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Exercise 1: Show that the number of all unlabelled ordered nonempty rooted trees with n vertices, where
every inner vertex has 2 or 3 branches, equals

1

n

ÿ

j

ˆ

n

j

˙ˆ

j

3j ´ n ` 1

˙

.

Hint: Find an equation for the generating function and use Langrange’s inversion formula.

Exercise 2: How many ways are there to (properly) parenthesize n pairwise non–commuting elements of a
monoid? And how does this number change if the n elements are pairwise commuting?

For example, consider 6 non–commuting elements x1, x2, . . . , x6. Two different ways to parenthesize them
properly would be

ppx2x5qppx1px4x6qqx3qq and ppx3px1px4x6qqqpx5x2qq.

However, these would be equivalent for commuting elements.

Hint: Translate parentheses to labelled binary trees: The outermost pair of parentheses corresponds to the
root, and the elements of the monoid correspond to the leaves.

Exercise 3: Develop a theory for weighted generating functions (for labelled and unlabelled species). I.e.,
let A be some species with weight function ω which assigns to every object A P A some element in a ring
R (for instance, R “ Z rys, the ring of polynomials in y with coefficients in Z). So the generating function
to be considered is

ÿ

APA

z}A} ¨ ω pAq .

How should we define the weight function for sums, products and composition of species, so that the
corresponding assertions for generating functions remain valid?

Exercise 4: Let f pm, nq be the number of all paths from p0, 0q to pm, nq in N ˆ N, where each single
steps is either p1, 0q (step to the right) or p0, 1q (step to the left) or p1, 1q (diagonal step upwards). Use the
language of species to show that

ÿ

m,ně0

f pm, nq xmyn “ 1

1 ´ x ´ y ´ x ¨ y
.

Exercise 5: Determine the number of all unlabelled ordered binary rooted trees with n vertices and k leaves.

Hint: Consider the generating function in 2 variables z and y, where every rooted tree W with n vertices
and k leaves is assigned ω pWq :“ znyk. The following picture shows these trees for n “ 1, 2, 3, 4:

1



n “ 1 :

n “ 2 :

n “ 3 :

n “ 4 :

. . . and these 7 trees, vertically reflected.

I.e., the first terms of the generating function are:

T pz, yq :“
ÿ

W

ω pWq “ z ¨ y ` z2 ¨ 2y ` z3
´

y2 ` 4y
¯

` z4
´

6y2 ` 8y
¯

` ¨ ¨ ¨

Find an equation for this generating function T, from which the series expansion can be derived.

Exercise 6: Determine the number of all labelled unordered rooted trees with n vertices and k leaves.

Hint: Consider the exponential generating function in 2 variables z and y (as in Exercise 5) and use La-
grange’s inversion formula.

Exercise 7: Prove Cayley’s formula (the number of labelled trees on n vertices equals nn´2) as follows:
Take a labelled tree on n vertices and tag two vertices S and E. View S and E as the starting point and
ending point of the unique path p connecting S and E in the tree. Now orient all edges belonging to p
“from S to E”, and all edges not belonging to p “towards p”. Now travel along p from S to E and write
down the labels of the vertices: Whenever a new maximal label is encountered, close a cycle (by inserting
an oriented edge from the vertex before this new maximum to the start of the “current cycle”) and start a
new cycle. Interpret the resulting directed graph as a function rns Ñ rns (i.e., a directed edge from a to b
indicates that the function maps a to b).

Exercise 8: Show that the number of all graphs on n vertices, m edges and k components equals the
coefficient of unαmβk{n! in

˜

ÿ

ně0

p1 ` αqpn
2q un

n!

¸β

.

Hint: Find a connection between the generating function of all labelled graphs (weight ω pGq :“ u|VpGq|α|EpGq|)
and the generating function of all connected labelled graphs.
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Exercise 9: Show that the number of labelled unicyclic graphs (i.e., connected graphs with exactly one
cycle) on n vertices equals

1

2

n
ÿ

j“3

ˆ

n

j

˙

j! nn´1´j.

Hint: Find a representation as a composition of species.

Exercise 10: Let T puq “ ř

ně0 pn ` 1qn´1 un{n!. Prove the identity

T j puq
1 ´ uT puq “

ÿ

lě0

pl ` jql ul

l!
.

Hint: For a bijective proof consider the species W of labelled trees, where the vertex with the largest label
(i.e.: n, if the tree has n vertices) is tagged as the root, but this label is erased, and the root does not
contribute to the size of the tree (i.e: if t has n vertices (including the root), then we have }t}W “ n ´ 1):
Obviously, T “ GFW .

Now consider functions f : rls Ñ rl ` js. Visualize such function f as a directed graph with vertex set rl ` js
and directed edges px, f pxqq. The following graphic illlustrates this for the case l “ 20, j “ 2 and

p f pnqql
n“1 “ p2, 6, 2, 5, 2, 7, 8, 5, 4, 4, 7, 21, 21, 18, 16, 18, 22, 15, 15, 15q :

1

2

3

4

56

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

The components of this graph are rooted trees or unicyclic graphs; all vertices in rl ` js z rls appear as roots
of corresponding trees.

Exercise 11: The derivative A1 of a labelled species A is defined as follows: Objects of species A1 with size
n ´ 1 are objects of A with size n, whose atoms are numbered from 1 to n ´ 1 (not from 1 to n), such that
there is one atom without a label. A typical element of Sequences1 is

p3, 1, 2, 5, ˝, 4q ,

where ˝ indicates the unlabelled atom.

Show: The generating function of A1 is precisely the derivative of the generating function of A. Moreover,
show:

1. pA ` Bq1 “ A1` B1.
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2. pA ‹ Bq1 “ A1‹ B ` B1‹ A.

3. pA ˝ Bq1 “
`

A1˝ B
˘

‹ B1.

These equations are to be understood as size–preserving bijections.

Exercise 12: Show the following identities for labelled species:

1. oPar1 “ oPar2 ‹ Sets, where oPar denotes the species of ordered set partitions (i.e., the order of the
blocks of the partitions matters).

2. Polyp1 “ Sequences pAtomq ‹ Sequences p2Atomq , where Polyp denotes the species

Cycles
`

Sequencesě1

˘

;

i.e., an object of Polyp is a cycle, where there is a nonempty sequence attached to each atom of the
cycle.

Exercise 13: Let A be the (labelled) species of (unordered) rooted trees, U the (labelled) species of trees
(without root) and F the (labelled) species of rooted forests. Show the following equations:

1. A1 “ F ‹ Sequences pAq,
2. U2 “ F ‹ A1,

3. A2 “
`

A1
˘2 `

`

A1
˘2 ‹ Sequences pAq.

Exercise 14: Compute all derivatives of Sets2 and of Sequences.

Exercise 15: How many different necklaces of n pearls in k colours are there? (This should be understood “as
in real life”, where rotations and reflections of necklaces are considered equal; in contrast to the presentation
in the lecture course.)

Exercise 16: Determine the cycle index series of the species Fixfree of permutations without fixed points.

Hint: Show the relation Sets ¨ Fixfree “ Permutations.

Exercise 17: Determine the cycle index series for the species “set partitions”.

Exercise 18: Given some arbitrary species A, show the formula

ZA1 px1, x2, . . . q “
ˆ B

Bx1
ZA

˙

px1, x2, . . . q .
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Exercise 19: Show:
8

ź

k“1

1

1 ´ xk
“ exp

˜

ÿ

ně1

1

n

xn

1 ´ xn

¸

.

Hint: Permutations “ Sets pCyclesq .

Exercise 20: Let P be some finite poset and f : P Ñ P an order–preserving bijection. Show that f ´1 is
also order–preserving.

Show that this is not true in general for infinite posets.

Exercise 21: (a) Find a (finite) poset P where

• the length of a longest chain is l,

• every element of P belongs to a chain of length l,

which nevertheless has a maximal chain of length ă l.

(b) Let P be a (finite) poset with connected Hasse–diagram, where the longest chain has length l (there
might be several longest chains). Moreover, assume that for all x, y P P such that y Í x (y covers x), x
and y belong to a chain of length l: Show that under this assumption all maximal chains have length l.

Exercise 22: Consider the “zigzag–poset” Zn with elements x1, x2, . . . , xn and cover relations

x2i´1 Ì x2i for i ě 1, 2i ď n and x2i Í x2i`1 for i ě 1, 2i ` 1 ď n

a) How many order ideals are there in Zn?

b) Let Wn pqq be the rank generating function of the lattice of order ideals J pZnq of Zn. For instance,
W0 pqq “ 1, W1 pqq “ 1 ` q, W2 pqq “ 1 ` q ` q2, W3 pqq “ 1 ` 2q ` q2 ` q3. Show:

W pq, zq :“
8
ÿ

n“0

Wn pqq zn “ 1 ` p1 ` qqz ´ q2z3

1 ´ p1 ` q ` q2qz2 ` q2z4
.

c) Let en be the number of all linear extensions of Zn. Show:

8
ÿ

n“0

en
zn

n!
“ tan z ` 1

cos z
.

Exercise 23: Let P, Q be graded posets, let r and s be the maximal ranks of P and Q, respectively, and let
F pP, qq and F pQ, qq be the corresponding rank generating functions. Show:

a) If r “ s (otherwise maximal chains would be of different lengths), then F pP ` Q, qq “ F pP, qq ` F pQ, qq.
b) F pP ‘ Q, qq “ F pP, qq ` qr`1F pQ, qq.
c) F pP ˆ Q, qq “ F pP, qq ¨ F pQ, qq.
d) F pP b Q, qq “ F

`

P, qs`1
˘

¨ F pQ, qq.
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Exercise 24: Let P, Q, R be posets. Find order isomorphisms for the following relations:

a) P ˆ pQ ` Rq » pP ˆ Qq ` pP ˆ Rq.
b) RP`Q » RP ˆ RQ.

c)
`

RQ
˘P » RQˆP.

Exercise 25: Let P be a finite poset and define GP pq, tq :“
ř

I q|I|tmpIq, where the summation range is the
set of all order ideals I of P, and where m pIq denotes the number of maximal elements of I. (For instance:
GP pq, 1q is the rank generating function of J pPq.)
a) Let Q be a poset with n elements. Show:

GPbQpq, tq “ GP

`

qn, q´n ¨
`

GQ pq, tq ´ 1
˘˘

,

where P b Q denotes the ordinal product.

b) Let P be a poset with p elements. Show:

GP

ˆ

q,
q ´ 1

q

˙

“ qp.

Exercise 26: Let L be a finite lattice. Show that the following three conditions are equivalent for all x, y P L:

(a) L is graded (i.e.: all maximal chains have in L the same length), and for the rank function rk of L there
holds

rk pxq ` rk pyq ě rk px ^ yq ` rk px _ yq .

(b) If y covers the element x ^ y, then x _ y covers the element x.

(c) If x and y both cover element x ^ y, then x _ y covers both elements x and y.

(A lattice L obeying one of these conditions is called semimodular.)

Hint: Employ an indirect proof for (c) ùñ (a): For the first assertion in (a), if there are intervals which
are not graded, then we may choose an interval ru, vs among them which is minimal with respect to set–
inclusion (i.e., every sub–interval is graded). Then there are two elements x1, x2 P ru, vs, which both cover
u, and the length of all maximal chains in rxi, vs is ℓi, such that ℓ1 ‰ ℓ2. Now apply (b) or (c) to x1, x2.

For the second assertion in (a), take a pair x, y P L with

rk pxq ` rk pyq ă rk px ^ yq ` rk px _ yq , (0.1)

such that the length of the interval rx ^ y, x _ ys is minimal, and under all such pairs, also rk pxq ` rk pyq
is minimal. Since it is impossible that both x and y cover x ^ y (why?), w.l.o.g. there is an element x1

with x ^ y ă x1 ă x. Show that X “ x, Y “ x1 _ y is a pair such that rk pXq ` rk pYq ă rk pX ^ Yq `
rk pX _ Yq, but where the length of the interval rX ^ Y, X _ Ys is less than the length of rx ^ y, x _ ys.

Exercise 27: Let L be a finite semimodular lattice. Show that the following two conditions are equivalent:

a) For all elements x, y, z P L with z P rx, ys (i.e., x ď y) there is an element u P rx, ys, such that z ^ u “ x
and z _ u “ y (u is a “complement” of z in the interval rx, ys).
b) L is atomic, i.e.: Every element can be represented as the supremum of atoms.

(A finite semimodular lattice obeying one of these conditions is called geometric.)
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Exercise 28: Let G be a (labelled) graph on n vertices. A partition of the vertex–set V pGq is called
connected if every block of the partition corresponds to a connected induced subgraph of G. The set of
all connected partitions is a subposet of the poset of partitions of V pGq, and thus a poset itself. (If G is
the complete graph, the poset of connected partitions of V pGq is the same as the poset of all partitions of
V pGq.)
Show that the poset of connected partitions of G is a geometric lattice.

Exercise 29: A lattice L is called modular if it is graded and for all x, y P L there holds:

rk pxq ` rk pyq “ rk px ^ yq ` rk px _ yq . (0.2)

(In particular, the lattice L pVq of subspaces of a finite vector space is modular.)

Show: A finite lattice L is modular if and only if for all x, y, z P L with x ď z there holds:

x _ py ^ zq “ px _ yq ^ z. (0.3)

Hint: Show that (0.3) implies the Diamond Property: The mappings

ψ : ry, y _ zs Ñ ry ^ z, zs , ψ pxq “ x ^ z

ϕ : ry ^ z, zs Ñ ry, y _ zs , ϕ pxq “ x _ y

are order preserving bijections with φ ˝ ψ “ id, see the following picture:

y_z

y^z

y z

ψ

ϕ

Exercise 30: Show: The lattice Πn of all partitions of an n–element set is not modular.

Exercise 31: Prove the “NBC–Theorem” (“Non–broken circuit theorem”) of G.–C. Rota: Let L be geometric
lattice. We assume that the atoms of L are labelled (with natural numbers 1, 2, . . . ). A set B of atoms is
called independent, if rk p

Ž

Bq “ |B|, otherwise it is called dependent. A set C of atoms is called a circuit,
if C is a minimal dependent set. A broken circuit is a set corresponding to a circuit from which its largest
atom (with respect to the labeling of atoms) was removed. A non–broken circuit is a set B of atoms which
does not contain a broken circuit. Then Rota’s Theorem states:

µ
`

0̂, x
˘

“ p´1qrkpxq ¨ #
´

non–broken circuits B with
ł

B “ x
¯

.
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Exercise 32: Show: The Möbius function µ px, yq of a semimodular lattice is alternating, i.e.

p´1qlength of rx,ys µ px, yq ě 0.

Moreover, show that the Möbius function of a geometric lattice is strictly alternating, i.e.

p´1qlength of rx,ys µ px, yq ą 0.

Hint: Use the following formula for the Möbius function of a lattice:
ÿ

x:x_a“1̂

µ
`

0̂, x
˘

“ 0 for all a P L. (0.4)

Show that if a is an atom, then there follows:

µ
`

0̂, 1̂
˘

“ ´
ÿ

x coatom
xğa

µ
`

0̂, x
˘

. (0.5)

Exercise 33: Let f , g : N Ñ R` be two functions (from the natural numbers to the nonnegative reals).
Which of the following rules is valid for n Ñ 8 (under which preconditions)?

O p f pnqq ` O pg pnqq “ O p f pnq ` g pnqq O p f pnqq ´ O pg pnqq “ O p f pnq ´ g pnqq

O p f pnqq ¨ O pg pnqq “ O p f pnq ¨ g pnqq O p f pnqq
O pg pnqq “ O p f pnq {g pnqq

O p f pnqqOpgpnqq “ O
´

f pnqgpnq
¯

exp pO p f pnqqq “ O pexp p f pnqqq
b

O p f pnqq “ O

ˆ

b

f pnq
˙

g pO p f pnqqq “ O pg f pnqq

e

f pnq`Opgpnqq “ e

f pnq p1 ` O pg pnqqq log p f pnq ` g pnqq “ log p f pnqq
` O pg pnq { f pnqq .

(The “equations” should be interpreted as follows: O p f pnqq ` O pg pnqq is the class of all functions of the
form f ‹ pnq ` g‹ pnq, where f ‹ pnq “ O p f pnqq and g‹ pnq “ O pg pnqq; the first “equation” means, that
this class is contained in the class O p f pnq ` g pnqq.)

Exercise 34: Same question as in the preceding exercise, where O p.q is replaced by o p.q.

Exercise 35: Let f1, f2, g1, g2 be functions N Ñ C, such that f1 pnq „ f2 pnq and g1 pnq „ g2 pnq for
n Ñ 8. Which of the following rules are valid for n Ñ 8 (under which preconditions)?

f1 pnq ` g1 pnq „ f2 pnq ` g2 pnq f1 pnq ´ g1 pnq „ f2 pnq ´ g2 pnq

f1 pnq ¨ g1 pnq „ f2 pnq ¨ g2 pnq f1 pnq
g1 pnq „ f2 pnq

g2 pnq
f1 pnqg

1 pnq „ f2 pnqg2pnq exp p f1 pnqq „ exp p f2 pnqqq
b

f1 pnq „
b

f2 pnq g1 p f1 pnqq „ g2 p f2 pnqq
log p f1 pnqq „ log p f2 pnqqq .
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Exercise 36: Let f , g be complex functions which are analytic on some given domain. Which of the following
rules are valid (under which preconditions)?

Sing p f ˘ gq Ď Sing p f q Y Sing pgq Sing p f ¨ gq Ď Sing p f q Y Sing pgq
Sing p f {gq Ď Sing p f q Y Sing pgq Y Null pgq Sing p f ˝ gq Ď Sing pgq Y gp´1q pSing p f qq

Sing
´

a

f
¯

Ď Sing p f q Y Null p f q Sing plog f q Ď Sing p f q Y Null p f q

Sing
´

f p´1q
¯

Ď f pSing p f qq Y f
`

Null
`

f 1
˘˘

Here, Sing p f q denotes the set of singular points of f , and Null p f q denotes the set of zeroes of f .

Exercise 37: Let p pnq be the number of (integer) partitions of n. We know that

8
ÿ

n“0

p pnq zn “
8

ź

i“1

1

1 ´ zi
.

What are the (dominant) singular points of this generating function? What does this imply for the asymptotic
behaviour of p pnq for n Ñ 8?

Exercise 38: Let wn be the number of possibilities of paying an amount of n Euro using 1–Euro–coins,
2–Euro–coins and 5–Euro–notes (the order of the coins and notes is irrelevant).

1. Determine the generating function
ř

ně0 wnzn.

2. Determine the asymptotic behaviour of wn for n Ñ 8.

Exercise 39: Let Dn,k be the number of permutations of rns, whose disjoint cycle decomposition does not
contain any cycle of length ď k. (So Dn,1 is the number of fixed–point–free permutations of rns.)

1. Show:
ÿ

ně0

Dn,k

n!
zn “ e

´z´ z2

2 ´¨¨¨´ zk

k

1 ´ z
.

2. For k fixed, what is the asymptotic behaviour of Dn,k for n Ñ 8?

Exercise 40: Let wn,k be the number of possibilities of paying an amount of n Euro using 1–Euro–coins,
2–Euro–coins and 5–Euro–notes, where exactly k coins or notes are used (again, the order of the coins and
notes is irrelevant).

1. Determine the generating function
ř

n,kě0 wn,kzntk.

2. If we assume that all possibilities which are enumerated by wn “ ř

k wn,k have the same probability:
What is the asymptotic behaviour of the expected value for the number of coins and notes which are
used to pay an amount of n Euro, for n Ñ 8?
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Exercise 41: Let Rn be the number of possibilities of (completely) tiling a 2 ˆ n rectangle by 1 ˆ 1 squares
and 1 ˆ 2 rectangles (dominoes).

1. Determine the generating function
ř

ně0 Rnzn.

2. Determine the asymptotic behaviour of Rn for n Ñ 8?

Hint: The fact that the dominant singularity can not be calculated explicitly is not an obstacle. One has
to continue to calculate with the dominant singularity symbolically.

Exercise 42: Let p pn, kq be the number of all (integer) partitions of n with at most k summands. Show:

ÿ

ně0

p pn, kq zn “ 1

p1 ´ zqp1 ´ z2q ¨ ¨ ¨ p1 ´ zkq .

Determine the asymptotic behaviour of ppn, kq for fixed k and n Ñ 8.

Exercise 43: The exponential generating function of the Bernoulli numbers bn is

ÿ

ně0

bnzn “ z

e

z ´ 1
.

Determine the asymptotic behaviour of bn for Ñ 8.

Exercise 44: The fraction 1
Γpzq

is an entire function with zeroes 0, ´1, ´2, . . . . Show Weierstraß’ product

representation:

1

Γ psq “ seγs
8

ź

n“1

´

1 ` s

n

¯

e

´s{n,

where γ denotes Eulers constant
γ “ lim

nÑ8
pHn ´ log nq

and

Hn “
n

ÿ

j“1

1

j

denotes the n–th harmonic number.

Exercise 45: Show the reflection formula for the gamma function:

Γ pzq Γ p1 ´ zq “ π

sin πz
. (0.6)

Hint: Use the product representation of the sine:

sin z “ z
8

ź

n“1

ˆ

1 ´ z2

n2π2

˙

. (0.7)
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Exercise 46: Show the duplication formula for the gamma function:

Γ pzq Γ

ˆ

z ` 1

2

˙

“ 21´2zπ
1
2 Γ p2zq

and its generalisation
m

ź

j“0

Γ

ˆ

z ` j

m

˙

“ m
1
2 ´mz p2πq

m´1
2 Γ pmzq .

Exercise 47: Show using Stirling’s Formula for the Γ–Function

ˆ

n ` α ´ 1

n

˙

“ nα´1

Γ pαq

ˆ

1 ` O

ˆ

1

n

˙˙

Hint: Here is Stirling’s Formula:

Γ ps ` 1q „ ss
e

´s
?

2πs

ˆ

1 ` O

ˆ

1

s

˙˙

.

Exercise 48: AMotzkin path is a lattice path, where every step is of the form p1, 0q, p1, 1q, p1, 1q (horizontal,
up– and down–steps), which starts at the origin, returns to the x–axis and never goes below the x–axis.
Let Mn be the number of all Motzkin paths of length (i.e., number of steps) n. Show that the generating
function for Motzkin paths is given by

ÿ

ně0

Mnzn “ 1 ´ z ´
?

1 ´ 2z ´ 3z2

2z2
.

Derive an explizit formula for Mn. Use the generating function to determine the asymptotic behaviour of
Mn for n Ñ 8.

Exercise 49: A Schröder path is a lattice path consisting of steps p2, 0q, p1, 1q and p1, ´1q (i.e., double
horizontal, upward and downward steps) which starts at the origin, returns to the x–axis but never falls
below the x–axis. If we assume that all Schröder paths of length n have the same probability: What is the
asymptotics of the expected value of the number of steps for a Schröder path of length n for n Ñ 8?

Exercise 50: Consider the number of cycles in the disjoint cycle decomposition of permutations of rns on
average: What is the asymptotics for this average for n Ñ 8?

Exercise 51: Let Hn “ řn
j“1 j´1 be the n–th harmonic number. Show that

ÿ

ně0

Hnzn “ 1

1 ´ z
log

1

1 ´ z
,

and use this result together with singularity analysis to obtain an asymptotic expansion of Hn for n Ñ 8.
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Exercise 52: Let un be the number of permutations of rns, which only have cycles of odd length in their
decomposition into disjoint cycles. Determine the asymptotic behaviour of un for n Ñ 8.

Hint: Observe that the generating function is analytic in a “Double–Delta–Domain” (i.e., in a disk with
two “dents” at the two singularities), so we have two contributions according to the Transfer Theorem.

Exercise 53: Determine the asymptotic behaviour of expected value and variance of the number of connected
components of 2–regular labelled graphs with n vertices for n Ñ 8.

Hint: Use the following additional information:

Definition 0.0.1. A function G pzq which is analytic at 0, has only non–negative coefficients and finite radius
of convergence ρ, is said to be of logarithmic type with parameters pκ, λq, where κ, λ P R, κ ‰ 0, if the following
conditions hold:

1. the number ρ is the unique singularity of G pzq on |z| “ ρ,

2. G pzq is continuable to a ∆–domain at ρ,

3. G pzq satisfies

G pzq “ κ ¨ log
1

1 ´ z
` λ ` O

˜

1

plog p1 ´ z{ρqq2

¸

as z Ñ ρ in ∆. (0.8)

Definition 0.0.2. The labelled construction

F “ Sets pGq

is called a (labelled) exp–log–scheme if the exponential generating function G pzq of G is of logarithmic type.

The unlabelled construction
F “ Multisets pGq

is called an (unlabelled) exp–log–scheme if the ordinary generating function G pzq of G is of logarithmic type,
with ρ ă 1.

In both cases (labelled and unlabelled), the quantities pκ, λq from (0.8) are called the parameters of the scheme.

Theorem 0.0.3 (Exp–log scheme). Consider an exp–log scheme with parameters pκ, λq.

Then we have

JznK G pzq “ κ

n ¨ ρn
¨
´

1 ` O
´

plog nq´2
¯¯

,

JznK F pzq “ e

λ`r0

Γ pκq ¨ nκ´1 ¨ ρ´n ¨
´

1 ` O
´

plog nq´2
¯¯

,

where r0 “ 0 in the labelled case and r0 “ ř

jě2
Gpρ jq

j in the unlabelled case.

If we consider the number X of G–components in a (randomly chosen) F–object of size n, then the expected
value of X is

κ ¨ plog n ´ Ψ pκqq ` λ ` r1 ` O
´

plog nq´1
¯

(where Ψ psq “ d

ds
Γ psq ),

where r1 “ 0 in the labelled case and r0 “ ř

jě2 G
`

ρj
˘

in the unlabelled case. The variance of X is O plog nq.
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Exercise 54: Determine the asymptotic behaviour of the sum

fn “
n

ÿ

k“0

ˆ

n

k

˙ˆ

2k

k

˙

for n Ñ 8.

Hint: Compute the generating function of these sums, i.e., multiply the above expression by znand sum
over all n ě 0; apply the binomial theorem for simplifying the double sum thus obtained.

Exercise 55: Denote by In the number of all involutions (an involution is a self–inverse bijection) on rns.

1. Show
ÿ

ně0

In
zn

n!
“ e

z` z2

2 .

2. Use the saddle point method to determine the asymptotic behaviour of In for n Ñ 8.

Exercise 56: The exponential generating function of the Bell–numbers Bn (Bn is the number of all partitions
of rns) is

ÿ

ně0

Bn
zn

n!
“ e

e

z´1.

Use the saddle point method to determine the asymptotic behaviour of Bn for n Ñ 8.

Exercise 57: Determine the asymptotic behaviour of the sum

n
ÿ

k“0

ˆ

n

k

˙ p´1qk

k!

for n Ñ 8.

Hint: Determine the generating function for this sum!

Exercise 58: The saddle point method can also be used for the asymptotics of the Motzkin numbers Mn

(see exercise 48) for n Ñ 8:

Show

Mn “
r

z0
z ´

z ` 1 ` z´1
¯n

´
r

z2
z ´

z ` 1 ` z´1
¯n

and obtain a complex contour integral for Mn, which can be dealt with using the saddle point method.
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