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Abstract

The Korteweg-de Vries (KdV) equation is a nonlinear partial differential equation
that arises in various physical and mathematical contexts. The question of global
well-posedness in appropriate function spaces, ensuring the existence and uniqueness
of solutions, has been the subject of extensive research. In this thesis, we delve into
the work of Killip and Vişan [2018], who provided a proof of global well-posedness of
the KdV equation for initial conditions in the Sobolev space Hs(R) for s ≥ −1. In
the class of Hs(R) spaces, this result is sharp, in the sense that the KdV equation is
not globally well-posed for s < −1.

Zusammenfassung

Die Korteweg-de Vries (KdV) Gleichung ist eine nichtlineare partielle Differen-
tialgleichung, die in verschiedenen physikalischen und mathematischen Kontexten
auftritt. Die Frage der globalen Wohlgestelltheit in geeigneten Funktionenräumen,
die die Existenz und Eindeutigkeit von Lösungen sicherstellt, war Gegenstand um-
fangreicher Forschung. In dieser Arbeit behandeln wir die Arbeit von Killip and
Vişan [2018], die einen Beweis der globalen Wohlgestelltheit der KdV-Gleichung für
Anfangsbedingungen im Sobolev-Raum Hs(R) für s ≥ −1 lieferten. In der Klasse
der Hs(R)-Räume ist dieses Ergebnis scharf, in dem Sinne, dass die KdV-Gleichung
für s < −1 nicht global wohlgestellt ist.
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1 Introduction

The Korteweg-de Vries equation

∂tq + q′′′ − 6qq′ = 0 KdV (1)

is a prototypical example of the propagation of solitons. It was originally derived to
describe shallow water waves but has been used to model a wide variety of phenomena, such
as ion-acoustic waves in plasma or acoustic waves in a harmonic crystal [Wazwaz, 2009].
Even though it is a non-linear equation, it resembles linear dynamics in certain aspects,
and under certain conditions [Erdoğan et al., 2011]. As for every partial differential
equation, the question of local as well as global well-posedness in varying function spaces
is of great interest. Global well-posedness for the KdV with Schwartz initial conditions has
been known for a while now. For Hs(R), s ≥ −3/4 global well-posedness was established
by Colliander et al. [2001] and Guo [2009]. For s < −1 Molinet [2010] showed that global
well-posedness can not hold. In the cases s < −3/4 the solution map fails to be uniformly
continuous as proven by Christ et al. [2004]. This, however, does not prevent global
well-posedness for −1 ≤ s < −3/4, as the solution map might still be continuous. This is
what Killip and Vişan [2018] showed quite recently. We will review their proof, offering
supplementary information that was omitted.

Notation
We will use the notation f ′ solely for the derivative with respect to the spatial variable.

1.1 Proof Idea

Lax Pair

For the two operators

L(t) = −∂2
x + q(t, x) and A(t) = −4∂3

x + 3
(︁
∂xq(t, x) + q(t, x)∂x

)︁
we have that

[A,L] = −q′′′ + 6qq′,

and thus they form a Lax pair

d

dt
L = [A,L] ⇐⇒ q solves the KdV (1).

Now observe that if we define U as the solution to

d

dt
U = AU, U(0) = I
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then, as A is anti-self-adjoint (A∗ = −A), we have that U is unitary by

d

dt
U∗U = −U∗AU + U∗AU = 0.

So observing

d

dt
UL(0)U∗ = AUL(0)U∗ − UL(0)U∗A

= [A,UL(0)U∗]

we see that

L = UL(0)U∗.

For more details on this cf. Abraham and Marsden [2008].

Renormalized Fredholm Determinant

Unitarity of U suggests that the spectral properties of the Schrödinger operator L
are conserved under the flow of the KdV. One might want to consider something like
det
(︁
L+ κ2

)︁
to investigate and exploit these spectral properties, however, there is no

chance of existence for such an object. So we would like to normalize it in some way, say
using the resolvent of the free Schrödinger operator R0 = (−∂2

x + κ2)−1

det

(︃
L+ κ2

−∂2
x + κ2

)︃
⇝ det

(︃
1 +

q

−∂x + κ2

)︃
⇝ det

(︂
1 +

√︁
R0q

√︁
R0

)︂
.

Again, we run into the problem that this Fredholm determinant fails to exist, at least
for

√
R0q

√
R0 not trace class. So we use the renormalized Fredholm determinant (cf.

Simon [2005])

det
2
(1 +A) = det(1 +A) exp(−Tr(A))

which is well-defined on trace class operators and extends to Hilbert-Schmidt operators
via

− log det
2
(1 +A) =

∞∑︂
k=2

(−1)k

k
Tr
(︂
Ak
)︂
.

As we will see
√
R0q

√
R0 is Hilbert-Schmidt for q ∈ H−1(R) and the quantity

α(κ) = − log det
2

(︂
1 +

√︁
R0q

√︁
R0

)︂
=

∞∑︂
k=2

(−1)k

k
Tr
(︂(︁√︁

R0q
√︁

R0

)︁k)︂
is conserved under the flow of the KdV.
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Hamiltonian Flow

The idea is to then approximate the KdV flow by a family of commuting flows that are
easier to handle. Zakharov and Faddeev [1971] showed

α(κ) =
1

4κ3

∫︂
1

2
q(x)2 dx+

1

16κ5

∫︂ (︂1
2

(︁
q′(x)

)︁2
+ q(x)3

)︂
dx+O

(︁
κ−7

)︁
=

1

4κ3
P +

1

16κ5
HKdV +O

(︁
κ−7

)︁
,

where P is the momentum and HKdV is the Hamiltonian of the KdV. This suggests that
if we were to take the Hamiltonian

Hκ = −16κ5α(κ) + 4κ2P,

we may get a reasonable approximation for the KdV Hamiltonian for large κ.

Equicontinuity

As it turns out, α(κ) is not only conserved under the flows of both HKdV and Hκ, but it
also serves to bound the H−1

κ (R) norm of q, and it gives a fitting criterion on equicontinuity.
This will then allow us to upgrade local well-posedness to global well-posedness, and the
equicontinuity will help us transfer the well-posedness result from the Hκ flow to the
HKdV flow.

2 Preliminaries

Notation
We write

f ≲ g ⇐⇒ ∃ c > 0 : f ≤ cg,

f ≳ g ⇐⇒ ∃ c > 0 : f ≥ cg,

f ≈ g ⇐⇒ f ≲ g and f ≳ g.

If the implicit constant depends on further parameters, and this dependency is important,
we indicate this by a subscript.

2.1 Sobolev spaces and Fourier transform

We denote the Fourier transform of a function by Ff and its inverse by F−1f . For the
Fourier transform and its inverse we use the normalization

Ff(w) =
1√
2π

∫︂
f(x) exp(−iwx) dx ,

F−1f(x) =
1√
2π

∫︂
f(w) exp(iwx) dw .
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We use

⟨x⟩ =
(︁
4 + ∥x∥2

)︁ 1
2 and ⟨x⟩κ =

(︁
4κ2 + ∥x∥2

)︁ 1
2

to regard the Sobolev spaces Hs(R), Hs
κ(R) as completions of S(R) with respect to the

norms

∥f∥Hs(R) = ∥⟨ · ⟩sFf∥L2(R) and ∥f∥Hs
κ(R) = ∥⟨ · ⟩sκFf∥L2(R).

Remark 2.1
We have ⟨ · ⟩ ≈κ ⟨ · ⟩κ and therefore Hs(R) = Hs

1(R) ∼= Hs
κ(R). Furthermore, by taking

the L2(R) pairing on S(R) we have⃓⃓⃓
⟨f |g⟩L2(R)

⃓⃓⃓
=
⃓⃓⃓
⟨Ff |Fg⟩L2(R)

⃓⃓⃓
=
⃓⃓⃓⟨︁
⟨ · ⟩sκFf

⃓⃓
⟨ · ⟩−s

κ Fg
⟩︁
L2(R)

⃓⃓⃓
≤ ∥f∥Hs

κ(R)∥g∥H−s
κ (R).

So by extending this pairing, we can identify

H−s
κ (R) =

(︁
Hs

κ(R)
)︁∗
.

2.2 Hilbert-Schmidt and Trace Class operators

For a compact operator A the Schatten p-norm is defined as

∥A∥Jp =

(︃ ∞∑︂
n=1

|sn(A)|p
)︃ 1

p

, p ≥ 1,

where sn(A) are the singular values of A. The space of operators with ∥A∥Jp < ∞ is
called Schatten p-class Jp. The cases p = 1, 2 are called Trace Class and Hilbert-Schmidt
respectively. For trace class operators, we can define the Trace as

Tr(A) =
∞∑︂
n=1

⟨en|Aen⟩ ≤ ∥A∥J1 ,

where {en}n is an orthonormal basis.
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The Schatten p-classes work analogously to the ℓp spaces.

Lemma 2.2
We have that

∥ · ∥Jp ≤ ∥ · ∥Jq , p ≥ q

hence Jp ⊆ Jq for p ≥ q. For A ∈ Jp and B bounded we have that

1. ∥A∥ ≤ ∥A∥Jp = ∥A∗∥Jp.

2. AB,BA ∈ Jp with ∥AB∥Jp ≤ ∥A∥Jp∥B∥ and ∥BA∥Jp ≤ ∥B∥∥A∥Jp .

Lemma 2.3
For r−1 = p−1 + q−1 we have that A ∈ Jr iff there exists B ∈ Jp and C ∈ Jq such that
A = BC. In this case, we have ∥A∥Jr ≤ ∥B∥Jp∥C∥Jq . Furthermore, for A Hilbert-Schmidt
we have that

∥A∥2J2 = Tr(A∗A).

Remark 2.4
If p ∈ N and A ∈ Jp with bounded inverse, then A is trace class as Ap is trace class by
Lemma 2.3 and therefore A = ApA1−p is trace class by Lemma 2.2.

Remark 2.5
For B,C ∈ J2 we have that

|Tr(BC)| ≤ ∥B∥J2∥C∥J2 .

Lemma 2.6
For A trace class, B bounded we have that

Tr(AB) = Tr(BA).

In the case of operators on L2(R) we have further characterizations of Hilbert-Schmidt
operators.

Theorem 2.7 cf. Simon [2005]
An operator A is Hilbert-Schmidt iff

Af(x) =

∫︂
R
KA(x, y)f(y) dy

where KA ∈ L2(R2). In this case, we have

∥A∥2J2 = ∥KA∥2L2(R2) =

∫︂∫︂
|KA(x, y)|2 dx dy .
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Remark 2.8
For A,B ∈ J2 and f ∈ L∞(R) we have

KfA(x, y) = f(x)KA(x, y),

KAf (x, y) = KA(x, y)f(y) and

KAB(x, y) =

∫︂
KA(x, z)KB(z, y) dz .

Theorem 2.9 cf. Bernat [1972]
If A is trace class with KA continuous then we have

Tr(A) =

∫︂
KA(x, x) dx .

2.3 Differentiability

A function A : H1 → H2 is called Fréchet differentiable at f if there is a linear, bounded
operator dA(f) : H1 → H2 such that

∥A(f + g)−A(f)− dA(f)g∥
∥g∥

∥g∥→0−−−−→ 0.

The operator dA(f) is called the Fréchet derivative of A at f .

Remark 2.10
If we have a Fréchet differentiable A : Hs(R) → R then dA(f) ∈ (Hs(R))∗ and hence
there is a δA/δf ∈ H−s(R) such that

dA(f)(g) =

∫︂
δA

δf
(x)g(x) dx .

We call δA/δf the functional derivative of A at f .

Lemma 2.11
If A is Fréchet differentiable at f , then A is directional differentiable at f and

d

ds

⃓⃓
s=0

A(f + sg) = dA(f)(g).

Theorem 2.12 cf. Lang [2012]
Let A : H1 → H2 be continuously Fréchet differentiable in some neighborhood of f such
that dA(f) is invertible as a bounded operator. Then A is a local diffeomorphism at f .
Furthermore, if ⃦⃦

dA(f)−1
⃦⃦
∥dA(f)− dA(g)∥ <

1

2

for all g in an r-ball around f , then the size of the neighborhood on which A is a
diffeomorphism depends only on r.
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2.4 Hamiltonian Flow

For a symplectic Manifold (M,ω) a Poisson bracket is a map

{ · , · } : C∞(M)× C∞(M) → C∞(M).

Along with other very important properties, it obeys

X{F,G} = [XF , XG],

where

XA = { · , A}

is the Hamiltonian vector field of A. Meaning that if two functions Poisson commute, then
their Hamiltonian vector fields, and in extension their flows, commute as well. Another
important property is that G is constant along the flow of F iff {F,G} = 0. In our setting,
we will work with M = S(R) and the Poisson bracket is

{F,G}(q) =
∫︂

δF

δq

(︃
δG

δq

)︃′
,

where we have ∫︂
δF

δq

(︃
δH

δq

)︃′
= {F,H}(q)

= XH(F )(q)

= dF (q)
(︁
XH(q)

)︁
=

∫︂
δF

δq
XH(q)

i.e.,

XH(q) =

(︃
δH

δq

)︃′
.

Hence, for the flow of XH , denoted by FlHt , we have

∂tq(t) = ∂tFl
H
t (q) = XH

(︁
FlHt (q)

)︁
=

(︃
δH

δq(t)

)︃′

if we write q(t) = FlHt (q). If a PDE is of this particular form, we call H the associated
Hamiltonian. The exact details on this topic are not of importance to us, it mainly
provides us with convenient notation for flows. For more details on this topic cf. Abraham
et al. [2012], Lee [2012] or Arnold [2013].
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3 Diagonal Green’s function

As we have seen, the KdV is closely related to the Schrödinger operator, so let us first
investigate the Schrödinger operator

L = −∂2
x + q

with potentials

q ∈ Bδ = {q ∈ H−1(R) | ∥q∥H−1(R) ≤ δ}

for some δ > 0 sufficiently small. We want to describe the corresponding diagonal Green’s
function as well as possible. So let us first look at the case q = 0 and recall that the
resolvent

R0(κ) =
(︁
− ∂2

x + κ2
)︁−1

with κ > 0 has the integral kernel

G0(x, y;κ) =
1

2κ
exp

(︁
− κ|x− y|

)︁
,

as

R0(κ)f = F
(︃

1

( · )2 + κ2
F−1f

)︃
=

1√
2π

F
(︃

1

( · )2 + κ2

)︃
∗ f.

So the case q = 0 we already understand quite well, and we can use this to express the
resolvent of L in the general case. Assuming that all the objects exist we would have(︁

L+ κ2
)︁−1

=
(︂
R0(κ)

−1 + q
)︂−1

=
√︁
R0(κ)

(︂
1 +

√︁
R0(κ)q

√︁
R0(κ)

)︂−1√︁
R0(κ)

and the inverse we could express in terms of a series.

Lemma 3.1 cf. Reed and Simon [1975]
Let A be positive self-adjoint, β a symmetric quadratic form on Q(A), a < 1 and b ∈ R
such that

|β(f, f)| ≤ a⟨f |Af⟩+ b⟨f |f⟩,

then there exists a unique self-adjoint C with Q(C) = Q(A) and

⟨f |Cg⟩ = ⟨f |Ag⟩+ β(f, g).
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Proposition 3.2
For q ∈ H−1(R) and given the quadratic form

H1(R) → R

f ↦→
∫︂
R

⃓⃓
f ′(x)

⃓⃓2
+ q(x)|f(x)|2 dx

there exists an unique associated self-adjoint operator L. If in addition q ∈ Bδ for δ > 0
sufficiently small, then the resolvent of L is given by the series

R(q, κ) =
(︁
L+ κ2

)︁−1
=

∞∑︂
i=0

(−1)i
√︁

R0(κ)
(︂√︁

R0(κ)q
√︁
R0(κ)

)︂i√︁
R0(κ) (2)

for κ ≥ 1.

Notation
For better readability, we omit the dependence on extra parameters like q and κ whenever
the context permits.

Proof. We have for q ∈ S(R)⃦⃦⃦√︁
R0q

√︁
R0

⃦⃦⃦2
≤
⃦⃦⃦√︁

R0q
√︁
R0

⃦⃦⃦2
J2

(3)

= Tr
(︁√︁

R0qR0q
√︁

R0

)︁
= Tr(qR0qR0)

=

∫︂∫︂
q(x)G0(x, y)

2q(y) dx dy

=
1

κ

∫︂
q(x)

∫︂
1

4κ
exp(−2κ|x− y|)q(y) dy dx

=
1

κ

∫︂
q(x)R0(2κ)q(x) dx

=
1

κ

∫︂
q(x)F−1

(︂
⟨ · ⟩−2

κ Fq
)︂
(x) dx

=
1

κ

∫︂
⟨w⟩−2

κ |Fq(w)|2 dw =
1

κ
∥q∥2

H−1
κ (R),

and by density, it holds for all q ∈ H−1(R).
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Now note that with h =
√
R0

−1
f we have

⟨f |qf⟩L2(R) =
⟨︂√︁

R0h
⃓⃓⃓
q
√︁

R0h
⟩︂
L2(R)

=
⟨︂
h
⃓⃓⃓√︁

R0q
√︁

R0h
⟩︂
L2(R)

≤ κ−
1
2 ∥q∥H−1(R)∥h∥

2
L2(R)

= κ−
1
2 ∥q∥H−1(R)

⟨︁
f
⃓⃓
R−1

0 f
⟩︁
L2(R)

= κ−
1
2 ∥q∥H−1(R)

∫︂ ⃓⃓
f ′(x)

⃓⃓2
+ κ2|f(x)|2 dx .

So by Lemma 3.1 there exists a unique L such that

⟨f |Lf⟩L2(R) =

∫︂ ⃓⃓
f ′(x)

⃓⃓2
+ q(x)|f(x)|2 dx .

Moreover, Equation 3 shows that Equation 2 indeed converges for q ∈ Bδ, δ < 1 and
κ ≥ 1.

3.1 Regularity

We would like to know if the resolvent has an integral kernel, and what its properties are.
Specifically, we are interested in the diagonal of the integral kernel and its regularity.

Lemma 3.3
For q ∈ Bδ, δ > 0 sufficiently small and κ ≥ 1, the resolvent R admits a continuous
integral kernel G(x, y;κ, q).

Proof. First note that by Equation 3⃦⃦⃦√︁
R0

−1
(R−R0)

√︁
R0

−1
⃦⃦⃦
J2

=
⃦⃦⃦√︁

R0
−1

R
√︁
R0

−1
− 1
⃦⃦⃦
J2

≤
∞∑︂
i=1

⃦⃦⃦√︁
R0q

√︁
R0

⃦⃦⃦i
J2

< ∞

for q ∈ Bδ and δ sufficiently small. So on the one hand, we have

∥R−R0∥J2 ≤
⃦⃦⃦√︁

R0

⃦⃦⃦⃦⃦⃦√︁
R0

−1
(R−R0)

√︁
R0

−1
⃦⃦⃦
J2

⃦⃦⃦√︁
R0

⃦⃦⃦
< ∞

which shows that R does have an integral kernel G, while on the other hand, we have

∥G−G0∥H1(R)⊗H1(R) ≈
⃦⃦⃦√︁

R0
−1

(R−R0)
√︁

R0
−1
⃦⃦⃦
J2

< ∞,

from which we conclude that G is continuous.
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Proposition 3.4
The diagonal of the Green’s function G we denote by

g(x;κ, q) = G(x, x;κ, q).

If δ > 0 is sufficiently small and κ ≥ 1 then the maps

q ↦→ g − 1

2κ
and q ↦→ κ− 1

2g

are real analytic diffeomorphisms from Bδ into H1(R).

Proof. Since
√
R0 is essentially ⟨ · ⟩−1 on the Fourier side, it is continuous as a map on

the Schwartz space. So we may extend it to S(R)′ in the usual way, and we have⃓⃓⃓√︁
R0δx(f)

⃓⃓⃓
=
⃓⃓⃓
δx

(︂√︁
R0f

)︂⃓⃓⃓
≈
⃓⃓⃓
δx
(︁
F−1⟨ · ⟩−1Ff

)︁⃓⃓⃓
≲
∫︂ ⃓⃓⃓

⟨w⟩−1Ff(w)
⃓⃓⃓
dw

≲ ∥f∥L2(R)

i.e.,
√
R0δx ∈ L2(R). By continuity of G and Equation 2 we may write

g(x) = ⟨δx|Rδx⟩ (4)

=
1

2κ
+

∞∑︂
i=1

(−1)i
⟨︃√︁

R0δx

⃓⃓⃓⃓(︂√︁
R0q

√︁
R0

)︂i√︁
R0δx

⟩︃
L2(R)

.

Now let q ∈ Bδ, δ < 1/2 and κ ≥ 1 and observe that for all f ∈ S(R) we have⃓⃓⃓⃓∫︂
f(x)

(︃
g(x)− 1

2κ

)︃
dx

⃓⃓⃓⃓
= |Tr(f(R−R0))|

≤
∞∑︂
i=1

⃓⃓⃓⃓
Tr

(︃
f
√︁

R0

(︂√︁
R0q

√︁
R0

)︂i√︁
R0

)︃⃓⃓⃓⃓

=

∞∑︂
i=1

⃓⃓⃓⃓
Tr

(︃√︁
R0f

√︁
R0

(︂√︁
R0q

√︁
R0

)︂i)︃⃓⃓⃓⃓

≤
∞∑︂
i=1

⃦⃦⃦√︁
R0f

√︁
R0

⃦⃦⃦
J2

⃦⃦⃦√︁
R0q

√︁
R0

⃦⃦⃦i
J2

≤ 1√
κ
∥f∥H−1(R)

δ/
√
κ

1− δ/
√
κ

≤ 2δκ−1∥f∥H−1(R)

by Equation 2 and Equation 3.
11



Hence, g − 1/2κ is in H1(R) with⃦⃦⃦⃦
g − 1

2κ

⃦⃦⃦⃦
H1(R)

≤ 2δκ−1. (5)

This also shows the convergence of Equation 4 and thus q ↦→ g − 1/2κ is real analytic.
For f ∈ H−1(R) we have

0 =
d

ds

⃓⃓
s=0

(︁
R(q + sf)−1R(q + sf)

)︁
= fR(q) +R(q)−1 d

ds

⃓⃓
s=0

R(q + sf)

i.e.,

d

ds

⃓⃓
s=0

R(q + sf) = −R(q)fR(q)

Taking the diagonal of the corresponding integral kernels yields

dg(q)(f)(x) =
d

ds

⃓⃓
s=0

g(x, q + sf) = −
∫︂

G(x, y; q)f(y)G(y, x; q) dy . (6)

Specializing to q = 0 we obtain

dg(0) = −κ−1R0(2κ).

Using Equation 2 and Equation 3 we see that

∥dg(q)(f)− dg(0)(f)∥H1
κ(R)

≈
⃦⃦⃦√︁

R0
−1

RfR
√︁
R0

−1
−
√︁
R0

−1
R0fR0

√︁
R0

−1
⃦⃦⃦
J2

=

⃦⃦⃦⃦
⃦⃦ ∑︂
i ̸=0∨j ̸=0

(−1)i+j
(︁√︁

R0q
√︁

R0

)︁i√︁
R0f

√︁
R0

(︁√︁
R0q

√︁
R0

)︁j ⃦⃦⃦⃦⃦⃦
J2

≤
∑︂

i ̸=0∨j ̸=0

⃦⃦⃦√︁
R0q

√︁
R0

⃦⃦⃦i+j ⃦⃦⃦√︁
R0f

√︁
R0

⃦⃦⃦
J2

≲
1

κ
∥q∥H−1

κ (R)∥f∥H−1
κ (R)

i.e., we have

∥dg(0)− dg(q)∥H−1
κ (R)→H1

κ(R)
≲ κ−1∥q∥H−1

κ (R). (7)

Further, as
⃦⃦
R0(2κ)

−1
⃦⃦
H1

κ(R)→H−1
κ (R) = 1, we have

κ−1∥q∥H−1
κ (R) ≤ δ

⃦⃦⃦(︁
dg(0)

)︁−1
⃦⃦⃦−1

H1
κ(R)→H−1

κ (R)
. (8)

12



By Theorem 2.12 the map

q ↦→ g − 1

2κ

is a local diffeomorphism from Bδ into H1
κ(R) for some δ sufficiently small. Note that

Equation 7 and Equation 8 guarantee that we may choose δ independent of κ. By the
Sobolev embedding and Equation 5 we may choose δ even smaller to get

1

4κ
≤ g ≤ 3

4κ
(9)

for all q ∈ Bδ, which implies that q ↦→ κ − 1/2g is also real analytic. Using that
f ↦→ f/(1 + f) is a diffeomorphism from a neighborhood of 0 in H1(R) into H1(R) and
observing that

κ− 1

2g
= κ

2κ
(︁
g − 1/2κ

)︁
1 + 2κ

(︁
g − 1/2κ

)︁ ,
we have that q ↦→ κ− 1/2g is also a diffeomorphism.

Remark 3.5
We have the inherent symmetry that translating the potential q is equivalent to translating
the Green’s function

g(x+ h, q) = g(x, q( · + h)). (10)

Lemma 3.6
For q ∈ S(R) and a multi-index σ = (σ1, . . . , σl) we have

i∏︂
k=1

⃦⃦⃦
q(σk)

⃦⃦⃦
Hs(R)

≤
⃦⃦⃦
q(|σ|)

⃦⃦⃦
Hs(R)

∥q∥i−1
Hs(R).

Proof. We want to apply Hölder’s inequality in every factor of the product. So take
pk = |σ|

σk
, 1
pk

+ 1
qk

= 1 then⃦⃦⃦
q(σk)

⃦⃦⃦2
Hs(R)

=
⃦⃦⃦
⟨ · ⟩2s( · )2σk(Fq)2

⃦⃦⃦
L1(R)

≤
⃦⃦⃦⃦
( · )2σk

(︂
⟨ · ⟩2s(Fq)2

)︂ 1
pk

⃦⃦⃦⃦
Lpk (R)

⃦⃦⃦⃦(︂
⟨ · ⟩2s(Fq)2

)︂ 1
qk

⃦⃦⃦⃦
Lqk (R)

=
⃦⃦⃦
( · )2σkpk⟨ · ⟩2s(Fq)2

⃦⃦⃦ 1
pk

L1(R)

⃦⃦⃦
⟨ · ⟩2s(Fq)2

⃦⃦⃦ 1
qk

L1(R)

=
⃦⃦⃦
q(|σ|)

⃦⃦⃦ 2
pk

Hs(R)
∥q∥

2
qk

Hs(R).

The claim follows by taking the product over k.
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Proposition 3.7
If in addition to q ∈ Bδ with δ > 0 sufficiently small and κ ≥ 1 we have q ∈ S(R) then

g − 1

2κ
and κ− 1

2g

are also in S(R), and we have the bounds⃦⃦
g′
⃦⃦
Hs(R) ≲s ∥q∥Hs−1(R),⃦⃦

⟨ · ⟩sg′
⃦⃦
L2(R) ≲s ∥⟨ · ⟩sq∥H−1(R).

Proof. Using Equation 4 and Equation 10 we have for every s ∈ N

∂s
xg(x, q) =

ds

dhs
⃓⃓
h=0

g(x, q( · + h))

=
ds

dhs
⃓⃓
h=0

(︃
1

2κ
+

∞∑︂
i=1

(−1)i
⟨︃√︁

R0δx

⃓⃓⃓⃓(︂√︁
R0q( · + h)

√︁
R0

)︂i√︁
R0δx

⟩︃)︃

=

∞∑︂
i=1

(−1)i

⟨︄√︁
R0δx

⃓⃓⃓⃓
⃓⃓∑︂
|σ|=s

(︃
s

σ

)︃ i∏︂
k=1

(︂√︁
R0q

(σk)
√︁

R0

)︂√︁
R0δx

⟩︄

and thus for f ∈ S(R)

⃓⃓⃓⃓∫︂
∂s
xg(x)f(x) dx

⃓⃓⃓⃓
=

∞∑︂
i=1

⃓⃓⃓⃓
⃓⃓Tr
⎛⎝f
√︁
R0

∑︂
|σ|=s

(︃
s

σ

)︃ i∏︂
k=1

(︂√︁
R0q

(σk)
√︁

R0

)︂√︁
R0

⎞⎠⃓⃓⃓⃓⃓⃓
≤

∞∑︂
i=1

∑︂
|σ|=s

(︃
s

σ

)︃⃦⃦⃦√︁
R0f

√︁
R0

⃦⃦⃦
J2

i∏︂
k=1

⃦⃦⃦√︁
R0q

(σk)
√︁

R0

⃦⃦⃦
J2

≤ ∥f∥H−1
κ (R)

∞∑︂
i=1

∑︂
|σ|=s

(︃
s

σ

)︃ i∏︂
k=1

⃦⃦⃦
q(σk)

⃦⃦⃦
H−1

κ (R)
.

Applying Lemma 3.6 we get⃓⃓⃓⃓∫︂
∂s
xg(x)f(x) dx

⃓⃓⃓⃓
≤ ∥f∥H−1

κ (R)

∞∑︂
i=1

is
⃦⃦⃦
q(s)
⃦⃦⃦
H−1

κ (R)
δi−1

≲s ∥f∥H−1
κ (R)

⃦⃦⃦
q(s)
⃦⃦⃦
H−1

κ (R)

i.e., we verified the first bound

∥∂s
xg∥H1 ≲s

⃦⃦⃦
q(s)
⃦⃦⃦
H−1(R)

≲ ∥q∥Hs−1(R).
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For the second bound, we first need to verify that

⟨x⟩sR0 =

s∑︂
r=0

√︁
R0Ar,s

√︁
R0⟨x⟩r

where ∥Ar,s∥L2(R)→L2(R) ≲s 1 are bounded. For s = 0 this is trivially true and for the
induction step, we note the commutator relations

[⟨x⟩, R0] = R0IR0,

[⟨x⟩, I] = S

with I = −
(︃

x

⟨x⟩
∂x + ∂x

x

⟨x⟩

)︃
,

S = 2
x2

⟨x⟩2
.

Then we have

⟨x⟩s+1R0 = ⟨x⟩s(R0IR0 +R0⟨x⟩)

=
s∑︂

r=0

√︁
R0Ar,s

√︁
R0⟨x⟩rIR0 +

s∑︂
r=0

√︁
R0Ar,s

√︁
R0⟨x⟩r+1.

The trailing sum is already of the wanted form, so let us focus on the leading sum. Observe
that

⟨x⟩rI = rS⟨x⟩r−1 + I⟨x⟩r

and hence
s∑︂

r=0

√︁
R0Ar,s

√︁
R0⟨x⟩rIR0 = r

s∑︂
r=0

√︁
R0Ar,s

√︁
R0S⟨x⟩r−1R0

+
s∑︂

r=0

√︁
R0Ar,s

√︁
R0I⟨x⟩rR0

= r
s∑︂

r=0

r−1∑︂
k=0

√︁
R0Ar,s

√︁
R0S

√︁
R0Ak,r−1

√︁
R0⟨x⟩k

+
s∑︂

r=0

r∑︂
k=0

√︁
R0Ar,s

√︁
R0I

√︁
R0Ak,r

√︁
R0⟨x⟩k.

Thus, we only need to verify that both
√
R0S

√
R0 and

√
R0I

√
R0 are bounded. The first

one is bounded as S is bounded. The second one is bounded as both
√
R0∂x and ∂x

√
R0

are bounded, which can be seen by conjugating with the Fourier transform and observing
that they are essentially x/⟨x⟩ on the Fourier side.
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Using this representation, the second bound is now a straightforward calculation, we have
for f ∈ S(R)⃓⃓⃓⃓∫︂

f(x)⟨x⟩s
(︃
g(x)− 1

2κ

)︃
dx

⃓⃓⃓⃓
= |Tr(f⟨ · ⟩s(R−R0))|

≤
∞∑︂
i=1

⃓⃓⃓⃓
Tr

(︃
f⟨ · ⟩s

√︁
R0

(︂√︁
R0q

√︁
R0

)︂i√︁
R0

)︃⃓⃓⃓⃓

=
∞∑︂
i=1

⃓⃓⃓⃓
Tr

(︃√︁
R0f⟨ · ⟩sR0q

√︁
R0

(︂√︁
R0q

√︁
R0

)︂i−1
)︃⃓⃓⃓⃓

≤
∞∑︂
i=1

s∑︂
r=0

⃓⃓⃓⃓
Tr

(︃√︁
R0f

√︁
R0Ar,s

√︁
R0⟨ · ⟩rq

√︁
R0

(︂√︁
R0q

√︁
R0

)︂i−1
)︃⃓⃓⃓⃓

≲s

∞∑︂
i=1

s∑︂
r=0

∥f∥H−1
κ (R)∥⟨ · ⟩

rq∥H−1
κ (R)δ

i−1

≲s ∥f∥H−1
κ (R)∥⟨ · ⟩

sq∥H−1
κ (R),

so we verified the second bound⃦⃦
⟨ · ⟩sg′

⃦⃦
L2(R) ≲s

⃦⃦⃦⃦
⟨ · ⟩s

(︃
g − 1

2κ

)︃⃦⃦⃦⃦
H1(R)

≲s ∥⟨ · ⟩sq∥H−1(R).

Now that we have some information about the regularity of g, we want to turn our
attention to other characteristics and properties of g.

Lemma 3.8
For δ > 0 sufficiently small and κ ≥ 1 the diagonal Green’s function satisfies

g′′′ = 2(qg)′ + 2qg′ + 4κ2g′.

Proof. For the kernel of the resolvent we have(︁
− ∂2

x + q(x)
)︁
G(x, y) = −κ2G(x, y) + δ(x− y) =

(︁
− ∂2

y + q(y)
)︁
G(x, y).

Hence, differentiating with respect to x and y yields

∂x
(︁
− ∂2

x + q(x)
)︁
G(x, y) = −∂xκ

2G(x, y) + δ′(x− y)

= ∂x
(︁
− ∂2

y + q(y)
)︁
G(x, y),

∂y
(︁
− ∂2

y + q(y)
)︁
G(x, y) = −∂yκ

2G(x, y)− δ′(x− y)

= ∂y
(︁
− ∂2

x + q(x)
)︁
G(x, y),
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and adding them appropriately gives

∂x
(︁
∂2
x + 3∂2

y

)︁
G(x, y) + ∂y

(︁
∂2
y + 3∂2

x

)︁
G(x, y)

= ∂x
(︁
q(x) + 3q(y) + 4κ2

)︁
G(x, y) + ∂y

(︁
q(y) + 3q(x) + 4κ2

)︁
G(x, y).

Therefore,

(∂x + ∂y)
3G(x, y)

= ∂x
(︁
q(x) + 3q(y) + 4κ2

)︁
G(x, y) + ∂y

(︁
q(y) + 3q(x) + 4κ2

)︁
G(x, y)

= q′(x)G(x, y) + q(x)∂xG(x, y) + 3q(x)∂yG(x, y)

+ q′(y)G(x, y) + q(y)∂yG(x, y) + 3q(y)∂xG(x, y)

+ 4κ2(∂x + ∂y)G(x, y)

= q′(x)G(x, y) + 2q(x)∂xG(x, y)− q(x)∂xG(x, y) + 3q(x)∂yG(x, y)

+ q′(y)G(x, y) + 2q(y)∂yG(x, y)− q(y)∂yG(x, y) + 3q(y)∂xG(x, y)

+ 4κ2(∂x + ∂y)G(x, y)

= (q′(x) + q′(y))G(x, y) + 2(q(x) + q(y))(∂x + ∂y)G(x, y)

− (q(x)− q(y))(∂x − ∂y)G(x, y) + 4κ2(∂x + ∂y)G(x, y).

For x = y this yields the desired result

g′′′ = 2q′g + 4qg′ + 4κ2g′.

Remark 3.9
Lemma 3.8 needed the assumptions on q and κ merely to ensure that the Green’s function
is well-defined.

Lemma 3.10
The Green’s function satisfies ∫︂

G(x, y)G(y, x)

2g(y)2
dy = g(x) (11)

for q ∈ Bδ, δ > 0 sufficiently small and κ ≥ 1.

Proof. Choosing δ small enough we see that both sides of Equation 11 are real analytic
by Proposition 3.4. Hence, due to density, we may assume that q ∈ S(R). There are
solutions to the equation

−f ′′ + qf = −κ2f
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with

f± = O
(︁
exp(∓κx)

)︁
for both x → ∞ and x → −∞ (cf. Teschl [2014]). By differentiating the Wronskian of the
two solutions we see that it is constant, further, the Sturm oscillation theorem guarantees
that these solutions cannot change sign. Hence, we may normalize such that

f+f
′
− − f ′

+f− = 1, (12)

and f± > 0. Using these solutions we can represent the Green’s function as

G(x, y) = f+(x ∨ y)f−(x ∧ y)

since we have

∂2
x

(︁
f+(x ∨ y)f−(x ∧ y)

)︁
= ∂x

(︁
f ′
+(x ∨ y)f−(x ∧ y)θ(x− y) + f+(x ∨ y)f ′

−(x ∧ y)θ(y − x)
)︁

= f ′′
+(x ∨ y)f−(x ∧ y)θ(x− y) + f ′

+(x ∨ y)f−(x ∧ y)δ(x− y)

+ f+(x ∨ y)f ′′
−(x ∧ y)θ(y − x)− f+(x ∨ y)f ′

−(x ∧ y)δ(y − x)

= (q(x ∨ y) + κ2)f+(x ∨ y)f−(x ∧ y)θ(x− y)

+ (q(x ∧ y) + κ2)f+(x ∨ y)f−(x ∧ y)θ(y − x) + δ(x− y)

= (q(x) + κ2)f+(x ∨ y)f−(x ∧ y) + δ(x− y)

i.e., R−1
(︁
f+( · ∨ y)f−( · ∧ y)

)︁
= δy. By reformulating the identity we want to prove in

terms of f± the problem reduces to showing∫︂
f+(x ∨ y)2f−(x ∧ y)2

2f+(y)2f−(y)2
dy = f+(x)f−(x). (13)

Splitting the integral into the parts x < y and x > y we have∫︂ x

−∞

f+(x)
2

2f+(y)2
dy +

∫︂ ∞

x

f−(x)
2

2f−(y)2
dy

=
f+(x)

2

2

∫︂ x

−∞

1

f+(y)2
dy +

f−(x)
2

2

∫︂ ∞

x

1

f−(y)2
dy .

Using the asymptotic behaviour of f± and that

d

dx

f−
f+

=
1

f2
+

and
d

dx

f+
f−

= − 1

f2
−
,

which follows from Equation 12, we indeed obtain Equation 13.
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Lemma 3.11
If in addition to q ∈ Bδ, δ > 0 sufficiently small and κ ≥ 1, we have f, q ∈ S(R) it holds
that ∫︂

G(x, y)
(︂
− f ′′′(y) + 2q(y)f ′ + 2

(︁
q(y)f(y)

)︁′
+ 4κ2f ′(y)

)︂
G(y, x) dy

= 2f ′(x)g(x)− 2f(x)g′(x),

Proof. Applying the commutator relations [∂x, f ] = f ′ and
[︁
∂2
x, f
]︁
= −f ′′ + 2∂xf

′ we
have

R−1f ′ − 2qf ′ + f ′R−1 − 2R−1f∂x − 2(qf)′ + 2∂xfR
−1 − 4κ2f ′

= R−1f ′ − qf ′ + f ′R−1 − f ′q − 2R−1f∂x + 2qf∂x + 2∂xfR
−1

− 2∂xfq − 4κ2f ′

=
(︁
− ∂2

x + κ2
)︁
f ′ + f ′(︁− ∂2

x + κ2
)︁
− 2
(︁
− ∂2

x + κ2
)︁
f∂x

+ 2∂xf
(︁
− ∂2

x + κ2
)︁
− 4κ2f ′

=
(︁
− ∂2

x + κ2
)︁
f ′ +

[︁
∂2
x, f

′]︁− ∂2
xf

′ + κ2f ′

+ 2
(︁
− ∂2

x + κ2
)︁(︁
[∂x, f ]− ∂xf

)︁
+ 2∂x

(︂[︁
∂2
x, f
]︁
− ∂2

xf + κ2f
)︂
− 4κ2f ′

=
(︁
− ∂2

x + κ2
)︁
f ′ − f ′′′ + 2∂xf

′′ − ∂2
xf

′ + κ2f ′

+ 2
(︁
− ∂2

x + κ2
)︁(︁
f ′ − ∂xf

)︁
+ 2∂x

(︁
− f ′′ + 2∂xf

′ − ∂2
xf + κ2f

)︁
− 4κ2f ′

= −f ′′′.

Multiplying by R from left and right gives

−Rf ′′′R+R 2qf ′R+R 2(qf)′R+R 4κ2f ′R

= f ′R+Rf ′ − 2f∂xR+R 2∂xf

= f ′R+Rf ′ − 2f∂xR+ 2∂xRf − 2[∂x, R]f.

Taking the diagonals for the corresponding integral kernels yields the result.

Remark 3.12
Lemma 3.11 also holds for f + c ∈ S(R) for some constant c, as the equation is linear in
f and the case of f being a constant is easy to check using Equation 10.

19



3.2 Introducing α and ρ

Proposition 3.13
For κ ≥ 1 and q ∈ Bδ, δ > 0 sufficiently small it holds that

ρ(x;κ, q) := κ− 1

2g(x;κ, q)
+ 2κR0(2κ)q(x) ∈ L1(R) ∩H1(R).

Moreover, if we define

α(κ, q) =

∫︂
ρ(x;κ, q) dx ,

then α is real analytic with

α
(︁
κ, q
)︁
≈ 1

κ
∥q∥2

H−1
κ (R)

uniformly for q ∈ Bδ.

Proof. First note that ρ is in H1(R) by Proposition 3.4. To see that ρ ∈ L1(R) we rewrite

ρ = κ− 1

2g
+ 2κR0(2κ)q

= 2κ2
(︃
g − 1

2κ
+

1

κ
R0(2κ)q

)︃
− 2κ2

g

(︃
g − 1

2κ

)︃2

from which it is clear that the latter term is in L1(R) as g−1/2κ ∈ L2(R) by Proposition 3.4.
For the first term take f ∈ S(R), then⃓⃓⃓⃓∫︂ (︃

g(x)− 1

2κ
+

1

κ
R0(2κ)q(x)

)︃
f(x) dx

⃓⃓⃓⃓
(14)

=
⃓⃓
Tr
(︁
f(R−R0 +R0qR0)

)︁⃓⃓
≤
∑︂
i≥2

⃓⃓⃓⃓
Tr

(︃
f
√︁

R0

(︂√︁
R0q

√︁
R0

)︂i√︁
R0

)︃⃓⃓⃓⃓
≤ ∥f∥L∞(R)

⃦⃦⃦√︁
R0

⃦⃦⃦2⃦⃦⃦√︁
R0q

√︁
R0

⃦⃦⃦2
J2

∑︂
i≥2

∥q∥i−2

H−1
κ (R)

≲ ∥f∥L∞(R)

⃦⃦⃦√︁
R0

⃦⃦⃦2
and by duality, we have ρ ∈ L1(R).
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By Equation 6 and Lemma 3.10 we have

dα(q)(f) =

∫︂
dρ(q)(f)(x) dx (15)

=

∫︂ (︃
− 1

2g(x)2

∫︂
G(x, y)f(y)G(y, x) dy + 2κR0(2κ)f(x)

)︃
dx

=

∫︂∫︂ (︃
− G(x, y)G(y, x)

2g(x)2
+ 2κG0(x, y; 2κ)

)︃
dx f(y) dy

=

∫︂ (︃
1

2κ
− g(y)

)︃
f(y) dy .

Note that both α and dα vanish at q = 0. Moreover, α is real analytic by Proposition 3.4.
To find an approximate representation of α in some small neighborhood Bδ around 0 we
thus only need to consider the Hessian of α at 0. For the Hessian, we have by Equation 6

d2α(q)(f, f) =

∫︂ (︁
− dg(q)(f)(x)

)︁
f(x) dx

=

∫︂∫︂
G(x, y)f(y)G(y, x)f(x) dy dx ,

and in particular, for q = 0 we have

d2α(0)(f, f) =

∫︂
κ−1R0(2κ)f(x)f(x) dx

= κ−1∥f∥2
H−1

κ (R),

by a calculation similar to the one in Equation 3. So we do indeed have that

α(κ, q) ≈ 1

κ
∥q∥2

H−1
κ (R)

in some neighborhood of 0. Moreover, Equation 7 allows us to control the modulus of
continuity of the Hessian

⃓⃓
d2α(q)(f, f)− d2α(0)(f, f)

⃓⃓
=

⃓⃓⃓⃓∫︂ (︁
dg(q)(f)(x)− dg(0)(f)(x)

)︁
f(x) dx

⃓⃓⃓⃓
≤ ∥dg(q)(f)− dg(0)(f)∥H1(R)∥f∥H−1(R)

≲ κ−1∥q∥H−1(R)∥f∥
2
H−1

κ (R),

which verifies that the size of the neighborhood can be chosen independently of κ.
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4 Dynamics

By virtue of Equation 15 we have that
δα

δq
=

1

2κ
− g(x). (16)

Moreover, by Equation 4 we have

d

ds

⃓⃓
s=0

(︃
− log det

2

(︂
1 +

√︁
R0(q + sf)

√︁
R0

)︂)︃
=

d

ds

⃓⃓
s=0

∞∑︂
k=2

(−1)k

k
Tr

(︃(︂√︁
R0(q + sf)

√︁
R0

)︂k)︃

=

∞∑︂
k=2

(−1)k Tr

(︃(︂√︁
R0q

√︁
R0

)︂k−1√︁
R0f

√︁
R0

)︃
=

∫︂ (︂ 1

2κ
− g(x)

)︂
f(x) dx .

Combining these two equations we see that

δα

δq
=

1

2κ
− g(x) =

δ

δq

(︃
− log det

2

(︂
1 +

√︁
R0q

√︁
R0

)︂)︃
and hence

α = − log det
2

(︂
1 +

√︁
R0q

√︁
R0

)︂
is indeed the quantity we wanted to look out for. So, we expect α to be conserved under
the flow of the KdV.

Notation
We will abbreviate

G(t, x, y) = G(x, y; q(t)), g(t, x) = g(x; q(t)) and ρ(t, x) = ρ(x; q(t)).

Proposition 4.1
For a Schwartz solution q(t) of the KdV (1) with initial condition q(0) ∈ Bδ, δ > 0
sufficiently small and κ ≥ 1 it holds that

d

dt
g(t, x) = −2q′(t, x)g(t, x) + 2q(t, x)g′(t, x)− 4κ2g′(t, x) (17)

d

dt

1

2g(t, x)
=

(︃
q(t, x)

g(t, x)
− 2κ2

g(t, x)
+ 4κ3

)︃′
(18)

d

dt
ρ(t, x) =

(︄
6κR0(2κ)q

2(t, x) + 2q(t, x)

(︃
κ− 1

2g(t, x)

)︃
− 4κ2ρ(t, x)

)︄′

(19)

d

dt
α
(︁
κ, q(t)

)︁
= 0. (20)
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Proof. Equation 17 follows from Equation 6, Lemma 3.11 and by virtue of q(t) being a
solution of the KdV (1)

d

dt
g(t, x) = dg(q(t))

(︁
∂tq(t)

)︁
(x)

= −
∫︂

G(t, x, y)∂tq(t, y)G(t, y, x) dy

= −
∫︂

G(t, x, y)
(︁
− q′′′(t, y) + 6q′(t, y)q(t, y)

)︁
G(t, y, x) dy

= −2q′(t, x)g(t, x) + 2q(t, x)g′(t, x) + 4κ2
∫︂

G(t, x, y)q′(t, y)G(t, y, x) dy

= −2q′(t, x)g(t, x) + 2q(t, x)g′(t, x)− 4κ2g′(t, x).

For Equation 18, just note that

d

dt

1

2g(t)
= − 1

2g(t)2
d

dt
g(t)

=
2q′(t)g(t)− 2q(t)g′(t) + 4κ2g′(t)

2g(t)2

=

(︃
q(t)

g(t)
− 2κ2

g(t)

)︃′
.

Using this and that q(t) satisfies the KdV (1) we get for Equation 19

d

dt
ρ = −

(︃
q

g
− 2κ2

g
+ 4κ3

)︃′
+ 2κR0(2κ)(∂tq)

= −
(︃
q

g
− 2κ2

g
+ 4κ3

)︃′
+ 2κR0(2κ)

(︁
− q′′′

)︁
+ κR0(2κ)

(︁
3q2
)︁′

=

(︄
−
(︃
q

g
− 2κ2

g
+ 4κ3

)︃
+ 2κR0(2κ)

(︁
− q′′ + 4κ2q − 4κ2q

)︁
+ κR0(2κ)

(︁
3q2
)︁)︄′

=

(︄
−
(︃
q

g
− 2κ2

g
+ 4κ3

)︃
+ 2κq − 8κ3R0(2κ)q + 2κR0(2κ)

(︁
3q2
)︁)︃′

=

(︃
6κR0(2κ)

(︁
q2
)︁
+ 2q

(︂
κ− 1

g

)︂
− 4κ2

(︂
κ− 1

2g
+ 2κR0(2κ)q

)︂)︄′

.

Equation 20 is just a simple consequence of Equation 19 after integrating

d

dt
α
(︁
q(t)

)︁
=

∫︂
d

dt
ρ(t, x) dx = 0

as dρ/dt is a spatial derivative of a Schwartz function.
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Corollary 4.2
For δ > 0 there is a δ0 > 0 such that for every Schwartz solution q(t) of the KdV (1) with
initial condition q(0) ∈ Bδ0 one has

sup
t∈R

∥q(t)∥H−1(R) ≤ δ.

Proof. Choosing δ0 such that Proposition 3.13 and Proposition 4.1 are applicable, we
have

∥q(t)∥H−1(R) ≈ α(1, q(t)) = α(1, q(0)) ≈ ∥q(0)∥H−1(R) ≤ δ0

and the claim follows after updating δ0 if necessary.

The Hamiltonian associated with the KdV is

HKdV =

∫︂ (︃
1

2
q′(x)2 + q(x)3

)︃
dx

as

d

ds

⃓⃓
s=0

∫︂
1

2

(︂(︁
q(x) + sf(x)

)︁′)︂2
+
(︁
q(x) + sf(x)

)︁3
dx

=

∫︂
q′(x)f ′(x) + 3q(x)2f(x) dx

=

∫︂
−q′′(x)f(x) + 3q(x)2f(x) dx .

As noted previously, we want to look at the Hamiltonian

Hκ = −16κ5α(κ) + 4κ2P, (21)

to approximate the KdV Hamiltonian. Note that since α is preserved under the flow of
the KdV we know that {HKdV, α} = 0. Furthermore, the momentum

P =

∫︂
1

2
q(x)2 dx

also Poisson commutes with HKdV as

δP

δq
= q, (22)

and

{HKdV, P} =

∫︂ (︁
− q′′(x) + 3q2(x)

)︁
q′(x) dx =

∫︂ (︃
1

2
q′(x)2 + q3(x)

)︃′
dx = 0.

So by the linearity of the Poisson bracket, we also have {HKdV, Hκ} = 0.
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Proposition 4.3
The flow associated with Hκ is

d

dt
q(t, x) = 16κ5g′(t, x;κ) + 4κ2q′(t, x), (23)

and it is globally well-posed for q(0) ∈ Bδ for δ sufficiently small and independent of κ.
The flow commutes with that of the KdV (1), and α(κ) is conserved under this flow for
all κ ≥ 1. For Schwartz initial conditions, the diagonal Green’s function obeys

d

dt

1

2g(t, x;κ)
= − 4κ5

κ2 − κ2

(︃
g(t, x;κ)

g(t, x;κ)
− κ

κ

)︃′
+ 4κ2

(︃
1

2g(t, x;κ)
− κ

)︃′

as long as κ ̸= κ.

Proof. By Equation 16, Equation 21 and Equation 22 we have

δHκ

δq
= −16κ5

δα

δq
+ 4κ2

δP

δq

= −16κ5
(︃

1

2κ
− g

)︃
+ 4κ2q

from which we get Equation 23. Using that

∂sq(s, x+ 4κ2(t− s)) = qt(s, x+ 4κ2(t− s))− 4κ2q′(s, x+ 4κ2(t− s))

= 16κ5g′(x+ 4κ2(t− s), q(s))

we can integrate over s to obtain the equivalent integral equation

q(t, x) = q(0, x+ 4κ2t) +

∫︂ t

0
16κ5g′(x+ 4κ2(t− s), q(s)) ds .

From Proposition 3.4 we get⃦⃦
g′(q)− g′(q̃)

⃦⃦
H−1(R) ≲ ∥g(q)− g(q̃)∥H1(R) ≲ ∥q − q̃∥H−1(R)

and hence local well-posedness follows from Picard iteration. Once we proved the
conservation of α(κ), global well-posedness follows from Proposition 3.13, as conservation
of α(κ) gives a bound on ∥q(t)∥H−1(R). From Equation 6 and Equation 23 we get for the
diagonal Green’s function

d

dt

1

2g(x;κ)
= − 1

2g(x;κ)2
dg(q;κ)

(︁
∂tq
)︁
(x)

= − 8κ5

g(x;κ)2
dg(q;κ)

(︁
g′(κ)

)︁
(x)− 4κ2

2g(x;κ)2
dg(q(t);κ)

(︁
q′
)︁
(x)

=
8κ5

g(x;κ)2

∫︂
G(x, y;κ)g′(y;κ)G(y, x;κ) dy − 4κ2

2g(x;κ)2
g′(x;κ).
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By Lemma 3.8 we have(︁
4κ2 − 4κ2

)︁
g′(κ) = −

(︂
− g′′′(κ) + 2

(︁
qg(κ)

)︁′
+ 2qg′(κ) + 4κ2g′(κ)

)︂
.

Substituting this into the above equation and calling for Lemma 3.11 gives

d

dt

1

2g(κ)
= − 8κ5

g(κ)2
1

(4κ2 − 4κ2)

(︃
2g′(κ)g(κ)− 2g(κ)g′(κ)

)︃
+ 4κ2

(︃
1

2g(κ)

)︃′

= − 4κ5

κ2 − κ2

(︃
g(κ)

g(κ)

)︃′
+ 4κ2

(︃
1

2g(κ)

)︃′
.

Using this as well as Equation 23 we can see immediately that α(κ) is conserved

d

dt
α(κ) =

∫︂
d

dt
ρ(x;κ) dx

=

∫︂
d

dt

(︃
κ − 1

2g(x;κ)
+ 2κR0(2κ)q(x)

)︃
dx = 0

as dρ/dt is a spatial derivative of a Schwartz function.
As mentioned previously, the two Hamiltonians Hκ and HKdV Poisson commute, so we
conclude further that their flows commute.

5 Equicontinuity

To transfer the well-posedness result from the Hκ flow to that of HKdV, we need equicon-
tinuity.

Definition 5.1
We call Q ⊆ Hs(R) equicontinuous in Hs(R) if

q( · + h)
h→0−−−−→
Hs(R)

q

uniformly for q ∈ Q.
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Lemma 5.2
For σ < s and Q bounded in Hs(R)

1. the following are equivalent.

(a) Q is equicontinuous in Hs(R).
(b) It holds ∫︂

|w|≥κ
⟨w⟩2s|Fq(w)|2 dw κ→∞−−−→ 0 (24)

uniformly for q ∈ Q.

2. a sequence {qn}n ⊆ Hs(R) is convergent iff it converges in Hσ(R), and it is
equicontinuous in Hs(R).

Proof. Property 1b implies Property 1a follows from

∥q( · + h)− q∥Hs(R) =

∫︂
|exp(iwh)− 1|2⟨w⟩2s|Fq(w)|2 dw

noting that

|exp(iwh)− 1|2 = 2− 2 cos(wh) ≲ κ2h2, |w| < κ

and
|exp(iwh)− 1| ≲ 1, |w| ≥ κ.

Hence, by splitting the integral into two parts we get

∥q( · + h)− q∥Hs(R) ≲ κ2h2
∫︂
|w|<κ

⟨w⟩2s|Fq(w)|2 dw

+

∫︂
|w|≥κ

⟨w⟩2s|Fq(w)|2 dw

≤ κ2h2∥q∥2Hs(R) +

∫︂
|w|≥κ

⟨w⟩2s|Fq(w)|2 dw .

For κ = 1/
√
h and h → 0 we see that this vanishes uniformly as Q is bounded, so we have

equicontinuity in Hs(R). The direction Property 1a implies Property 1b follows from∫︂
|exp(iwh)− 1|2κ exp(−2κ|h|) dh =

∫︂ (︁
2− 2 cos(wh)

)︁
κ exp(−2κ|h|) dh

= 2

∫︂
R+

(︁
2− 2 cos(wh)

)︁
κ exp(−2κh) dh

=
2w2

4κ2 + w2
≳ 1− χ[−κ,κ](w)
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and ∫︂
∥q( · + h)− q∥2Hs(R)κ exp(−2κ|h|) dh

=

∫︂∫︂
|exp(iwh)− 1|2⟨w⟩2s|Fq(w)|2κ exp(−2κ|h|) dw dh

≳
∫︂
|w|≥κ

⟨w⟩2s|Fq(w)|2 dw .

Since κ exp(−2κ|h|) forms a good kernel, we know that the left-hand side converges to
zero as κ → ∞ uniformly for q ∈ Q.
For Property 2 let qn be a sequence in Hs(R) convergent. Then it clearly converges in
Hσ(R) and equicontinuity in Hs(R) holds by Equation 24 and the fact that Q is bounded
in Hs(R). Conversely, let qn converge in Hσ(R) and equicontinuous in Hs(R). Using
⟨w⟩2s ≲ ⟨κ⟩2s−2σ⟨w⟩2σ for w < κ we get

∥qn − qm∥2Hs(R) =

∫︂
⟨w⟩2s|Fqn −Fqm|2 dw

≤ ⟨κ⟩2s−2σ
∫︂
⟨w⟩2σ|Fqn −Fqm|2 dw

+

∫︂
|w|≥κ

⟨w⟩2s|Fqn −Fqm|2 dw .

Since the qn are equicontinuous in Hs(R) we may take κ large enough so that the last
term is smaller than some ϵ > 0, and then let n,m → ∞.

As mentioned previously, equicontinuity is strongly tied to α(κ).

Lemma 5.3
A bounded set Q ⊆ Bδ is equicontinuous in H−1(R) iff

κα(κ)
κ→∞−−−→ 0

uniformly for q ∈ Q.

Proof. As a result of Proposition 3.13, we want to show that equicontinuity of Q in
H−1(R) is equivalent to

lim
κ→∞

sup
q∈Q

∥q∥2
H−1

κ (R) = 0.

That this implies equicontinuity in H−1(R) follows immediately from Lemma 5.2 and the
fact that ∫︂

|w|≥κ
⟨w⟩−2|Fq(w)|2 dw ≲ ∥q∥2

H−1
κ (R).
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Conversely, if Q is equicontinuous in H−1(R) we have by Lemma 5.2 that∫︂
|w|≥κ

⟨w⟩−2|Fq(w)|2 dw κ→∞−−−→ 0

uniformly for q ∈ Q. So using the estimate∫︂
⟨w⟩−2

κ |Fq(w)|2 dw ≲ κ2

κ2

∫︂
|w|<κ

⟨w⟩−2|Fq(w)|2 dw

+

∫︂
|w|≥κ

⟨w⟩−2|Fq(w)|2 dw ,

which tends to zero uniformly on Q as κ2 = κ → ∞, we get the desired result.

Proposition 5.4
For a bounded set of Schwartz functions Q ⊆ Bδ∩S(R) that are equicontinuous in H−1(R)
we have that

Q∗ =
{︁
FlHKdV

t FlHκ
s q | q ∈ Q, t, s ∈ R, κ ≥ 1

}︁
(25)

is equicontinuous in H−1(R) and

4κ3
(︃

1

2κ
− g

)︃
κ→∞−−−−−→

H−1(R)
q

uniformly for q ∈ Q∗.

Proof. Lemma 5.3 shows that equicontinuity is a property that is contained in the
asymptotic behavior of α. As α(κ) is conserved under the flows of Hκ and HKdV,
equicontinuity is therefore also conserved under these flows and hence Q∗ is equicontinuous.
By Equation 14 we have⃦⃦⃦⃦

1

2κ
− g − 1

κ
R0(2κ)q

⃦⃦⃦⃦
L1(R)

≲
⃦⃦⃦√︁

R0

⃦⃦⃦2
α(κ)

≤ 1

κ2
α(κ)

and using Lemma 5.3 we get

κ3
⃦⃦⃦⃦
1

2κ
− g − 1

κ
R0(2κ)q

⃦⃦⃦⃦
L1(R)

κ→∞−−−→ 0

uniformly for q ∈ Q∗.
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Since ⃦⃦⃦⃦
4κ3
(︃

1

2κ
− g

)︃
− q

⃦⃦⃦⃦
H−1(R)

≤ 4κ3
⃦⃦⃦⃦
1

2κ
− g − 1

κ
R0(2κ)q

⃦⃦⃦⃦
H−1(R)

+
⃦⃦
4κ2R0(2κ)q − q

⃦⃦
H−1(R)

we only need to show that ⃦⃦
4κ2R0(2κ)q − q

⃦⃦
H−1(R)

κ→∞−−−→ 0

uniformly for q ∈ Q∗, which follows from

⃦⃦
4κ2R0(2κ)q − q

⃦⃦2
H−1(R) =

∫︂ (︃
4κ2

w2 + 4κ2
− 1

)︃2

⟨w⟩−2|Fq(w)|2 dw

=

∫︂ (︃
w2

w2 + 4κ2

)︃2

⟨w⟩−2|Fq(w)|2 dw

≤
∫︂
⟨w⟩−2

κ |Fq(w)|2 dw

= ∥q∥2
H−1

κ (R) = κα(κ)
κ→∞−−−→ 0

by Lemma 5.3.

6 Well-posedness

Theorem 6.1
Given Schwartz solutions qn(t) of the KdV (1) with initial conditions qn(0) converging
in H−1(R) we also have that qn(t) converges in H−1(R) uniformly for compact time
intervals.

Proof. First note that we may assume that qn(0) ∈ Bδ for δ > 0 small enough that all
the previous results are applicable, since the scaling

q ↦→ qλ(t, x) = λ2q(λ3t, λx)

maps solutions of the KdV to solutions with

∥qλ(0)∥2H−1(R) =

∫︂
|Fqλ(0, w)|2

w2 + 4
dw

= λ2

∫︂
|Fq(0, w/λ)|2

w2 + 4
dw

= λ

∫︂
|Fq(0, w)|2

w2 + 4λ−2
dw ,

which can be made arbitrarily small.

30



Setting Q = {qn(0)}n we have that Q is equicontinuous in H−1(R) as it converges there,
By Proposition 5.4 we have that Q∗, as defined in Equation 25, is equicontinuous in
H−1(R) as well. What we want is that

∥qn(t)− qm(t)∥H−1(R)
n,m→∞−−−−−→ 0

uniformly for compact time intervals. So we bound

∥qn(t)− qm(t)∥H−1(R)

=
⃦⃦⃦
FlHKdV

t qn(0)− FlHKdV
t qn(0)

⃦⃦⃦
H−1(R)

≤
⃦⃦⃦
FlHκ

t qn(0)− FlHκ
t qm(0)

⃦⃦⃦
H−1(R)

+
⃦⃦⃦
FlHKdV

t qn(0)− FlHκ
t qn(0)

⃦⃦⃦
H−1(R)

+
⃦⃦⃦
FlHKdV

t qn(0)− FlHκ
t qm(0)

⃦⃦⃦
H−1(R)

≤
⃦⃦⃦
FlHκ

t qn(0)− FlHκ
t qm(0)

⃦⃦⃦
H−1(R)

+ 2 sup
q∈Q∗

⃦⃦⃦
FlHKdV

t FlHκ
−t q − q

⃦⃦⃦
H−1(R)

and taking the supremum over t we have

sup
|t|≤T

∥qn(t)− qm(t)∥H−1(R) ≤ sup
|t|≤T

⃦⃦⃦
FlHκ

t qn(0)− FlHκ
t qm(0)

⃦⃦⃦
H−1(R)

+ 2 sup
q∈Q∗

sup
|t|≤T

⃦⃦⃦
FlHKdV

t FlHκ
−t q − q

⃦⃦⃦
H−1(R)

.

Now by the well-posedness of the Hκ flow, we see that the first term will converge to zero
as n,m → ∞. The second term is a bit more involved. Fix κ − 1 > κ > 1 and write
q(t) = FlHKdV

t FlHκ
−t q for q ∈ Q∗.
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Then we have by Proposition 4.1 and Proposition 4.3

d

dt

1

2g(κ)

=

(︃
q

g(κ)
− 2κ2

g(κ)
+ 4κ3

)︃′
+

4κ5

κ2 − κ2

(︃
g(κ)

g(κ)
− κ

κ

)︃′
− 4κ2

(︃
1

2g(κ)
− κ

)︃′

=

(︃
q

g(κ)
− 2κ2

g(κ)
+ 4κ3 +

4κ5

κ2 − κ2

g(κ)

g(κ)
− 4κ5

κ2 − κ2

κ
κ
− 4κ2

1

2g(κ)
+ 4κ2κ

)︃′

=

(︃
q

g(κ)
− 2κ2

g(κ)
+

4κ5

κ2 − κ2

g(κ)

g(κ)
− 2κ2

1

g(κ)
− 4κ5

κ2 − κ2

)︃′

=

(︄
1

g(κ)

(︃
q − 2κ2 +

4κ5

κ2 − κ2
g(κ)− 2κ2 − 4κ5

κ2 − κ2
g(κ)

)︃)︄′

=

(︄
1

g(κ)

(︃
q − 2

κ4

κ2 − κ2
+

4κ5

κ2 − κ2
g(κ) + 2

κ4

κ2 − κ2
− 4κ5

κ2 − κ2
g(κ)

)︃)︄′

=

(︄
1

g(κ)

(︃
q +

4κ5

κ2 − κ2

(︂
g(κ)− 1

2κ

)︂
− 4κ5

κ2 − κ2

(︂
g(κ)− 1

2κ

)︂)︃)︄′

.

Therefore, using Equation 9, we can conclude that⃦⃦⃦⃦
d

dt

(︃
κ − 1

2g(κ)

)︃⃦⃦⃦⃦
H−2(R)

≲κ

⃦⃦⃦⃦
q(t) + 4κ3

(︂
g(κ)− 1

2κ

)︂⃦⃦⃦⃦
H−1(R)

+ κ

⃦⃦⃦⃦
g(κ)− 1

2κ

⃦⃦⃦⃦
H−1(R)

+ κ−2

⃦⃦⃦⃦
g(κ)− 1

2κ

⃦⃦⃦⃦
H−1(R)

uniformly for q ∈ Q∗. Using the fundamental theorem of calculus and taking suprema
and limits we get using Proposition 5.4

lim
κ→∞

sup
q∈Q∗

sup
|t|<T

⃦⃦⃦⃦
1

2g(0,κ)
− 1

2g(t,κ)

⃦⃦⃦⃦
H−2(R)

(26)

≲ T lim
κ→∞

sup
q∈Q∗

sup
|t|<T

⃦⃦⃦⃦
d

dt

(︃
κ − 1

2g(κ)

)︃⃦⃦⃦⃦
H−2(R)

= 0.

Note that by Proposition 3.4 and by Equation 10{︃
κ − 1

2g(κ, q(t))
| q ∈ Q∗, t ∈ R

}︃
is equicontinuous in H1(R), so we may upgrade the convergence in Equation 26 to H1(R)
by virtue of Lemma 5.2.
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And again by Proposition 3.4 we may conclude

lim
κ→∞

sup
q∈Q∗

sup
|t|<T

⃦⃦⃦
FlHKdV

t FlHκ
−t q − q

⃦⃦⃦
H−1(R)

= lim
κ→∞

sup
q∈Q∗

sup
|t|<T

⃦⃦⃦⃦
1

2g(0,κ)
− 1

2g(t,κ)

⃦⃦⃦⃦
H1(R)

= 0.

Theorem 6.2 Killip and Vişan [2018]
The KdV (1) is globally well-posed in H−1(R) in the sense that the solution map

Φ : R× S(R) → S(R)

extends uniquely to a continuous map

Φ : R×H−1(R) → H−1(R).

The orbits {Φ(t, q) | t ∈ R} are bounded and equicontinuous in H−1(R) with

sup
t

∥q(t)∥H−1(R) ≲ ∥q(0)∥H−1(R) + ∥q(0)∥3H−1(R)

and Φ fulfills

Φ(t+ s) = Φ(t) ◦ Φ(s).

Proof. For q ∈ H−1(R) choose some qn(t) ∈ S(R) which solve the KdV (1) and whose
initial conditions converge to q

qn(0)
n→∞−−−−−→
H−1(R)

q.

Then we define the extension of Φ as

Φ(t, q) = lim
n→∞

qn(t)

which exists in H−1(R), is independent of the choice of qn and convergence is uniform for
compact time intervals by Theorem 6.1. To show continuity, take qn → q ∈ H−1(R) and
T > 0. By Theorem 6.1 we know that there are Schwartz solutions q̃n with

sup
|t|≤T

∥q̃n(t)− Φ(t, qn)∥H−1(R)
n→∞−−−→ 0.

Especially, q̃n(0)
n→∞−−−−−→
H−1(R)

q, and again by Theorem 6.1 we get convergence

sup
|t|≤T

∥q̃n(t)− Φ(t, q)∥H−1(R)
n→∞−−−→ 0.
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Since the q̃n(t) are H−1(R) continuous in time, we see that Φ is continuous. The group
property follows from continuity and the group property of Φ on S(R). For an orbit
{Φ(t, q) | t ∈ R} we know that α(κ) ≈ 1

κ∥Φ(t, q)∥
2
H−1

κ (R) is conserved. Hence, we see that
the orbits stay bounded and are equicontinuous by Lemma 5.3. We especially have

∥q(t)∥H−1(R) ≈ α(1) ≈ ∥q(0)∥H−1(R)

for sufficiently small initial conditions and by scaling we have for initial conditions with
∥q∥H−1(R) ≥ δ

∥q(t)∥H−1(R) ≲ ∥q(0)∥3H−1(R).

In general, we thence have

∥q(t)∥H−1(R) ≲ ∥q(0)∥H−1(R) + ∥q(0)∥3H−1(R).

Corollary 6.3
In the same sense as in Theorem 6.2 the KdV (1) is globally well-posed in Hs(R) for all
s ≥ −1.

Proof. We will restrict ourselves to s < 0, for a more direct proof. Let qn(t) ∈ S(R) be
solutions with qn(0) convergent in Hs(R). Using Theorem 6.1 we get that qn(t) converges
in H−1(R) uniformly for compact time intervals. Integrate∫︂ ∞

κ0

α(κ)κ2+2s dκ ≈
∫︂ ∞

κ0

∥q∥2H−1(R)κ
1+2s dκ

=

∫︂
|Fq|2

∫︂ ∞

κ0

1

w2 + 4κ2
κ1+2s dκdw

≈s

∫︂
|Fq|2(w2 + 4κ20)

s dw

and observe that the left-hand side is conserved under the KdV flow. So we obtain∫︂
|Fqn(0)|2(w2 + 4κ20)

s dw ≈s

∫︂
|Fqn(t)|2(w2 + 4κ20)

s dw .

Now let κ0 → ∞, then the left-hand side converges to 0 uniformly in n as the initial
conditions are Hs(R) convergent and thus equicontinuous. Therefore, the same holds for
the right-hand side uniformly in t and n so

{qn(t) | n ∈ N, t ∈ R}

is equicontinuous in Hs(R) and combined with the convergence in H−1(R) we obtain
uniform convergence of qn(t) in Hs(R) by Lemma 5.2.
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