x)

which satisfies fk|K = fkK for all k ∈ N and all K.

We claim that f0 ∈ C∞(U,F ) and (f0)(k) = fk for all k, i.e., j∞f0|K = (fkK)k
for all k ∈ N and all K.
By [22, 5.20] it is enough to show by induction that dkvf

0(x) = fk(x)(v, . . . , v). For
k = 0 this is obvious, so let k > 0. Then

dkvf
0(x) : = lim

t→0

dk−1
v f0(x+ t v)− dk−1

v f0(x)

t

= lim
t→0

fk−1(x+ t v)(vk−1)− fk−1(x)(vk−1)

t

= lim
t→0

(R1
xf)k−1(x+ t v)(vk−1)

t
+ fk(x)(vk) = fk(x)(vk).

Finally, f0 defines an element in lim←−K C
[M ]
K (U,F ), since ∀K we have f0 ∈

CMK,ρ(U,F ) = {g ∈ C∞(U,F ) : j∞g|K ∈ CMρ (E ⊇ K,F )} for some (all) ρ > 0.

That this bijection is an isomorphism follows, since the seminorm ‖ ‖K,ρ on
CMK,ρ(U,F ) is the pull-back of the seminorm ‖ ‖ρ on CMρ (E ⊇ K,F ). �

4.3. Spaces of Denjoy–Carleman differentiable mappings between conve-
nient vector spaces. For convenient vector spaces E and F , and c∞-open U ⊆ E,
we define:

C
(M)
b (U,F ) :=

{
f ∈ C∞(U,F ) : ∀B ∀ compact K ⊆ U ∩ EB ∀ρ > 0 :{f (k)(x)(v1, . . . , vk)

k! ρkMk
: k ∈ N, x ∈ K, ‖vi‖B ≤ 1

}
is bounded in F

}
=
{
f ∈ C∞(U,F ) : ∀B ∀ compact K ⊆ U ∩ EB ∀ρ > 0 :{ dkvf(x)

k! ρkMk
: k ∈ N, x ∈ K, ‖v‖B ≤ 1

}
is bounded in F

}
, and

C
{M}
b (U,F ) :=

{
f ∈ C∞(U,F ) : ∀B ∀ compact K ⊆ U ∩ EB ∃ρ > 0 :{f (k)(x)(v1, . . . , vk)

k! ρkMk
: k ∈ N, x ∈ K, ‖vi‖B ≤ 1

}
is bounded in F

}
=
{
f ∈ C∞(U,F ) : ∀B ∀ compact K ⊆ U ∩ EB ∃ρ > 0 :
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{ dkvf(x)

k! ρkMk
: k ∈ N, x ∈ K, ‖v‖B ≤ 1

}
is bounded in F

}
Here B runs through all closed absolutely convex bounded subsets in E, and EB
is the vector space generated by B with the Minkowski functional ‖v‖B = inf{λ ≥
0 : v ∈ λB} as complete norm. For Banach spaces E and F obviously

C
[M ]
b (U,F ) = C [M ](U,F ).

Now we define the spaces of main interest in this paper:

C [M ](U,F ) :=
{
f ∈ C∞(U,F ) : ∀` ∈ F ∗ ∀B : ` ◦ f ◦ iB ∈ C [M ](UB ,R)

}
,

where B again runs through all closed absolutely convex bounded subsets in E, the
mapping iB : EB → E denotes the inclusion of EB in E, and UB := i−1

B (U). It will
follow from 4.4 and 4.5 that for Banach spaces E and F this definition coincides
with the one given earlier in 4.1.

We equip C [M ](U,F ) with the initial locally convex structure induced by all
linear mappings

C [M ](U,F )−C
[M](iB ,`)→ C [M ](UB ,R), f 7→ ` ◦ f ◦ iB .

Then C [M ](U,F ) is a convenient vector space as c∞-closed subspace in the product∏
`,B C

[M ](UB ,R), since smoothness can be tested by composing with the inclusions

EB → E and with the ` ∈ F ∗, see [22, 2.14.4 and 1.8]. This shows at the same
time, that

C [M ](U,F ) =
{
f ∈ FU : ∀` ∈ F ∗ ∀B : ` ◦ f ◦ iB ∈ C [M ](UB ,R)

}
.

4.4. Lemma (C(M) = C
(M)
b ). Let E,F be convenient vector spaces, and let U ⊆ E

be c∞-open. Then a mapping f : U → F is C(M) (i.e., is in C(M)(U,F )) if and

only if f is C
(M)
b .

Proof. Let f : U → F be C∞. We have the following equivalences, where B runs
through all closed absolutely convex bounded subsets in E:

f ∈ C(M)(U,F )

⇐⇒ ∀` ∈ F ∗ ∀B ∀K ⊆ UB compact ∀ρ > 0 :{ (` ◦ f)(k)(x)(v1, . . . , vk)

ρk k!Mk
: x ∈ K, k ∈ N, ‖vi‖B ≤ 1

}
is bounded in R

⇐⇒ ∀B ∀K ⊆ UB compact ∀ρ > 0 ∀` ∈ F ∗ :

`
({f (k)(x)(v1, . . . , vk)

ρk k!Mk
: x ∈ K, k ∈ N, ‖vi‖B ≤ 1

})
is bounded in R

⇐⇒ ∀B ∀K ⊆ UB compact ∀ρ > 0 :{f (k)(x)(v1, . . . , vk)

ρk k!Mk
: x ∈ K, k ∈ N, ‖vi‖B ≤ 1

}
is bounded in F

⇐⇒ f ∈ C(M)
b (U,F ) �

In the Roumieu case C{M} the corresponding equality holds only under addi-
tional assumptions:
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4.5. Lemma (C{M} = C
{M}
b ). Let E,F be convenient vector spaces, and let U ⊆ E

be c∞-open. Assume that there exists a Baire vector space topology on the dual F ∗

for which the point evaluations evx are continuous for all x ∈ F . Then a mapping

f : U → F is C{M} if and only if f is C
{M}
b .

Proof. (⇒) Let B be a closed absolutely convex bounded subset of E. Let K be
compact in UB . We consider the sets

Aρ,C :=
{
` ∈ F ∗ :

|(` ◦ f)(k)(x)(v1, . . . , vk)|
ρk k!Mk

≤ C for all x ∈ K, k ∈ N, ‖vi‖B ≤ 1
}

which are closed subsets in F ∗ for the given Baire topology. We have
⋃
ρ,C Aρ,C =

F ∗. By the Baire property there exist ρ and C such that the interior int(Aρ,C) of
Aρ,C is non-empty. If `0 ∈ int(Aρ,C), then for each ` ∈ F ∗ there is a δ > 0 such
that δ` ∈ int(Aρ,C)− `0, and, hence, for all k ∈ N, x ∈ K, and ‖vi‖B ≤ 1, we have

|(` ◦ f)(k)(x)(v1, . . .)| ≤ 1
δ

(
|((δ `+ `0) ◦ f)(k)(x)(v1, . . . )|+ |(`0 ◦ f)(k)(x)(v1, . . . )|

)
≤ 2C

δ ρk k!Mk.

So the set {f (k)(x)(v1, . . . , vk)

ρk k!Mk
: x ∈ K, k ∈ N, ‖vi‖B ≤ 1

}
is weakly bounded in F and hence bounded. Since B was arbitrary, we obtain

f ∈ C{M}b (U,F ).
(⇐) is obvious. �

The following example shows that the additional assumption in 4.5 cannot be
dropped.

4.6. Example. By [35, Thm. 1], for each weakly log-convex sequence M = (Mk)
there exists f ∈ C{M}(R,R) such that |f (k)(0)| ≥ k!Mk for all k ∈ N. Then
g : R2 → R given by g(s, t) = f(st) is C{M}, whereas there is no reasonable
topology on C{M}(R,R) such that the associated mapping g∨ : R → C{M}(R,R)

is C
{M}
b . For a topology on C{M}(R,R) to be reasonable we require only that all

evaluations evt : C{M}(R,R)→ R are bounded linear functionals.

Proof. The mapping g is obviously C{M}. If g∨ were C
{M}
b , for s = 0 there existed

ρ such that { (g∨)(k)(0)

k! ρkMk
: k ∈ N

}
was bounded in C{M}(R,R). We apply the bounded linear functional evt for t = 2ρ
and then get

|(g∨)(k)(0)(2ρ)|
k! ρkMk

=
(2ρ)k|f (k)(0)|
k! ρkMk

≥ 2k,

a contradiction. �

This example shows that for C
{M}
b one cannot expect cartesian closedness. Using

cartesian closedness 5.2 and 5.1 this also shows (for F = C{M}(R,R) and U = R =
E) that

C
{M}
b (U,F ) )

⋂
B,V

C
{M}
b (U ∩ EB , FV ),
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where FV is the completion of F/p−1
V (0) with respect to the seminorm pV induced

by the absolutely convex closed 0-neighborhood V .
If we compose g∨ with the restriction mapping (inclN)∗ : C{M}(R,R) → RN :=∏
t∈N R, then we get a C{M}-curve, since the continuous linear functionals on RN

are linear combinations of coordinate projections evt with t ∈ N. However, this

curve cannot be C
{M}
b as the argument above for t > ρ shows.

4.7. Lemma. Let E,F be Banach spaces, U ⊆ E open, and f : U → F a C∞-
mapping. The following are equivalent:

(1) f is C(M) = C
(M)
b .

(2) For each sequence (rk) with rk ρ
k → 0 for some ρ > 0 and each compact

K ⊆ U , the set{f (k)(a)(v1, . . . , vk)

k!Mk
rk : a ∈ K, k ∈ N, ‖vi‖ ≤ 1

}
is bounded in F .

(3) For each sequence (rk) satisfying rk > 0, rkr` ≥ rk+`, and rk ρ
k → 0 for

some ρ > 0, each compact K ⊆ U , and each δ > 0, the set{f (k)(a)(v1, . . . , vk)

k!Mk
rk δ

k : a ∈ K, k ∈ N, ‖vi‖ ≤ 1
}

is bounded in F .

Proof. (1) ⇒ (2) For (rk) and K,∥∥∥∥f (k)(a)

k!Mk
rk

∥∥∥∥
Lk(E,F )

=

∥∥∥∥ f (k)(a)

k! ρkMk

∥∥∥∥
Lk(E,F )

· |rkρk|

is bounded uniformly in k ∈ N and a ∈ K (by 4.4).
(2) ⇒ (3) Apply (2) to the sequence (rkδ

k).

(3)⇒ (1) Let ak := supa∈K ‖
f(k)(a)
k!Mk

‖Lk(E,F ). By the following lemma, the ak are

the coefficients of a power series with infinite radius of convergence. Thus ak/ρ
k is

bounded for every ρ > 0. �

Lemma. For a formal power series
∑
k≥0 akt

k with real coefficients the following
are equivalent:

(4) The radius of convergence is infinite.
(5) For each sequence (rk) satisfying rk > 0, rkr` ≥ rk+`, and rk ρ

k → 0 for
some ρ > 0, and each δ > 0, the sequence (akrkδ

k) is bounded.

Proof. (4) ⇒ (5) The series
∑
akrkδ

k =
∑

(ak( δρ )k)rkρ
k converges absolutely for

each δ. Hence (akrkδ
k) is bounded.

(5) ⇒ (4) Suppose that the radius of convergence ρ is finite. So
∑
k |ak|nk =∞

for n > ρ. Set rk = 1/nk. Then, by (5),

akn
k2k = akrkn

2k2k = akrk(2n2)k < C,

for some C > 0 and all k. Consequently,
∑
k |ak|nk ≤ C

∑
k

1
2k

, a contradiction. �

4.8. Lemma. Let E,F be Banach spaces, U ⊆ E open, and f : U → F a C∞-
mapping. The following are equivalent:

(1) f is C{M} = C
{M}
b .
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(2) For each sequence (rk) with rk ρ
k → 0 for all ρ > 0, and each compact

K ⊆ U , the set{f (k)(a)(v1, . . . , vk)

k!Mk
rk : a ∈ K, k ∈ N, ‖vi‖ ≤ 1

}
is bounded in F .

(3) For each sequence (rk) satisfying rk > 0, rkr` ≥ rk+`, and rk ρ
k → 0 for

all ρ > 0, and each compact K ⊆ U , there exists δ > 0 such that{f (k)(a)(v1, . . . , vk)

k!Mk
rk δ

k : a ∈ K, k ∈ N, ‖vi‖ ≤ 1
}

is bounded in F .

Proof. (1) ⇒ (2) For K, there exists ρ > 0 such that∥∥∥f (k)(a)

k!Mk
rk

∥∥∥
Lk(E,F )

=
∥∥∥ f (k)(a)

k! ρkMk

∥∥∥
Lk(E,F )

· |rkρk|

is bounded uniformly in k ∈ N and a ∈ K (by 4.5).
(2) ⇒ (3) Use δ = 1.

(3) ⇒ (1) Let ak := supa∈K ‖
f(k)(a)
k!Mk

‖Lk(E,F ). Using [22, 9.2(4⇒1)] these are the

coefficients of a power series with positive radius of convergence. Thus ak/ρ
k is

bounded for some ρ > 0. �

4.9. Definition (Banach plots). Let E be a convenient vector space. A C [M ]

(Banach) plot in E is a mapping c : D → E of class C [M ], where D is an open set
in some Banach space F . It suffices to only consider the open unit ball D = oF .

4.10. Theorem. Let M = (Mk) be log-convex. Let U ⊆ E be c∞-open in a conve-
nient vector space E, let F be a Banach space, and let f : U → F be a mapping.
Then:

f ∈ C [M ](U,F ) =⇒ f ◦ c ∈ C [M ], for all C [M ]-plots c.

Note that the converse (⇐) holds by definition 4.3.

Proof. We treat first the Beurling case C(M): We have to show that f ◦ c is C(M)

for each C(M)-plot c : G ⊇ D → E. By (4.7.3), it suffices to show that, for each
sequence (rk) satisfying rk > 0, rkr` ≥ rk+`, and rk t

k → 0 for some t > 0, each
compact K ⊆ D, and each δ > 0, the set

(1)
{ (f ◦ c)(k)(a)(v1, . . . , vk)

k!Mk
rk δ

k : a ∈ K, k ∈ N, ‖vi‖G ≤ 1
}

is bounded in F .
So let δ, the sequence (rk), and a compact (and without loss of generality convex)

K ⊆ D be fixed. For each ` ∈ E∗ the set

(2)
{ (` ◦ c)(k)(a)(v1, . . . , vk)

k!Mk
rk (2δ)k : a ∈ K, k ∈ N, ‖vi‖G ≤ 1

}
is bounded in R, by (4.7.2) applied to the sequence (rk(2δ)k). Thus, the set

(3)
{c(k)(a)(v1, . . . , vk)

k!Mk
rk (2δ)k : a ∈ K, k ∈ N, ‖vi‖G ≤ 1

}
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is contained in some closed absolutely convex bounded B of E and hence

‖c(k)(a)‖Lk(G,EB) rk δ
k

k!Mk
≤ 1

2k
.

Furthermore c : K → EB is Lipschitzian, since

c(x)− c(y) =

∫ 1

0

c′(y + t(x− y)) (x− y) dt ∈ M1 ‖x− y‖G
2 r1 δ

B,

and hence c(K) is compact in EB . By Faà di Bruno’s formula for Banach spaces
([7] for the 1-dimensional version, k ≥ 1)

(f ◦ c)(k)(a)

k!
= sym

(∑
j≥1

∑
α∈Nj>0

α1+···+αj=k

1

j!
f (j)(c(a))

(c(α1)(a)

α1!
, . . . ,

c(αj)(a)

αj !

))
,

where sym denotes symmetrization, and by (2.1.4), for a ∈ K and k ∈ N>0, for
ρ := 1

M1
there exists a constant C > 0 such that

(4)
∥∥∥ (f ◦ c)(k)(a)

k!Mk
rk δ

k
∥∥∥
Lk(G,F )

≤

≤
∑
j≥1

M j
1

∑
α∈Nj>0

α1+···+αj=k

‖f (j)(c(a))‖Lj(EB ,F )

j!Mj︸ ︷︷ ︸
≤C ρj

j∏
i=1

‖c(αi)(a)‖Lαi (G,EB) rαi δ
αi

αi!Mαi︸ ︷︷ ︸
≤1/2αi

≤
∑
j≥1

M j
1

(
k − 1

j − 1

)
C ρj

1

2k
= M1ρ(1 +M1 ρ)k−1C

1

2k
≤ C

2
,

as required.
Let us now consider the Roumieu case C{M}: Let c : G ⊇ D → E be a C{M}-

plot, where D is the open unit ball in a Banach space G. We have to show that
f ◦ c is C{M}. By (4.8.3), it suffices to show that for each sequence (rk) satisfying
rk > 0, rkr` ≥ rk+`, and rk t

k → 0 for all t > 0, and each compact K ⊆ D, there
exists δ > 0 such that the set (1) is bounded in F .

By (4.8.2) (applied to (rk2k) instead of (rk)), for each ` ∈ E∗, each sequence
(rk) with rk t

k → 0 for all t > 0, and each compact K ⊆ D, the set (2) with δ = 1
is bounded in R, and, thus, the set (3) with δ = 1 is contained in some closed
absolutely convex bounded subset B of E. Computing as above we find that, for
some ρ > 0 and C > 0 and δ := 2

1+M1 ρ
, the lefthand-side of (4) is bounded by

CM1 ρ
1+M1 ρ

. �

4.11. Theorem (C [M ] is a category). Let M = (Mk) be log-convex. Let E,F,G be
convenient vector spaces, U ⊆ E, V ⊆ F be c∞-open, and f : U → F , g : V → G,
and f(U) ⊆ V . Then:

f, g ∈ C [M ] =⇒ g ◦ f ∈ C [M ].

Proof. By Definition 4.3, we must show that for all closed absolutely convex
bounded B ⊆ E and for all ` ∈ G∗ the composite ` ◦ g ◦ f ◦ iB : UB → R belongs to
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C [M ].

U
f // V

g //

` ◦ g
&&

G

`

��
UB

iB

OO

f ◦ iB

77

R

By assumption, f ◦ iB and ` ◦ g are C [M ]. So the assertion follows from Theorem
4.10. �

5. The exponential law

5.1. Lemma. Let E be a Banach space, and U ⊆ E be open. Let F be a convenient
vector space, and let S be a family of bounded linear functionals on F which together
detect bounded sets (i.e., B ⊆ F is bounded if and only if `(B) is bounded for all
` ∈ S). Then:

f ∈ C [M ](U,F )⇐⇒ ` ◦ f ∈ C [M ](U,R), for all ` ∈ S.

Proof. For C∞-curves this follows from [22, 2.1 and 2.11], and, by composing with
such, it follows for C∞-mappings f : U → F .

In the Beurling case C(M): By 4.7, for ` ∈ F ∗, the function ` ◦ f is C(M) if and
only if the set

(1)
{ (` ◦ f)(k)(a)(v1, . . . , vk)

k!Mk
rk : a ∈ K, k ∈ N, ‖vi‖ ≤ 1

}
is bounded, for each sequence (rk) with rk ρ

k → 0 for some ρ > 0 and each compact
K ⊆ U . So the smooth mapping f : U → F is C(M) if and only if the set

(2)
{f (k)(a)(v1, . . . , vk)

k!Mk
rk : a ∈ K, k ∈ N, ‖vi‖ ≤ 1

}
is bounded in F . This is in turn equivalent to ` ◦ f ∈ C(M) for all ` ∈ S, since S
detects bounded sets.

The same proof works in the Roumieu case C{M} if we use 4.8 and demand that
rk ρ

k → 0 for all ρ > 0. �

5.2. Theorem (Cartesian closedness). We have:

(1) Let M = (Mk) be weakly log-convex and have moderate growth. Then, for
convenient vector spaces E1, E2, and F and c∞-open sets U1 ⊆ E1 and
U2 ⊆ E2, we have the exponential law:

f ∈ C [M ](U1 × U2, F )⇐⇒ f∨ ∈ C [M ](U1, C
[M ](U2, F )).

The direction (⇐) holds without the assumption that M = (Mk) has moder-
ate growth. The direction (⇒) holds without the assumption that M = (Mk)
is weakly log-convex.

(2) Let M = (Mk) be log-convex and have moderate growth. Then the category
of C [M ]-mappings between convenient real vector spaces is cartesian closed,
i.e., satisfies the exponential law.
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Note that C [M ] is not necessarily a category if M = (Mk) is just weakly log-
convex.

Proof. (2) is a direct consequence of (1) and Theorem 4.11. Let us prove (1). We
have C∞(U1 × U2, F ) ∼= C∞(U1, C

∞(U2, F )), by [22, 3.12]; thus, in the following
all mappings are assumed to be smooth. We have the following equivalences, where
B ⊆ E1×E2 and Bi ⊆ Ei run through all closed absolutely convex bounded subsets,
respectively:

f ∈ C [M ](U1 × U2, F )⇐⇒

⇐⇒ ∀` ∈ F ∗ ∀B : ` ◦ f ◦ iB ∈ C [M ]((U1 × U2)B ,R)

⇐⇒ ∀` ∈ F ∗ ∀B1, B2 : ` ◦ f ◦(iB1
× iB2

) ∈ C [M ]((U1)B1
× (U2)B2

,R)

For the second equivalence we use that every bounded B ⊆ E1 × E2 is contained
in B1 × B2 for some bounded Bi ⊆ Ei, and, thus, the inclusion (E1 × E2)B →
(E1)B1

× (E1)B2
is bounded.

On the other hand, we have:

f∨ ∈ C [M ](U1, C
[M ](U2, F ))

⇐⇒ ∀B1 : f∨ ◦ iB1
∈ C [M ]((U1)B1

, C [M ](U2, F ))

⇐⇒ ∀` ∈ F ∗ ∀B1, B2 : C [M ](iB2 , `) ◦ f∨ ◦ iB1 ∈ C [M ]((U1)B1 , C
[M ]((U2)B2 ,R))

For the second equivalence we use 5.1 and the fact that the linear mappings
C [M ](iB2

, `) generate the bornology.
These considerations imply that in order to prove cartesian closedness in general

we may restrict to the case that Ui ⊆ Ei are open in Banach spaces Ei and F = R.
(Direction ⇒) We assume that M = (Mk) has moderate growth. Let f ∈

C [M ](U1 × U2,R). It is clear that f∨ takes values in C [M ](U2,R).

Claim. f∨ : U1 → C [M ](U2,R) is C∞ with djf∨ = (∂j1f)∨.

Since C [M ](U2,R) is a convenient vector space, by [22, 5.20] it is enough to show

that the iterated unidirectional derivatives djvf
∨(x) exist, equal ∂j1f(x, )(vj), and

are separately bounded for x, resp. v, in compact subsets. For j = 1 and fixed x, v,
and y consider the smooth curve c : t 7→ f(x+ tv, y). By the fundamental theorem

f∨(x+ tv)− f∨(x)

t
(y)− (∂1f)∨(x)(y)(v) =

c(t)− c(0)

t
− c′(0)

= t

∫ 1

0

s

∫ 1

0

c′′(tsr) dr ds

= t

∫ 1

0

s

∫ 1

0

∂2
1f(x+ tsrv, y)(v, v) dr ds.

Since (∂2
1f)∨(K1)(oE2

1) is obviously bounded in C [M ](U2,R) for each compact sub-
set K1 ⊆ U1 this expression is Mackey convergent to 0 in C [M ](U2,R), for t → 0.
Thus dvf

∨(x) exists and equals ∂1f(x, )(v).
Now we proceed by induction, applying the same arguments as before to

(djvf
∨)∧ : (x, y) 7→ ∂j1f(x, y)(vj) instead of f . Again (∂2

1(djvf
∨)∧)∨(K1)(oE2

1) =

(∂j+2
1 f)∨(K1)(oE1, oE1, v, . . . , v) is bounded, and also the separated boundedness

of djvf
∨(x) follows. So the claim is proved.

We have to show that f∨ : U1 → C [M ](U2,R) is C [M ].
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In the Beurling case C(M):

U1
f∨ // C(M)(U2,R) lim←−K2

lim←−ρ2 C
M
ρ2 (E2 ⊇ K2,R)

` //

��

R

lim←−ρ2 C
M
ρ2 (E2 ⊇ K2,R)

��
K1

?�

OO

// CMK2,ρ2
(U2,R) // CMρ2 (E2 ⊇ K2,R)

KK

(3)

By 5.1, it suffices to show that f∨ : U1 → CMρ2 (E2 ⊇ K2,R) is C
(M)
b = C(M) (see

4.4) for each compact K2 ⊆ U2 and each ρ2 > 0, since every ` ∈ C(M)(U2,R)∗

factors over some CMρ2 (E2 ⊇ K2,R). Thus it suffices to prove that, for all compact
K1 ⊆ U1, K2 ⊆ U2 and all ρ1, ρ2 > 0, the set

(4)
{dk1f∨(x1)(v1

1 , . . . , v
1
k1

)

k1! ρk11 Mk1

: x1 ∈ K1, k1 ∈ N, ‖v1
j ‖E1

≤ 1
}

is bounded in CMK2,ρ2
(U2,R), or, equivalently, for all K1,K2, ρ1, ρ2 the set

(5)
{∂k22 ∂k11 f(x1, x2)(v1

1 , . . . , v
1
k1

; v2
1 , . . . , v

2
k2

)

k2! k1! ρk22 ρk11 Mk2 Mk1

: xi ∈ Ki, ki ∈ N, ‖vij‖Ei ≤ 1
}

is bounded in R.
Since M = (Mk) has moderate growth, i.e., Mk1+k2 ≤ σk1+k2Mk1Mk2 for some

σ > 0, we obtain, for x1 ∈ K1, k1 ∈ N, and ‖v1
j ‖E1 ≤ 1,

(6)
∥∥∥dk1f∨(x1)(v1

1 , . . . , v
1
k1

)

k1! ρk11 Mk1

∥∥∥
K2,ρ2

=

= sup
{ |∂k22 ∂k11 f(x1, x2)(v1

1 , . . . , v
1
k1

; v2
1 , . . . , v

2
k2

)|
k2! k1! ρk22 ρk11 Mk2 Mk1

: x2 ∈ K2, k2 ∈ N, ‖v2
j ‖E2

≤ 1
}

≤ sup
{

(2σ)k1+k2
|∂k22 ∂k11 f(x1, x2)(v1

1 , . . . ; v
2
1 , . . . )|

(k1 + k2)! ρk11 ρk22 Mk1+k2

: x2 ∈ K2, k2 ∈ N, ‖v2
j ‖E2

≤ 1
}
.

If for given ρ1, ρ2 > 0 we set ρ := 1
2σ min{ρ1, ρ2}, then (6) is bounded by

(7) sup
{ |∂k22 ∂k11 f(x1, x2)(v1

1 , . . . ; v
2
1 , . . . )|

(k1 + k2)! ρk1+k2 Mk1+k2

: x2 ∈ K2, k2 ∈ N, ‖v2
j ‖E2

≤ 1
}

which is finite, since f is C(M). Thus, f∨ is C(M).
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In the Roumieu case C{M}:

U1
f∨ // C{M}(U2,R) lim←−K2

lim−→ρ2
CMρ2 (E2 ⊇ K2,R)

` //

��

R

lim−→ρ2
CMρ2 (E2 ⊇ K2,R)

66

K1

?�

OO

// CMK2,ρ2
(U2,R) // CMρ2 (E2 ⊇ K2,R)

OO
(8)

By 5.1, it suffices to show that f∨ : U1 → lim−→ρ2
CMρ2 (E2 ⊇ K2,R) is C

{M}
b ⊆

C{M} for each compact K2 ⊆ U2, since every ` ∈ C{M}(U2,R)∗ factors over some
lim−→ρ2

CMρ2 (E2 ⊇ K2,R). Thus it suffices to prove that, for all compact K1 ⊆ U1 and

K2 ⊆ U2 there exists ρ1 > 0, such that the set (4) is bounded in lim−→ρ2
CMρ2 (E2 ⊇

K2,R). For that it suffices to show that for all K1,K2 there are ρ1, ρ2 with the set
(5) bounded in R.

Since f is C{M}, there exists ρ > 0 so that the set (7) is finite, by (4.2.3). If we
set ρi := 2σρ, then (6) is bounded by (7). It follows that f∨ is C{M}.

(Direction ⇐) Let f∨ : U1 → C [M ](U2,R) be C [M ]. By Proposition 8.1,
f∨ : U1 → C [M ](U2,R) → C∞(U2,R) is C∞ and so it remains to show that
f ∈ C [M ](U1 × U2,R).

In the Beurling case C(M): Consider diagram (3). For each compact K2 ⊆ U2

and each ρ2 > 0, the mapping f∨ : U1 → CMρ2 (E2 ⊇ K2,R) is C(M) = C
(M)
b . That

means that, for all compact K1 ⊆ U1, K2 ⊆ U2 and all ρ1, ρ2 > 0, the set (4)
is bounded in CMρ2 (E2 ⊇ K2,R). Since it is contained in CMK2,ρ2

(U2,R) = {g ∈
C∞(U2,R) : j∞g|K2

∈ CMρ2 (E2 ⊇ K2,R)} and ‖g‖K2,ρ2 = ‖j∞g|K2
‖ρ2 , it is also

bounded in this space, and hence the set (5) is bounded.
Since M = (Mk) is weakly log-convex, thus, k1! k2!Mk1Mk2 ≤ (k1 +k2)!Mk1+k2 ,

we have, for x1 ∈ K1, k1 ∈ N, and ‖v1
j ‖E1 ≤ 1,

(9)
∥∥∥dk1f∨(x1)(v1

1 , . . . , v
1
k1

)

k1! ρk11 Mk1

∥∥∥
K2,ρ2

=

= sup
{ |∂k22 ∂k11 f(x1, x2)(v1

1 , . . . , v
1
k1

; v2
1 , . . . , v

2
k2

)|
k2! k1! ρk22 ρk11 Mk2 Mk1

: x2 ∈ K2, k2 ∈ N, ‖v2
j ‖E2 ≤ 1

}
≥ sup

{ |∂k22 ∂k11 f(x1, x2)(v1
1 , . . . ; v

2
1 , . . . )|

(k1 + k2)! ρk11 ρk22 Mk1+k2

: x2 ∈ K2, k2 ∈ N, ‖v2
j ‖E2 ≤ 1

}
.

This implies that f is C(M).
In the Roumieu case C{M}: Consider diagram (8). For each compact K2 ⊆ U2,

the mapping f∨ : U1 → lim−→ρ2
CMρ2 (E2 ⊇ K2,R) is C{M}. The inductive limit is

regular, by (4.2.3). So the dual space (lim−→ρ2
CMρ2 (E2 ⊇ K2,R))∗ can be equipped

with the Baire topology of the countable limit lim←−ρ2 C
M
ρ2 (E2 ⊇ K2,R)∗ of Banach

spaces. Thus, the mapping f∨ : U1 → lim−→ρ2
CMρ2 (E2 ⊇ K2,R) is C

{M}
b , by Lemma

4.5. By regularity, for each compact K1 ⊆ U1 there exists ρ1 > 0 so that the set
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(4) is contained and bounded in CMρ2 (E2 ⊇ K2,R) for some ρ2 > 0. Since this set

is contained in CMK2,ρ2
(U2,R) = {g ∈ C∞(U2,R) : j∞g|K2

∈ CMρ2 (E2 ⊇ K2,R)} and

‖g‖K2,ρ2 = ‖j∞g|K2‖ρ2 , it is also bounded in this space, and hence the set (4) is

bounded. Then (9) implies that f is C{M}. The proof is complete. �

5.3. Remarks. Theorem 8.2 below states that, if M = (Mk) is (weakly) log-convex,
E,F are convenient vector spaces, and U ⊆ E is c∞-open, then

(1) C{M}(U,F ) = lim←−
L

C(L)(U,F )

as vector spaces with bornology, where the projective limits are taken over all
(weakly) log-convex L = (Lk) with M � L. Using this equality we can give an
alternative proof of the direction

f∨ ∈ C{M}(U1, C
{M}(U2, F ))⇒ f ∈ C{M}(U1 × U2, F )

in 5.2 as follows: If f∨ ∈ C{M}(U1, C
{M}(U2, F )) then f∨ ∈ C(L)(U1, C

(L)(U2, F ))
for all L = (Lk) with M � L, by (1). By cartesian closedness 5.2 of C(L) (the
implication which holds without moderate growth), we have f ∈ C(L)(U1 × U2, F )
for all L, and, by (1) again, f ∈ C{M}(U1 × U2, F ).

The proof of (1) in 8.2 uses the C{M} uniform boundedness principle 6.1, and
the proof of the latter uses completeness of the inductive limit lim−→ρ

CMρ (E ⊇ K,F ),

where E,F are Banach spaces and K ⊆ E is compact, see Proposition 4.2. Here is
a direct proof of (1), where we only assume that M = (Mk) is positive:
The spaces coincide as vector spaces by Definitions 4.1, 4.3, and by Theorem 2.4.
For K compact in a Banach space E and ρ > 0, the inclusion CMρ (E ⊇ K,R) →
CLσ (E ⊇ K,R) is continuous for all σ > 0 if M � L. It follows that the inclusion
lim−→ρ

CMρ (E ⊇ K,R) → lim←−σ C
L
σ (E ⊇ K,R) is continuous. This implies that the

inclusion C{M}(U,F )→ C(L)(U,F ) is continuous (by definition of the structure in
4.3).
Conversely, let B be a bounded set in lim←−L C

(L)(U,F ), i.e., bounded in each

C(L)(U,F ). We claim that B is bounded in C{M}(U,F ). We may assume with-
out loss of generality that E is a Banach space and F = R (by composing with
C{M}(iB , `)). Let K ⊆ U be compact and bk := sup{‖j∞f |K‖k : f ∈ B}. For
all L = (Lk) with M � L the set B is bounded in C(L)(U,F ) by assumption, i.e.,
(bk)k ∈

⋂
L F (L) = F{M} by Theorem 2.4. From this follows that B is bounded in

C
{M}
K (U,F ) and by (4.2.5) also in C{M}(U,F ).

Note that this independently proves that C{M}(U,F ) is c∞-complete since so is
lim←−L C

(L)(U,F ). Moreover, it provides an independent proof of the regularity of

the inductive limit involved in the definition of C{M}(U,F ) if E and F are Banach
spaces (cf. 4.2 and the remark in 8.7).

5.4. Example (Cartesian closedness fails without moderate growth). Let us assume
M = (Mk) is weakly log-convex and has non-moderate growth (for instance, Mk =

qk
2

, q > 1, see [35, 2.1.3]). Then

(1) there exists an f ∈ C{M}(R2,R) such that f∨ : R → C{M}(R,R) is not
C{M}.

(2) there exists a weakly log-convex N = (Nk) with M � N and an f ∈
C(N)(R2,R) such that f∨ : R→ C(N)(R,R) is not C(N).
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Proof. (1) In [35, Thm. 1] there is constructed a function g ∈ C{M}(R,C) such
that |g(k)(0)| ≥ k!Mk for all k. By setting g̃ := Re g + Im g, we obtain a function
g̃ ∈ C{M}(R,R) such that g̃(k)(0) = |g̃(k)(0)| ≥ k!Mk for all k, see [33, 3.1.2]. By
defining f(s, t) := g̃(s+ t), we have found f ∈ C{M}(R2,R) with

∂αf(0, 0) ≥ |α|!M|α| for all α ∈ N2.

Since M = (Mk) has non-moderate growth, there exist jn ↗ ∞ and kn > 0 such
that ( Mkn+jn

MknMjn

) 1
kn+jn ≥ n.

Consider the linear functional ` : C{M}(R,R)→ R given by

`(g) =
∑
n

g(jn)(0)

jn!Mjn n
jn
.

This functional is continuous, since∣∣∣∑
n

g(jn)(0)

jn!Mjn n
jn

∣∣∣ ≤∑
n

|g(jn)(0)|
jn! ρjnMjn

ρjn

njn
≤ C(ρ) ‖g‖[−1,1],ρ <∞,

for suitable ρ, where

C(ρ) :=
∑
n

( ρ
n

)jn
<∞,

for all ρ. But ` ◦ f∨is not C{M}, since

‖` ◦ f∨‖[−1,1],ρ1 ≥ sup
k

1

ρk1 k!Mk

∑
n

f (jn,k)(0, 0)

jn!Mjnn
jn

≥ sup
n

1

ρkn1 kn!Mkn

f (jn,kn)(0, 0)

jn!Mjn n
jn

≥ sup
n

(jn + kn)!Mjn+kn

ρkn1 kn! jn!MknMjn n
jn
≥ sup

n

njn+kn

ρkn1 njn
=∞,

for all ρ1 > 0.
(2) By 8.2, we have for E,F convenient vector spaces and U ⊆ E a c∞-open

subset

(3) C{M}(U,F ) =
⋂
N

C(N)(U,F ),

where the intersection is taken over all weakly log-convex N = (Nk) with M �N .
Let f be the function in (1). By (3), there exist weakly log-convex sequences

N i = (N i
k), i = 1, 2, with M � N i such that f∨ : R → C(N2)(R,R) is not C(N1).

By the lemma below there exists a weakly log-convex sequence N = (Nk) such that
M � N ≤ N i for i = 1, 2. Since f ∈ C(N)(R2,R) by (3), the mapping f∨ has
values in C(N)(R,R) and thus factors over the inclusion C(N)(R,R)→ C(N2)(R,R)

which is obviously continuous. It follows that f∨ : R → C(N)(R,R) is not C(N1)



26 A. KRIEGL, P.W. MICHOR, A. RAINER

and consequently not C(N).

R
f∨ 6∈C(N1)

//

f∨ 6∈C(N1)⊇C(N)

((

C(N2)(R,R)

C(N)(R,R)
?�

OO

By 5.2, N = (Nk) has non-moderate growth. �

Lemma. Let M = (Mk), N i = (N i
k), i = 1, 2, be weakly log-convex with M �N i

for i = 1, 2. Then there exists a weakly log-convex sequence N = (Nk) such that
M �N ≤ N i for i = 1, 2.

Proof. Set N̄ = (N̄k) := (min{N1
k , N

2
k}) and N = (Nk), where (k!Nk) is the log-

convex minorant of (k!N̄k). Note that N0 = 1 ≤ N1. Since M = (Mk) is weakly
log-convex, we have M ≤ N ≤ N̄ ≤ N i, and M �N i implies M � N̄ . It remains
to show that M �N .

We claim that C
(N)
global(R,R) = C

(N̄)
global(R,R), where for a sequence L = (Lk) ∈

(R>0)N we set

C
[L]
global(R,R) :=

{
f ∈ C∞(R,R) : (sup

x∈R
|f (k)(x)|)k ∈ F [L]

}
.

In the Roumieu case this a theorem due to Cartan and Gorny, see [18, IV E]; the
same proof with obvious modifications yields the Beurling version, i.e., the claim.

Now M � N̄ implies C
{M}
global(R,R) ⊆ C

(N̄)
global(R,R) = C

(N)
global(R,R). The func-

tion g̃ in (1) is actually an element of C
{M}
global(R,R), see [35, Thm. 1]. Thus

g̃ ∈ C(N)
global(R,R) and therefore M �N . �

5.5. Corollary (Canonical mappings). Let M = (Mk) be log-convex and have mod-
erate growth. Let E, F , etc., be convenient vector spaces and let U and V be c∞-
open subsets of such. Then we have:
(1) The exponential law holds:

C [M ](U,C [M ](V,G)) ∼= C [M ](U × V,G)

is a linear C [M ]-diffeomorphism of convenient vector spaces.
The following canonical mappings are C [M ].

ev : C [M ](U,F )× U → F, ev(f, x) = f(x)(2)

ins : E → C [M ](F,E × F ), ins(x)(y) = (x, y)(3)

( )∧ : C [M ](U,C [M ](V,G))→ C [M ](U × V,G)(4)

( )∨ : C [M ](U × V,G)→ C [M ](U,C [M ](V,G))(5)

comp : C [M ](F,G)× C [M ](U,F )→ C [M ](U,G)(6)

C [M ]( , ) : C [M ](F, F1)× C [M ](E1, E)→ C [M ]
(
C [M ](E,F ), C [M ](E1, F1)

)
(7)

(f, g) 7→ (h 7→ f ◦h ◦ g)∏
:
∏

C [M ](Ei, Fi)→ C [M ]
(∏

Ei,
∏

Fi

)
(8)
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Proof. This is a direct consequence of cartesian closedness 5.2. See [24, 5.5] or
even [22, 3.13] for the detailed arguments. �

6. Uniform boundedness principles

6.1. Theorem (C [M ] uniform boundedness principle). Let E, F , G be convenient
vector spaces and let U ⊆ F be c∞-open. A linear mapping T : E → C [M ](U,G) is
bounded if and only if evx ◦T : E → G is bounded for every x ∈ U .

Proof. (⇒) For x ∈ U and ` ∈ G∗, the linear mapping ` ◦ evx = C [M ](x, `) :
C [M ](U,G) → R is continuous, thus evx is bounded. Therefore, if T is bounded
then so is evx ◦T .

(⇐) Suppose that evx ◦T is bounded for all x ∈ U . By the Definition 4.3
of C [M ](U,G) it is enough to show that T is bounded for Banach spaces E, F ,
and G = R. By Definition 4.1, C [M ](U,R) = lim←−K C

[M ](F ⊇ K,R), by (4.2.2),

C(M)(F ⊇ K,R) is a Fréchet space, and by (4.2.3), C{M}(F ⊇ K,R) is an (LB)-
space, so C [M ](F ⊇ K,R) is webbed and hence the closed graph theorem [22, 52.10]
gives the desired result.

E
T //

''

C [M ](U,R)
evx // R

lim←−K C
[M ](F ⊇ K,R) // C [M ](F ⊇ K,R)

(evx)0

OO

(1)

�

6.2. Remark. Alternatively, the C{M} uniform boundedness principle follows from
the C(M) uniform boundedness principle and from the remark in 8.2, since the
structure of C{M}(U,F ) = lim←−L C

(L)(U,F ) is initial with respect to the inclusions

lim←−L C
(L)(U,F )→ C(L)(U,F ) for all L. This is no circular argument, since the first

identity in 8.2 was proved in 5.3 without using the uniform boundedness principle
6.1.

7. Relation to previously considered structures

In [24] and [25] we have developed the convenient setting for all reasonable non-
quasianalytic and some quasianalytic (namely, L-intersectable, see 7.1) Denjoy–
Carleman classes of Roumieu type. We have worked with a definition which is
based on testing along curves. The resulting structures were denoted by CM in

[24] and [25] and will be denoted by C
{M}
curve in this section; this notation does not

appear elsewhere in this paper. We shall now show that they coincide bornologically
with the structure C{M} studied in the present paper. Furthermore, we prove that
the bornologies induced by C{1} and the structure Cω of real analytic mappings
introduced in [21] are isomorphic; here 1 denotes the constant sequence (1). Note
that C{1} is not L-intersectable (see [25, 1.8]).

7.1. Testing along curves. Let M = (Mk) be log-convex, E and F convenient
vector spaces, and U a c∞-open subset in E. If M = (Mk) is non-quasianalytic we
set

C{M}curve(U,F ) :=
{
f ∈ FU : ∀` ∈ F ∗ ∀c ∈ C{M}(R, U) : ` ◦ f ◦ c ∈ C{M}(R,R)

}
.
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If M = (Mk) is quasianalytic and L-intersectable, i.e., F{M} =
⋂
L∈L(M) F{L},

where

L(M) :=
{
L = (Lk) : L ≥M,L is non-quasianalytic log-convex

}
,

we define

C{M}curve(U,F ) :=
⋂

L∈L(M)

C{L}curve(U,F ),

Note that non-quasianalytic log-convex sequences are trivially L-intersectable. For

non-quasianalytic M = (Mk) we supply C
{M}
curve(U,F ) with the initial locally convex

structure induced by all linear mappings:

C{M}curve(U,F )−C
{M}
curve(c,`)→ C{M}(R,R), f 7→ ` ◦ f ◦ c, ` ∈ F ∗, c ∈ C{M}(R, U),

and for quasianalytic and L-intersectable M = (Mk) by all inclusions

C{M}curve(U,F ) −→ C{L}curve(U,F ), L ∈ L(M).

In both cases C
{M}
curve(U,F ) is a convenient vector space.

Let Cω(R,R) denote the real analytic functions f : R→ R and set

Cω(U,F ) :=
{
f ∈ C∞(U,F ) : ∀` ∈ F ∗ ∀c ∈ Cω(R, U) : ` ◦ f ◦ c ∈ Cω(R,R)

}
,

where Cω(R, U) is the space of all weakly Cω-curves in U . We equip Cω(U,R) with
the initial locally convex structure induced by the family of mappings

Cω(U,R)−c
∗
→ Cω(R,R), f 7→ f ◦ c, c ∈ Cω(R, U)

Cω(U,R)−c
∗
→ C∞(R,R), f 7→ f ◦ c, c ∈ C∞(R, U),

where C∞(R,R) carries the topology of compact convergence in each derivative
separately, and where Cω(R,R) is equipped with the final locally convex topology
with respect to the embeddings (restriction mappings) of all spaces of holomor-
phic mappings from a neighborhood V of R in C mapping R to R, and each of
these spaces carries the topology of compact convergence. The space Cω(U,F ) is
equipped with the initial locally convex structure induced by all mappings

Cω(U,F )−`∗→ Cω(U,R), f 7→ ` ◦ f, ` ∈ F ∗.

This is again a convenient vector space.

7.2. Theorem. Let M = (Mk) be log-convex, E and F convenient vector spaces,
and U a c∞-open subset in E. We have:

(1) If M = (Mk) is L-intersectable, then

C{M}(U,F ) = C{M}curve(U,F )

as vector spaces with bornology.
(2) If 1 denotes the constant sequence, then

C{1}(U,F ) = Cω(U,F )

as vector spaces with bornology.
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Proof. (1) If M = (Mk) is non-quasianalytic, then C{M}(U,F ) and C
{M}
curve(U,F )

coincide as vector spaces, by [25, 2.8]. If M = (Mk) is quasianalytic and L-
intersectable, then the non-quasianalytic case implies that

C{M}curve(U,F ) =
⋂

L∈L(M)

C{L}curve(U,F ) =
⋂

L∈L(M)

C{L}(U,F ) = C{M}(U,F )

as vector spaces, where the last equality is a consequence of the definition of
C{M}(U,F ) (see 4.3) and of [25, 1.6] (applied to C{M}(UB ,R)). The fact that

both spaces C{M}(U,F ) and C
{M}
curve(U,F ) are convenient and satisfy the uniform

boundedness principle with respect to the set of point evaluations, see Theorem 6.1
and [25, 2.9], implies that the identity is a bornological isomorphism.

(2) We show first that C{1}(U,F ) = Cω(U,F ) as vector spaces. By Definition
4.3 and [22, 10.6], it suffices to consider the case that U is open in a Banach space
E and F = R.
Let f ∈ Cω(U,R). By [21, 2.4 and 2.7] or [22, 10.1 and 10.4], this is equivalent to
f being smooth and being locally given by its convergent Taylor series. Let K ⊆ U
be compact. Since the Taylor series of f converges locally, there exist constants
C, ρ > 0 such that

(3)
‖f (k)(a)‖Lk(E,R)

k!
≤ Cρk, for all a ∈ K, k ∈ N,

that is, f ∈ C{1}(U,R).
Conversely, for compact subsets K ⊆ U on affine lines in E the condition (3) implies
that the restriction of f to each affine line is real analytic and hence f ∈ Cω(U,R)
by [22, 10.1].

The bornologies coincide, since both spaces are convenient and satisfy the uni-
form boundedness principle with respect to the set of point evaluations, see Theorem
6.1 and [21, 5.6] or [22, 11.12]. �

8. More on function spaces

8.1. Proposition (Inclusions). Let M = (Mk), N = (Nk) be positive sequences,
E, F convenient vector spaces, and U ⊆ E a c∞-open subset. We have:

(1) C(M)(U,F ) ⊆ C{M}(U,F ) ⊆ C∞(U,F ).
(2) If there exist C, ρ > 0 so that Mk ≤ CρkNk for all k, then

C(M)(U,F ) ⊆ C(N)(U,F ) and C{M}(U,F ) ⊆ C{N}(U,F ).

(3) If for each ρ > 0 there exists C > 0 so that Mk ≤ CρkNk for all k, i.e.,
M �N , then

C{M}(U,F ) ⊆ C(N)(U,F ).

(4) For U 6= ∅ and F 6= {0} we have:

Cω(U,F ) ⊆ C(M)(U,F )⇐⇒M
1/k
k →∞, and

Cω(U,F ) ⊆ C{M}(U,F )⇐⇒ limM
1/k
k > 0.

All these inclusions are bounded.

Proof. The inclusions in (1), (2), and (3) follow immediately from the definitions
in 4.1 and 4.3 and Lemma 2.3. Here we use that C{1}(U,F ) = Cω(U,F ) as vector
spaces with bornology, see Theorem 7.2.
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The directions (⇐) in (4) are direct consequences of (2) and (3). The directions
(⇒) follow, since they have been shown in 2.1 for E = F = R.

All inclusions are bounded, since all spaces are convenient and satisfy the uniform
boundedness principle 6.1 and [22, 5.26] for C∞. �

8.2. Theorem. Let M = (Mk) be (weakly) log-convex, E and F convenient vector
spaces, and U a c∞-open subset in E. We have

C{M}(U,F ) = lim←−
L

C(L)(U,F ) = lim←−
L

C{L}(U,F )

as vector spaces with bornology, where the projective limits are taken over all
(weakly) log-convex sequences L = (Lk) with M � L.

Proof. The three spaces coincide as vector spaces: By Definition 4.3 it suffices to
assume that E and F are Banach spaces, and by 4.1 and (4.2.5) it suffices to apply
Theorem 2.4 to the sequence (‖j∞f |K‖m).
Each space is convenient (see 4.3; projective limits preserve c∞-completeness) and
each space satisfies the uniform boundedness principle with respect to the set of
point evaluations (see 6.1; the structure of lim←−L C

[L](U,F ) is initial with respect to

the inclusions lim←−L C
[L](U,F ) → C [L](U,F ) for all L). Thus the identity between

any two of the three spaces is a bornological isomorphism. �

Remark. By Remark (2.4.5) the statement of the theorem still holds, if M = (Mk)
is just a positive sequence, where the projective limits are now taken over all positive
sequences L = (Lk) with M � L.

8.3. Proposition (Derivatives). Let M = (Mk) be a positive sequence and set
M+1 = (Mk+1). Let E and F be convenient vector spaces, and U ⊇ E a c∞-open
subset. Then we have:

(1) Multilinear mappings between convenient vector spaces are C [M ] if and only
if they are bounded.

(2) If f : E ⊇ U → F is C [M ], then the derivative df : U → L(E,F ) is C [M+1],
where the space L(E,F ) of all bounded linear mappings is considered with
the topology of uniform convergence on bounded sets. If M+1 = (Mk+1)
is weakly log-convex (which is the case if M = (Mk) is weakly log-convex),
also (df)∧ : U × E → F is C [M+1],

(3) The chain rule holds.

Proof. (1) If f is C [M ] then it is smooth and hence bounded by [22, 5.5]. Con-
versely, if f is multilinear and bounded then it is smooth, again by [22, 5.5]. Fur-
thermore, f ◦ iB is multilinear and continuous and all derivatives of high order
vanish. Thus f is C [M ], by Definition 4.3.

(2) Since f is smooth, by [22, 3.18] the mapping df : U → L(E,F ) exists and
is smooth. We have to show that (df) ◦ iB : UB → L(E,F ) is C [M+1], for all
closed absolutely convex bounded subsets B ⊆ E. By the uniform boundedness
principle [22, 5.18] and by Lemma 5.1 it suffices to show that the mapping UB 3
x 7→ `(df(iB(x))(v)) ∈ R is C [M+1] for each ` ∈ F ∗ and v ∈ E.

Since ` ◦ f is C(M) (resp. C{M}), for each closed absolutely convex bounded
B ⊆ E, each compact K ⊆ UB , and each ρ > 0 (resp. some ρ > 0) the set{‖dk(` ◦ f ◦ iB)(a)‖Lk(EB ,R)

k! ρkMk
: a ∈ K, k ∈ N

}
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is bounded, say by C > 0. The assertion follows in both cases from the following
computation. For v ∈ E and those B containing v we then have:

‖dk(L(`, v) ◦df) ◦ iB)(a)‖Lk(EB ,R) = ‖dk(d(` ◦ f)( )(v)) ◦ iB)(a)‖Lk(EB ,R)

= ‖dk+1(` ◦ f ◦ iB)(a)(v, . . . )‖Lk(EB ,R)

≤ ‖dk+1(` ◦ f ◦ iB)(a)‖Lk+1(EB ,R)‖v‖B ≤ C (k + 1)! ρk+1Mk+1

= Cρ ((k + 1)1/kρ)k k!Mk+1 ≤ Cρ (2ρ)k k! (M+1)k

By 8.4 below also (df)∧is C [M+1], if M = (Mk) is weakly log-convex.
(3) This is valid even for all smooth f by [22, 3.18]. �

8.4. Proposition. We have:

(1) For convenient vector spaces E and F , the following topologies have the
same bounded subsets in L(E,F ):
• The topology of uniform convergence on bounded subsets of E.
• The topology of pointwise convergence.
• The trace topology of C∞(E,F ).
• The trace topology of C [M ](E,F ).

(2) Let M = (Mk) be weakly log-convex, E, F , and G convenient vector spaces,
and U ⊆ E a c∞-open subset. A mapping f : U ×F → G which is linear in
the second variable is C [M ] if and only if f∨ : U → L(F,G) is well defined
and C [M ].

Analogous results hold for spaces of multilinear mappings.

Proof. (1) That the first three topologies on L(E,F ) have the same bounded sets
has been shown in [22, 5.3 and 5.18]. The inclusion C [M ](E,F ) → C∞(E,F ) is
bounded by 8.1. Conversely, the inclusion L(E,F ) → C [M ](E,F ) is bounded by
the uniform boundedness principle 6.1.

(2) The assertion for C∞ is true by [22, 3.12] since L(E,F ) is closed in C∞(E,F ).
Suppose that f is C [M ]. We have to show that f∨ ◦ iB is C [M ] into L(F,G), for

all closed absolutely convex bounded subsets B ⊆ E. By the uniform boundedness
principle [22, 5.18] and by Lemma 5.1 it suffices to show that the mapping UB 3
x 7→ `

(
f∨(iB(x))(v)

)
= `
(
f(iB(x), v)

)
∈ R is C [M ] for each ` ∈ G∗ and v ∈ F ; this

is obviously true.
Conversely, let f∨ : U → L(F,G) be C [M ]. By (1) the inclusion L(F,G) →

C [M ](F,G) is bounded linear, and so f∨ : U → C [M ](F,G) is C [M ]. By cartesian
closedness 5.2 (the direction which holds without moderate growth), f : U×F → G
is C [M ] and linearity in the second variable is obvious. �

Remark. We may prove f∨ ∈ C [M ](U,L(F,G)) ⇒ f ∈ C [M ](U × F,G) without
using cartesian closedness: By composing with ` ∈ G∗ we may assume that G = R.
By induction we have:

dkf(x,w0)
(
(vk, wk), . . . , (v1, w1)

)
= dk(f∨)(x)(vk, . . . , v1)(w0)+

+

k∑
i=1

dk−1(f∨)(x)(vk, . . . , v̂i, . . . , v1)(wi)
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Thus for B, B′ closed absolutely convex bounded subsets of E, F , respectively,
K ⊆ UB compact, and x ∈ K we have:

‖dkf(x,w0)‖Lk(EB×FB′ ,R) ≤

≤ ‖dk(f∨)(x)(. . . )(w0)‖Lk(EB ,R) +

k∑
i=1

‖dk−1(f∨)(x)‖Lk−1(EB ,L(FB′ ,R))

≤ ‖dk(f∨)(x)‖Lk(EB ,L(FB′ ,R))‖w0‖B′ + k ‖dk−1(f∨)(x)‖Lk−1(EB ,L(FB′ ,R))

≤ C ρk k!Mk‖w0‖B′ + k C ρk−1 (k − 1)!Mk−1 = C ρk k!Mk

(
‖w0‖B′ + Mk−1

ρMk

)
,

for all ρ > 0 and some C = C(ρ) (resp. for some C, ρ > 0), since the mapping
L(iB′ ,R) ◦ f∨ ◦ iB : UB → L(FB′ ,R) is C [M ]. Since k 7→ k!Mk is increasing (see

Remarks 2.6), we have Mk−1

Mk
≤ k ≤ 2k, and we may conclude that f is C [M ].

8.5. Let r = (rk) be a positive sequence, E and F Banach spaces, and K ⊆ E
compact convex. Consider

CM(rk)(E ⊇ K,F ) : =
{

(fm)m ∈
∏
m∈N

C(K,Lmsym(E,F )) : ‖f‖(rk) <∞
}
,

where ‖f‖(rk) : = max

{
sup
{ ‖f‖m
m! rmMm

: m ∈ N
}
,

sup
{ |||f |||n,k

(n+ k + 1)! rn+k+1Mn+k+1
: k, n ∈ N

}}
.

If (rk) = (ρk) for some ρ > 0 we just write ρ instead of (rk) as indices and recover
the spaces introduced in 4.1. Similarly as in Proposition (4.2.1) one shows that the
spaces CM(rk)(E ⊇ K,F ) are Banach spaces.

8.6. Theorem. Let E and F be Banach spaces and let U ⊆ E be open and convex.
Then we have

C(M)(U,F ) = lim←−
K,(rk)

CM(rk)(E ⊇ K,F )

as vector spaces with bornology. Here K runs through all compact convex subsets of
U ordered by inclusion and (rk) runs through all sequences of positive real numbers
for which ρk/rk → 0 for some ρ > 0.

Proof. Note first that the elements of the space lim←−K,(rk)
CM(rk)(E ⊇ K,F ) are

smooth functions f : U → F which can be seen as in the proof of (4.2.5). By 4.7 it
coincides with C(M)(U,F ) as vector space.

Obviously the identity is continuous from left to right. The space on the right-
hand side is as a projective limit of Banach spaces convenient and C(M)(U,F )
satisfies the uniform boundedness principle 6.1 with respect to the set of point
evaluations. Thus the identity from right to left is bounded. �

8.7. Theorem. Let E and F be Banach spaces and let U ⊆ E be open and convex.
Then we have

C{M}(U,F ) = lim←−
K,(rk)

CM(rk)(E ⊇ K,F )

as vector spaces with bornology. Here K runs through all compact convex subsets of
U ordered by inclusion and (rk) runs through all sequences of positive real numbers
for which ρk/rk → 0 for all ρ > 0.
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Proof. The proof is literally identical with the proof of 8.6, where we replace C(M)

with C{M} and use 4.8 instead of 4.7. �

Remark. Let us prove that the identity lim←−K,(rk)
CM(rk)(E ⊇ K,F )→ C{M}(U,F )

is bounded without using 6.1: Let B be a bounded set in lim←−K,(rk)
CM(rk)(E ⊇ K,F ),

i.e., for each compact K and each (rk) with ρk/rk → 0 for all ρ > 0 the set B is
bounded in CM(rk)(E ⊇ K,F ), i.e.,

sup{‖f |K‖(rk) : f ∈ B} <∞.

Since the elements of lim←−K,(rk)
CM(rk)(E ⊇ K,F ) are the infinite jets of smooth func-

tions, we may estimate |||f |K |||n,k by ‖f |K‖n+k+1 by (3.1.1), and so the sequence

ak := sup
{‖f |K‖k
k!Mk

: f ∈ B
}
<∞

satisfies supk ak/rk < ∞ for each (rk) as above. By [22, 9.2], these are the coeffi-
cients of a power series with positive radius of convergence. Thus ak/ρ

k is bounded
for some ρ > 0. That means that B is contained and bounded in CMρ (E ⊇ K,F ).

This also provides an independent proof of the completeness of C{M}(U,F ) and
of the regularity of the involved inductive limit (cf. 4.2 and 5.3).

8.8. Lemma. For convenient vector spaces E, F , G, and V ⊆ F c∞-open the flip of
variables induces an isomorphism L(E,C [M ](V,G)) ∼= C [M ](V,L(E,G)) as vector
spaces.

Proof. For f ∈ C [M ](V,L(E,G)) consider f̃(x) := evx ◦ f ∈ C [M ](V,G) for x ∈ E.

By the uniform boundedness principle 6.1 the linear mapping f̃ is bounded, since
evy ◦ f̃ = f(y) ∈ L(E,G) for y ∈ V .

If conversely ` ∈ L(E,C [M ](V,G)), we consider ˜̀(y) = evy ◦ ` ∈ L(E,G) for
y ∈ V . Since the bornology of L(E,G) (see 8.4) is generated by S := {evx : x ∈ E}
and since evx ◦ ˜̀ = `(x) ∈ C [M ](V,G), it follows that ˜̀ : V → L(E,G) is C [M ], by
Lemma 5.1 (and by composing with all iB : VB → V ). �

8.9. Lemma. Let E be a convenient vector space and U ⊆ E be c∞-open. By
λ[M ](U) we denote the c∞-closure of the linear subspace generated by {evx : x ∈ U}
in C [M ](U,R)′ and let δ : U → λ[M ](U) be given by x 7→ evx. Then λ[M ](U) is the
free convenient vector space over C [M ], i.e., for every convenient vector space G
the C [M ]-mapping δ induces a bornological isomorphism

L(λ[M ](U), G) ∼= C [M ](U,G).

Proof. The proof goes along the same lines as in [22, 23.6] and in [10, 5.1.1]. Note
first that λ[M ](U) is a convenient vector space since it is c∞-closed in the convenient
vector space C [M ](U,R)′. Moreover, δ is C [M ] by 5.1 (and by composing with all
iB : UB → U), since evh ◦ δ = h for all h ∈ C [M ](U,R), so δ∗ : L(λ[M ](U), G) →
C [M ](U,G) is a well-defined linear mapping. This mapping is injective, since each
bounded linear mapping λ[M ](U) → G is uniquely determined on δ(U) = {evx :
x ∈ U}. Let now f ∈ C [M ](U,G). Then ` ◦ f ∈ C [M ](U,R) for every ` ∈ G∗

and hence f̃ : C [M ](U,R)′ →
∏
G∗ R given by f̃(φ) = (φ(` ◦ f))`∈G∗ is a well-

defined bounded linear mapping. Since it maps evx to f̃(evx) = δ(f(x)), where
δ : G →

∏
G∗ R denotes the bornological embedding given by y 7→ (`(y))`∈G∗ , it
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induces a bounded linear mapping f̃ : λ[M ](U)→ G satisfying f̃ ◦ δ = f . Thus δ∗ is
a linear bijection. That it is a bornological isomorphism follows from the uniform
boundedness principles 6.1 and 8.4. �

8.10. Theorem (Canonical isomorphisms). Let M = (Mk) and N = (Nk) be
positive sequences. Let E, F be convenient vector spaces and let Wi be c∞-open
subsets in such. We have the following natural bornological isomorphisms:

(1) C(M)(W1, C
(N)(W2, F )) ∼= C(N)(W2, C

(M)(W1, F )),
(2) C{M}(W1, C

{N}(W2, F )) ∼= C{N}(W2, C
{M}(W1, F )),

(3) C(M)(W1, C
{N}(W2, F )) ∼= C{N}(W2, C

(M)(W1, F )),
(4) C [M ](W1, C

∞(W2, F )) ∼= C∞(W2, C
[M ](W1, F )).

(5) C [M ](W1, C
ω(W2, F )) ∼= Cω(W2, C

[M ](W1, F )).
(6) C [M ](W1, L(E,F )) ∼= L(E,C [M ](W1, F )).
(7) C [M ](W1, `

∞(X,F )) ∼= `∞(X,C [M ](W1, F )).

(8) C [M ](W1,Lipk(X,F )) ∼= Lipk(X,C [M ](W1, F )).

In (7) the space X is an `∞-space, i.e., a set together with a bornology induced
by a family of real valued functions on X, cf. [10, 1.2.4]. In (8) the space X is a

Lipk-space, cf. [10, 1.4.1]. The spaces `∞(X,F ) and Lipk(X,F ) are defined in [10,
3.6.1 and 4.4.1].

Proof. Let C1 and C2 denote any of the functions spaces mentioned above and X1

and X2 the corresponding domains. In order to show that the flip of coordinates
f 7→ f̃ , C1(X1, C2(X2, F )) → C2(X2, C1(X1, F )) is a well-defined bounded linear
mapping we have to show:

• f̃(x2) ∈ C1(X1, F ), which is obvious, since f̃(x2) = evx2
◦ f : X1 →

C2(X2, F )→ F .

• f̃ ∈ C2(X2, C1(X1, F )), which we will show below.

• f 7→ f̃ is bounded and linear, which follows by applying the appropriate
uniform boundedness theorems for C2 and C1 since f 7→ evx1

◦ evx2
◦ f̃ =

evx2 ◦ evx1 ◦ f is bounded and linear.

All occurring function spaces are convenient and satisfy the uniform S-boundedness
theorem, where S is the set of point evaluations:

C [M ] by 4.3 and 6.1.
C∞ by [22, 2.14.3 and 5.26]
Cω by [22, 11.11 and 11.12] or by 7.2 and 6.1,
L by [22, 2.14.3 and 5.18]
`∞ by [22, 2.15, 5.24, and 5.25] or [10, 3.6.1 and 3.6.6]

Lipk by [10, 4.4.2 and 4.4.7]

It remains to check that f̃ is of the appropriate class:

(1)–(4) For α ∈ {(M), {M}} and β ∈ {(N), {N},∞} we have

Cα(W1, C
β(W2, F )) ∼= L(λα(W1), Cβ(W2, F )) by 8.9

∼= Cβ(W2, L(λα(W1), F )) by 8.8, [22, 3.13.4 and 5.3]

∼= Cβ(W2, C
α(W1, F )) by 8.9.

(5) follows from (2), (3), and 7.2.
(6) is exactly Lemma 8.8.
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(7) follows from (6), using the free convenient vector spaces `1(X) over the
`∞-space X, see [10, 5.1.24 or 5.2.3], satisfying `∞(X,F ) ∼= L(`1(X), F ).

(8) follows from (6), using the free convenient vector spaces λk(X) over

the Lipk-space X, see [10, 5.1.24 or 5.2.3], satisfying Lipk(X,F ) ∼=
L(λk(X), F ). �

9. Manifolds of C [M ]-mappings

9.1. Hypothesis. In this section we assume that M = (Mk) is log-convex and
has moderate growth. In the Beurling case C [M ] = C(M) we also require that

Cω ⊆ C(M), or equivalently (see (8.1.4)), M
1/k
k →∞.

Note that M
1/k
k → ∞ implies Mk+1/Mk → ∞, since M

1/k
k is increasing, by

log-convexity (see 2.1), and thus Mk+1/Mk ≥ M
1/k
k ; this is needed for the C(M)

inverse function theorem (see 2.1 and 9.2).

9.2. Tools for C [M ]-analysis. We collect here results which are needed below (see
also 2.1):

(1) On open sets in Rn, C [M ]-vector fields have C [M ]-flows, see [17] and [37].
(2) Between Banach spaces, the C [M ] implicit function theorem holds. This is

essentially due to [36], but in [36] only the Roumieu case is treated and the
C{M}-conditions are global. So we shall indicate shortly how to obtain the
result we need:

Theorem. Let M = (Mk) be log-convex. In the Beurling case C [M ] = C(M) we
also assume Mk+1/Mk → ∞. Let E, F be Banach spaces, U ⊆ E, V ⊆ F open,
and f : U → V a C∞-diffeomorphism. We have:

(3) Let K ⊆ U be compact. If f ∈ C [M ]
K (U,F ) then f−1 ∈ C [M ]

f(K)(V,E).

(4) If f ∈ C [M ](U,F ) then f−1 ∈ C [M ](V,E).

Proof. By (4.2.5), (3) implies (4). The proof of [36, Thm. 2] with small obvious
modifications provides a proof of (3) in the Roumieu case (see also [33, 3.4.5]).

For the Beurling case let f ∈ C(M)
K (U,F ) and

Lk :=
1

k!
sup
x∈K
‖f (k)(x)‖Lk(E,F ).

Then L�M and since Mk+1/Mk →∞ there exists a log-convex sequence N = (Nk)
satisfying Nk+1/Nk → ∞ and such that L ≤ N �M by [15, Lemma 6]. Thus,

f ∈ C{N}K (U,F ) and, by the Roumieu case, f−1 ∈ C{N}f(K)(V,E). Since N �M , we

have f−1 ∈ C(M)
f(K)(V,E), by Proposition 8.1. �

The C [M ] implicit function theorem follows in the standard way.

9.3. C [M ]-manifolds. A C [M ]-manifold is a smooth manifold such that all chart
changings are C [M ]-mappings. They will be considered with the topology induced
by the c∞-topology on the charts. Likewise for C [M ]-bundles and C [M ] Lie groups.

A mapping between C [M ]-manifolds is C [M ], iff it maps C [M ]-plots (i.e., C [M ]-
mappings from open sets (or unit balls) of Banach spaces into the domain manifold)
to such.
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Note that any finite dimensional (always assumed paracompact) C∞-manifold
admits a C∞-diffeomorphic real analytic structure thus also a C [M ]-structure.

Maybe, any finite dimensional C [M ]-manifold admits a C [M ]-diffeomorphic real
analytic structure. This would follow from:

Conjecture. Let X be a finite dimensional real analytic manifold. Consider the
space C [M ](X,R) of all C [M ]-functions on X, equipped with the (obvious) Whitney
C [M ]-topology. Then Cω(X,R) is dense in C [M ](X,R).

This conjecture is the analogue of [12, Proposition 8]. It was proved in the
non-quasianalytic Beurling case C(M) for X open in Rn by [27].

The proofs of the following four results are similar to the proofs given in [25,
Section 5], using other analytical tools. For the convenience of the reader, we give
full proofs here, sometimes with more details.

9.4. Spaces of C [M ]-sections. Let p : E → B be a C [M ] vector bundle (possibly
infinite dimensional). The space C [M ](B ← E) of all C [M ]-sections is a convenient
vector space with the structure induced by

C [M ](B ← E)→
∏
α

C [M ](uα(Uα), V )

s 7→ pr2 ◦ψα ◦ s ◦u−1
α

where B ⊇ Uα −uα→ uα(Uα) ⊆ W is a C [M ]-atlas for B which we assume to be
modeled on a convenient vector space W , and where ψα : E|Uα → Uα × V form a
vector bundle atlas over charts Uα of B.

Lemma. Assume Hypothesis 9.1. Let D be the open unit ball in a Banach space.
A mapping c : D → C [M ](B ← E) is a C [M ]-plot if and only if c∧ : D ×B → E is
C [M ].

Proof. By the description of the structure on C [M ](B ← E) we may assume by
5.1 that B is c∞-open in a convenient vector space W and that E = B × V . Then
we have C [M ](B ← B × V ) ∼= C [M ](B, V ). Thus the statement follows from the
exponential law 5.2. �

Let U ⊆ E be an open neighborhood of s(B) for a section s and let q : F → B
be another vector bundle. The set C [M ](B ← U) of all C [M ]-sections s′ : B → E
with s′(B) ⊂ U is c∞-open in the convenient vector space C [M ](B ← E) if B is
compact and thus finite dimensional, since then it is open in the coarser compact-
open topology. An immediate consequence of the lemma is the following: If U ⊆ E
is an open neighborhood of s(B) for a section s and if f : U → F is a fiber respecting
C [M ]-mapping where F → B is another vector bundle, then f∗ : C [M ](B ← U) →
C [M ](B ← F ) is C [M ] on the open neighborhood C [M ](B ← U) of s in C [M ](B ←
E). We have (d(f∗)(s)v)x = d(f |U∩Ex)(s(x))(v(x)).

9.5. Theorem. Assume Hypothesis 9.1. Let A and B be finite dimensional C [M ]-
manifolds with A compact and B equipped with a C [M ] Riemann metric. Then
the space C [M ](A,B) of all C [M ]-mappings A→ B is a C [M ]-manifold modeled on
convenient vector spaces C [M ](A ← f∗TB) of C [M ]-sections of pullback bundles
along f : A → B. Moreover, a mapping c : D → C [M ](A,B) is a C [M ]-plot if and
only if c∧ : D ×A→ B is C [M ].
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If the C [M ]-structure on B is induced by a real analytic structure then there
exists a real analytic Riemann metric which in turn is C [M ].

Proof. C [M ]-vector fields have C [M ]-flows by 9.2; applying this to the geodesic
spray we get the C [M ] exponential mapping exp : TB ⊇ U → B of the Riemann
metric, defined on a suitable open neighborhood of the zero section. We may
assume that U is chosen in such a way that (πB , exp) : U → B × B is a C [M ]-
diffeomorphism onto an open neighborhood V of the diagonal, by the C [M ] inverse
function theorem, see 9.2.

For f ∈ C [M ](A,B) we consider the pullback vector bundle

A× TB A×B TB? _oo f∗TB
π∗Bf //

f∗πB
��

TB

πB

��
A

f // B

Then the convenient space of sections C [M ](A← f∗TB) is canonically isomorphic
to the space C [M ](A, TB)f := {h ∈ C [M ](A, TB) : πB ◦h = f} via s 7→ (π∗Bf) ◦ s
and (IdA, h)← h. Now let

Uf := {g ∈ C [M ](A,B) : (f(x), g(x)) ∈ V for all x ∈ A},

uf : Uf → C [M ](A← f∗TB),

uf (g)(x) = (x, exp−1
f(x)(g(x))) = (x, ((πB , exp)−1 ◦(f, g))(x)).

Then uf : Uf → {s ∈ C [M ](A← f∗TB) : s(A) ⊆ f∗U = (π∗Bf)−1(U)} is a bijection

with inverse u−1
f (s) = exp ◦(π∗Bf) ◦ s, where we view U → B as a fiber bundle. The

set uf (Uf ) is c∞-open in C [M ](A← f∗TB) for the topology described above in 9.4

since A is compact and the push forward uf is C [M ] since it respects C [M ]-plots by
Lemma 9.4.

Now we consider the atlas (Uf , uf )f∈C[M](A,B) for C [M ](A,B). Its chart change

mappings are given for s ∈ ug(Uf ∩ Ug) ⊆ C [M ](A← g∗TB) by

(uf ◦u−1
g )(s) = (IdA, (πB , exp)−1 ◦(f, exp ◦(π∗Bg) ◦ s))

= (τ−1
f ◦ τg)∗(s),

where τg(x, Yg(x)) := (x, expg(x)(Yg(x))) is a C [M ]-diffeomorphism τg : g∗TB ⊇
g∗U → (g× IdB)−1(V ) ⊆ A×B which is fiber respecting over A. The chart change
uf ◦u−1

g = (τ−1
f ◦ τg)∗ is defined on an open subset and it is also C [M ] since it

respects C [M ]-plots by Lemma 9.4.
Finally for the topology on C [M ](A,B) we take the identification topology from

this atlas (with the c∞-topologies on the modeling spaces C [M ](A← f∗TB)), which
is obviously finer than the compact-open topology and thus Hausdorff.

The equation uf ◦u−1
g = (τ−1

f ◦ τg)∗ shows that the C [M ]-structure does not

depend on the choice of the C [M ] Riemannian metric on B.
The statement on C [M ]-plots follows from Lemma 9.4. �

9.6. Corollary. Assume Hypothesis 9.1. Let A1, A2 and B be finite dimensional
C [M ]-manifolds with A1 and A2 compact. Then composition

C [M ](A2, B)× C [M ](A1, A2)→ C [M ](A1, B), (f, g) 7→ f ◦ g
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is C [M ].

Proof. Composition maps C [M ]-plots to C [M ]-plots, so it is C [M ]. �

9.7. Example. The result in 9.6 is best possible in the following sense: If N = (Nk)
is another weakly log-convex sequence such that C [N ] ( C [M ] (for { } this is
equivalent to inf(Nk/Mk)1/k = 0 and sup(Nk/Mk)1/k <∞) then composition

C [M ](S1,R)× C [M ](S1, S1)→ C [M ](S1,R), (f, g) 7→ f ◦ g

is not C [N ] with respect to the canonical real analytic manifold structures.
Namely, there exists f ∈ C [M ](S1,R) \C [N ](S1,R). We consider f as a periodic

function R→ R. The universal covering space of C [M ](S1, S1) consists of all 2πZ-
equivariant mappings in C [M ](R,R), namely the space of all g+IdR for 2π-periodic
g ∈ C [M ]. Thus C [M ](S1, S1) is a real analytic manifold and t 7→ (x 7→ x + t)
induces a real analytic curve c in C [M ](S1, S1). But f∗ ◦ c is not C(N) (resp. C{N})
since:

(∂kt |t=0(f∗ ◦ c)(t))(x)

k!ρkNk
=
∂kt |t=0f(x+ t)

k!ρkNk
=
f (k)(x)

k!ρkNk

which is unbounded in k for x in a suitable compact set and for some (resp. all)
ρ > 0, since f /∈ C(N) (resp. f /∈ C{N}).

9.8. Theorem. Assume Hypothesis 9.1. Let A be a compact (thus finite dimen-

sional) C [M ]-manifold. Then the group Diff [M ](A) of all C [M ]-diffeomorphisms of A
is an open subset of the C [M ]-manifold C [M ](A,A). Moreover, it is a C [M ]-regular
C [M ] Lie group: Inversion and composition are C [M ]. Its Lie algebra consists of all
C [M ]-vector fields on A, with the negative of the usual bracket as Lie bracket. The
exponential mapping is C [M ]. It is not surjective onto any neighborhood of IdA.

Following [23], see also [22, 38.4], a C [M ]-Lie group G with Lie algebra g = TeG
is called C [M ]-regular if the following holds:

• For each C [M ]-curve X ∈ C [M ](R, g) there exists a C [M ]-curve g ∈
C [M ](R, G) whose right logarithmic derivative is X, i.e.,{

g(0) = e

∂tg(t) = Te(µ
g(t))X(t) = X(t).g(t)

The curve g is uniquely determined by its initial value g(0), if it exists.
• Put evolrG(X) = g(1) where g is the unique solution required above. Then

evolrG : C [M ](R, g)→ G is required to be C [M ] also.

Proof. The group Diff [M ](A) is c∞-open in C [M ](A,A) since the C∞-diffeomor-

phism group Diff(A) is c∞-open in C∞(A,A) by [22, 43.1] and since Diff [M ](A) =

Diff(A) ∩ C [M ](A,A) by 9.2. So Diff [M ](A) is a C [M ]-manifold and composition
is C [M ] by 9.5 and 9.6. To show that inversion is C [M ] let c be a C [M ]-plot in

Diff [M ](A). By 9.5 the mapping c∧ : D ×A→ A is C [M ] and (inv ◦ c)∧ : D ×A→
A satisfies the Banach manifold implicit equation c∧(t, (inv ◦ c)∧(t, x)) = x for
x ∈ A. By the Banach C [M ] implicit function theorem 9.2 the mapping (inv ◦ c)∧
is locally C [M ] and thus C [M ]. By 9.5 again, inv ◦ c is a C [M ]-plot in Diff [M ](A).

So inv : Diff [M ](A) → Diff [M ](A) is C [M ]. The Lie algebra of Diff [M ](A) is the
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convenient vector space of all C [M ]-vector fields on A, with the negative of the
usual Lie bracket (compare with the proof of [22, 43.1]).

To show that Diff [M ](A) is a C [M ]-regular Lie group, we choose a C [M ]-plot in
the space of C [M ]-curves in the Lie algebra of all C [M ] vector fields on A, c : D →
C [M ](R, C [M ](A ← TA)). By Lemma 9.4 the curve c corresponds to a (D × R)-
time-dependent C [M ] vector field c∧∧ : D × R×A→ TA. Since C [M ]-vector fields

have C [M ]-flows and since A is compact, evolr(c∧(s))(t) = Fl
c∧(s)
t is C [M ] in all

variables by 9.2. Thus Diff [M ](A) is a C [M ]-regular C [M ] Lie group.
The exponential mapping is evolr applied to constant curves in the Lie algebra,

i.e., it consists of flows of autonomous C [M ] vector fields. That the exponential
mapping is not surjective onto any C [M ]-neighborhood of the identity follows from
[22, 43.5] for A = S1. This example can be embedded into any compact manifold,
see [11]. �
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31. C. Roumieu, Ultra-distributions définies sur Rn et sur certaines classes de variétés
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